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ABSTRACT

Skyline queries have emerged as an expressive and informative

tool, with minimal user input and thus, they have gained widespread

attention. However, previous research works tackle the problem

from an efficiency standpoint, i.e., returning the skyline as fast

as possible, leaving it to the user to manually inspect the entire

skyline result. Clearly, this is impractical, even with a few dozen

points. The techniques addressing this issue are computationally

expensive, mapping to NP-Hard problems or having exponential

complexity O(2d) with respect to data dimensionality d. Moreover,

the result is a set, lacking any quality-based ranking. In this pa-

per, we propose a novel IR-style ranking mechanism for skyline

points, based on the renowned tf-idf weighting scheme. We present

efficient algorithms to compute the quality of a skyline point ac-

cording to our technique, and induce a total ordering of the skyline

set. Finally, we empirically evaluate the efficiency of our method

with real-life and synthetic data sets.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process; H.2.8

[Database Applications]: Data Mining; H.2.4 [Systems]: Query

Processing
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1. INTRODUCTION
Skyline queries were initially proposed in the context of databases

in [2]. Their ability to empower multi-criteria decision making,

with minimum user input, and their applicability in a series of do-

mains has gained them considerable attention from the database

community. Assuming w.l.o.g. that smaller values are preferred,

we say that point p = (p.x1, p.x2, ..., p.xd) ∈ D dominates point

q = (q.x1, q.x2, ..., q.xd) ∈ D (and write p ≺ q), when: ∀i ∈
{1, ..., d}, p.xi ≤ q.xi ∧ ∃j ∈ {1, ..., d} : p.xj < q.xj . Simply

put, p dominates q, if p is at least as good as q in every dimension,

and it is strictly better than q in at least one. The skyline of D,
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denoted as S, is composed of all d-dimensional points that are not

dominated by any other point.

Related Work and Motivation. Skyline queries are a well stud-

ied problem in the area of Computational Geometry [6], but have

attracted considerable attention in the context of databases, when

Börzsönyi et al introduced the skyline operator [2].

Several algorithms have been presented for skyline computation,

with BBS [9] being the most preferred when using an index, due

to its progressiveness and I/O optimality. Efficient algorithms have

also been proposed in [5] and [10] for such cases where indexing

cannot be applied. These works (as many more) focus on efficiency,

i.e., retrieving the skyline as quickly as possible, and the result is a

set, i.e. all points are equally important. In other words, there is no

discrimination between the points, leaving it entirely to the user to

select. Unfortunately, the skyline may contain far too many points:

the skyline of randomly generated points is Θ(logd−1(n)) [1]. In

an era when “ten blue links” seem too many [7], returning approx-

imately 103 skyline points from a dataset with 109 points, immedi-

ately negates the advantages of skyline queries.

To address the skyline cardinality explosion problem, the gen-

eral direction is to return a subset of k skyline points, where k is a

user- or application-defined parameter. The subset has some spe-

cific properties, e.g., collectively maximizes coverage [8], captures

the contour of the skyline [11], diversifies the skyline [12, 11], etc.

Nevertheless, these techniques fail to differentiate between the re-

turned points based on some importance measure. Moreover, they

are mapped to NP-Hard problems, so we can only efficiently ap-

proximate the solutions, unless P=NP.

Researchers have also investigated ranking of skyline points. We

identify two categories, depending on the amount of information

used to rank the points: In the first case, the entire dataset is used,

and the importance of a skyline point is given by the number of

points it dominates [9, 14]. The major shortcoming of the first cat-

egory is that all dominated points are equally important. For exam-

ple, a point p1 dominated by 10 skyline points and another one p2
dominated by 100 contribute the same weight to their dominators.

Taking into account that skyline queries have an inherent relation

to sorting [1], and that distance measures for sorted lists heavily

rely on the relative positions of items, it feels counter-intuitive to

use the same weight for all dominated points.

The second category relies on the skyline S alone, and typically

uses dominance relations in subspaces [13, 4]. Consequently, such

techniques ignore dataset characteristics. They are also generally

inefficient, as they need to consider O(2d) non-empty subspaces.

Moreover, they favor skyline points with extreme values in a sin-

gle dimension and have been shown to produce correlated results,

whereas some of them [13] have not been sufficiently evaluated.

Contributions. To address these shortcomings, we present a novel



ranking scheme for skyline points. We argue that a point’s im-

portance should be inversely proportional to the number of sky-

line points that dominate it. Additionally, our model distinguishes

dominated points, based on their relative positions. For instance, if

sp1 ≺ a, sp1 ≺ b, and a and b do not dominate each other, they

contribute equally to sp1. Otherwise, if a ≺ b, then score(a) >

score(b). Therefore, our technique promotes skyline points that

dominate genuine points, i.e., points which are not dominated by

many others, and is a hybrid approach.

To capture both aspects in a single scoring function, we apply

a modified version of the renowned tf-idf weighting scheme and

present efficient algorithms that rank the skyline according to this

scheme. Our contributions are briefly described as follows:

• We define a novel, generic and intuitive measure of impor-

tance for skyline points. Inspired by the renowned tf-idf weight-

ing scheme from information retrieval, our method promotes

skyline points that dominate genuine points.

• We present efficient algorithms that compute the top-k most

important skyline points, given our measure.

• We provide an extensive experimental evaluation, in terms of

efficiency using both real-life and synthetic datasets.

Roadmap. The rest of the paper is organized as follows. Section 2

gives the details of our scoring model and the algorithms proposed

for the task at hand. In Section 4 we evaluate our techniques. Fi-

nally, Section 5 summarizes our findings and concludes the paper

by discussing briefly future work in the area.

2. DP-IDP WEIGHTING SCHEME
Our proposed measure, dp-idp, which stands for dominance power

- inverse dominance power, is inspired by the renowned tf-idf weight-

ing scheme from Information Retrieval. The general rationale is

that dominated points are not equally important, and that they im-

pact skyline point differently. Therefore, their contribution depends

on some local (per skyline point) and some global characteristics

(the entire skyline), much like tf-idf uses local and global infor-

mation to find important keywords in a document corpus. In the

following paragraphs we present our ranking scheme.

2.1 Inverse Dominance Power
We will start with inverse dominance power (idp), which is eas-

ier to define, due to its more global view. The inverse dominance

power of a point p ∈ (D\S) is the number of skyline points which

dominate p. This factor is similar to idf in the sense that the more

frequently p appears in a skyline point’s dominated set, the lower

the importance of p. More formally:

idp(p) = log
|S|

|{sp ∈ S : sp ≺ p}|

An interesting property of idp is the following: Assume a set of

points q1, q2, ..., qm dominated by all skyline points, i.e., ∀sp ∈ S ,

sp ≺ qj , j = 1, ..,m. The contributing score of the qi’s will be 0,

due to the log in the idp factor. Such points do not alter the ranking

of S , either with ours or simpler models (e.g., |Γ(sp)|), because

they affect all skyline points the same.

2.2 Dominance Power
There are several ways we could define the dominance power

of a dominated point. Given that we want to measure this factor

with respect to a skyline point sp, we argue that its relative position
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Figure 1: Example for the Dominance Power

to sp should matter. As a result, the same dominated point may

contribute differently to different skyline points.

To avoid introducing more artifacts in our model, we choose the

dominance relation as our building block. More specifically, we

find the layer of minima 1 lm(p, sp) where the dominated point p

falls in, with respect to sp. The dominance power of that point is

then given by the inverse of the layer where it lies, i.e.,

dp(p, sp) =
1

lm(p, sp)

Figure 1 portrays the skyline of a dataset, and the dominance

region for each skyline point. Moreover, it shows the layers of

minima for skyline points B and C, in dotted green and purple

respectively. We observe that the red-filled point, dominated by

both B and C, lies at different minima layers. Being easier to reach

it from C, should render it more important for C. On the contrary,

there is an additional layer for skyline point B prior to reaching

that point, that decreases its importance. This is similar to term

frequency, where the same term is weighted differently, depending

on its occurrence in each document.

2.3 Putting it all together
Given our previous discussion, we can now formally introduce

how we compute the importance of a skyline point sp. We use

an additive model, because i) it is monotonous (dominating more

points increases the overall importance) ii) it is comprehensive and

iii) it leads to efficient computations, as we followingly discuss.

Therefore, the importance of a skyline point sp is given by:

score(sp) =
∑

p:sp≺p

1

lm(p, sp)
× log

|S|

|{sp′ ∈ S : sp′ ≺ p}|

The additive model also favors skyline points that dominate more

genuine points, i.e., points dominated by few others in general (not

just skyline points). This is important, because those skyline points

are the reason why the dominated ones cannot be part of the sky-

line. For example, if we remove B from the skyline in Figure 1

(e.g., a hotel being fully booked), the point next to it will enter the

skyline at once (similarly for the closest point dominated by A).

Additionally, points dominated by the entire skyline still have no

effect. Finally, note that the sum of tf − idf values is also used in

IR systems, to score the entire document against a query.

3. RANKING THE SKYLINE
Algorithm 1 gives a straightforward approach to rank the skyline

S with our proposed scheme. For each skyline point sp (line 1),

1In the literature, the term layer of maxima is more common. Here,
we use the term layer of minima because we assume that small
values are preferable.



Algorithm 1 Baseline

Input: Skyline S , Dataset D, Integer k

Output: Ranked List

1: for every sp ∈ S do

2: score( sp )← 0; layer← 1; lm← NextLayer( sp, ∅ );

3: while (lm 6= ∅) do

4: for every p ∈ lm do

5: score( sp ) += 1
layer

× log
|S|

|{sp′:sp′≺p}|
;

6: lm← NextLayer( spi, lm ); layer++;

7: Order by descending score(sp);

8: Return k highest skyline points;

we extract one-by-one its minimal layers (lines 2–6). NextLayer

uses BBS [9] internally. For every point in each layer (line 4),

we find how many in S dominate it, and together with the layer’s

index, we update the score of sp (line 5). After ordering the skyline

in decreasing score order (line 7), we return the top-k ranked items.

Unfortunately, this approach is computationally expensive, due

to repeated evaluations. It also computes the score of all skyline

points, despite our interest in the top-k results. Finally, it lacks

any notion of progressiveness, as we need to rank the entire skyline

first. For all these reasons, we present an alternative approach, that

relies on bounding the score of a skyline point.

3.1 Bounding the score
Bounding the score of a skyline point sp will help us reduce

computations, by pruning away those that will not make it to the

top-k positions. To achieve this, we use the number of points that

sp dominates, |Γ(sp)|. We can then derive lower and upper bounds

of the score of a skyline point, as shown in the next paragraphs.

Loose Bounds. The simplest bounds consider each skyline point

independently of the rest, and are derived as follows. A skyline

point obtains its maximum score when all the points it dominates

are in the same (first) layer, and they are not dominated by any other

skyline point. In that case, the upper bound is:

score(sp) = |Γ(sp)| × log |S|

On the other hand, the lower bound is obtained when every point

is dominated by the entire skyline S. In that case, the score is 0,

due to the idp(sp) factor. However, this bound only holds for the

skyline point spmin with the minimum |Γ(spmin)|. The rest of

the skyline dominates some points, which can not be domianted

by spmin. Consider, for instance, that |Γ(spmin)| = 3 and that

|Γ(sp′)| = 5. By definition, the 2 additional points dominated by

sp′ can not be dominated by spmin, otherwise |Γ(spmin)| = 5.

Therefore, the surplus will be dominated by |S| − 1 skyline points,

and a correlated distribution 2 will give the lowest score value. This

gives a slightly better lower bound:

score(sp) = log
|S|

|S| − 1
×

n−minΓ∑

1

1

i

Collaborative Bounds. Despite their simplicity, the above bounds

have limited pruning capability. Assume, for instance, a dataset

D, with |D| = 1M and |S| = 800. If |Γ(sp)| = 300K, then

score(sp) ≃ 871K, and score(sp) ≃ 3× 10−3. Note that a sky-

line point sp′ with |Γ(sp′)| = 1, has an upper bound of∼2.9, mak-

ing it eligible for consideration in the second round! Apparrently,

the computational gains of such bounds are easily swept away.

2In a correlated distribution, each point is a minimal layer
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Figure 2: Example of skyline and bipartite domination graph

To address this issue, we derive stricter bounds, through addi-

tional information from other skyline points. To better understand

this approach, we visualize the problem as a bipartite graph. Fig-

ure 2 shows a dataset, with its skyline and dominance regions on

the left, and the resulting bipartite graph on the right. The left hand

side of the graph contains the skyline, whereas the right hand side

has the dominated points. We add an edge between a skyline point

sp ∈ S and a dominated point p ∈ D \ S, iff sp ≺ p.

We start with the upper bound. Due to the additive model, the

score of a skyline point is maximized when the contribution of each

dominated point is maximized. It is easy to see that dp is max-

imized when the dominated point is at the earliest possible layer.

To maximize idp, we rely on the Pigeonhole Principle. For any

two skyline points sp1, sp2, if Γ(sp1) + Γ(sp2) > |D|, then at

least |D|− (Γ(sp1)+Γ(sp2)) dominated points are shared by sp1
and sp2. Having more common points reduces idp(), so we only

consider the minimum overlap. The question now becomes “How

should we assign the common edges to maximize the score of a

skyline point”? Lemma 1 answers this question.

LEMMA 1. Let sp be a skyline point, px and py two dominated

points, where sp ≺ px and sp ≺ py and lm(px) = lm(py) = l.

Assigning an edge to the point dominated by more skyline points

gives a higher score(sp).

PROOF. Let Sx, Sy be the current sets of skyline points domi-

nating px and py , respectively. Assigning an edge to either px or

py gives two different bipartite graphs, with S ′
x and S ′

y being the

new dominating sets of these points. It holds that |S ′
x| = |Sx| + 1

(same for S ′
y), due to the new edge, i.e., one more dominating sky-

line point. The resulting bipartite graphs differ only in the assign-

ment of this edge, which impacts the weights of px and py . The

weights of all other dominated points remain unchanged. Assume

that adding the edge to px yields a higher score. It so holds:

1

l
× log

|S|

|S ′
x|

+
1

l
× log

|S|

|Sy|
>

1

l
× log

|S|

|Sx|
+

1

l
× log

|S|

|S ′
y|
⇒
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Figure 3: Collaborative upper bound



log(
|S|

|S ′
x|
×
|S|

|Sy|
) > log(

|S|

|Sx|
×
|S|

|S ′
y|
)⇒ |Sx|·|S

′
y| > |S

′
x|·|Sy| ⇒

|Sx| · (|Sy|+ 1) > (|Sx|+ 1) · |Sy| ⇒ |Sx| > |Sy|

The above result tells us that a higher score is achieved by adding

the extra edge to the dominated point with the higher indegree!

Such a result can also be efficiently integrated in an algorithm to

compute the upper bound of a skyline point’s score. Figure 3(b)

shows the edge assignment for the upper bound of skyline points

B, using the above result.

A naive implementation of the upper bound can be very ineffi-

cient 3, because it requires too many counter updates for the com-

monly dominated points. Since we must compute the bound of

each skyline point sp independently and repeatedly, as new lay-

ers are extracted, we need a more efficient approach. Algorithm 2

presents this improved technique.

Algorithm 2 Score Upper Bounding

Input: D, S , Skyline Point poi, minIDP , layer

Output: Upper bound of poi

1: vidp.push( minIDP ); vpnd.push( pending( poi ) );

2: Sort S , in decreasing |Γ(sp)|;
3: for every sp ∈ S , sp 6= poi do

4: surplus = |Γ(poi)| - seen( poi ) + |Γ(sp)| > |D|
5: if ( surplus > 0 ) then

6: vpnd[last] = vpnd[last] - surplus;

7: vpnd.push( surplus );

8: vidp.push( vidp[last] + 1 );

9: ub← 0;

10: for ( i = 0; i < vidp.size(); i++ ) do

11: ub← 1
layer+1

∗ vpnd[i] ∗ log
|S|

vidp[i]

12: Return ub;

The improved algorithm takes as input the datasetD, the skyline

S, the skyline point of interest poi, and two values minIDP and

layer. As we extract more layers for poi, we must compute the

number of skyline points dominating each of the extracted points,

which we need for the idp value. The minimum value that we have

seen this far is stored in minIDP , and is different for each skyline

point. This value practically tells us that any point in subsequent

layers will be dominated by at least minIDP skyline points, due

to dominance being a transitive relation. The layer tells us which

was the index of the last layer of minima extracted for poi.

The algorithm uses two vectors, storing the minIDP value and

the number of unseen points, that have not yet been extracted for

poi (line 1). For example, if |Γ(poi)| = 100, and we have extracted

30 points, then unseen(poi) = 70. The vectors practically store

how many points (vPND) can be dominated by that many skyline

points (vIDP ). We sort the skyline points in decreasing order of

their dominance power (line 2). We iterate over them (line 3), and

select those points that will share common edges with poi, using the

Pigeonhole Principle (lines 4–5). The surplus of points is removed

from the last position (line 6) and is appended, incremented by 1

(lines 7–8). With these values, we can compute the upper bound

according to the DP-IDP scheme (lines 10-11).

To better explain lines 5–7, assume vpnd[last] = 60, vidp[last]
= 4, and surplus = 25. This means that 60 points will be dom-

inated by 4 skyline points and the current sp will share at least

3Our experiments showed that this step alone can make up for up
to 10 seconds of CPU processing time.

25 dominated points with poi. As a result, we must add an edge

(i.e., increment the idp) for an equal number of unseen points from

poi. These must be selected from the points with maximum current

idp, due to Lemma 1. Processing the skyline in decreasing order

of dominance power ensures that we are properly assigning edges,

and that the maximum idp is in the last positition. Given these val-

ues, 25 points will be computed with an idp of 5, which we append,

whereas 60-25=35 will remain with an idp of 4, which we update.

For the lower bounds we could follow a similar reasoning. Un-

fortunately, the edge assignment problem in this case is not as easy.

Although certain properties are self-evident, e.g., dp decreases with

a correlated distribution, they do not necessarily result in the lowest

possible score for a point. Consequently, we may have to reassign

edges, and, possibly, reconsider the layer where some points are

(i.e., break the correlated distribution). Therefore, in our current

work, we will not pursue the collaborative lower bounds further,

but plan to actively investigate it in our ongoing work.

3.2 Skyline Ranking with IR-style
Now that we have shown how we can efficiently bound the score

of a skyline point, using easily extracted information, we turn our

focus to finding the top-k most important skyline information, ac-

cording to our DP-IDP weighting scheme. Algorithm 3 shows the

general idea of execution of our technique, to efficiently compute

the top-k skyline points. Our algorithm processes the points ac-

cording to a prioritization scheme, and employs pruning of skyline

points that will certainly not be in the final top-k result.

Algorithm 3 SkyIR

Input: Skyline S, Dataset D, Integer k

Output: Top-k list

1: for every sp ∈ S do

2: spΓ ← |Γ(sp)|
3: spscore ← 0;

4: priorityQueue.enqueue( spprior , sp );

5: kScore← 0;

6: while (!priorityQueue.empty()) do

7: poi← priorityQueue.dequeue();

8: if ( UpperBound( poi ) ) < kScore ) then

9: Discard poi;

10: continue;

11: if ( pending( poi ) > 0 ) then

12: lm← NextLayer( poi, lm );

13: poiscore ← updateScore( poi, lm );

14: added← topk.insert( poi, poiscore );

15: if (!added AND pending( poi ) == 0) then

16: Discard poi;

17: continue;

18: if ( topk[k] > kScore ) then

19: kScore← topk[k]

20: if ( pending( poi ) > 0 ) then

21: priorityQueue.enqueue( spprior , sp );

22: Return topk;

The algorithm starts by initializing appropriate information on

the skyline points (lines 1-4), such as their dominance count, known

score, and priority value, according to the prioritization scheme that

we use (see below). We add each skyline point to a priority queue,

using its priority value (line 4). We also initialize the k-th value,

i.e., the value of the k-th ranked skyline point, to 0. We then enter

a loop, each time extracting the top-most item from the queue poi



(line 7). If the upper bound of that point’s score is below the k-th

value, there is no need for further examination (lines 8 – 10). So

we discard it and proceed with the next one from the priority queue.

Otherwise, we extract the next layer of poi, provided there is one

(lines 11–12). We update the point’s score using this layer (line 13)

and try to add poi in the top-k result. If the point was not added,

and it can not be further updated, we discard it and proceed with

the next point from the priority queue (lines 14–17). If the point

was added, we keep track of the k-th value in the top-k result. If

we can further update it, we compute its new priority and add it

back in the priority queue (lines 20–21). The loop ends when the

priority queue becomes empty, meaning no other points can update

their score. The top-k list contains the final result.

Priority Schemes. Our SkyIR algorithm relies on a prioritization

scheme to process the skyline points. In our current work we ex-

periment with the following prioritization schemes.

• Round Robin (RRB): Items are processed in a round robin

fashion. According to this scheme, we can not process the

same skyline point twice, unless we have processed every

skyline point first. This scheme also allows for an imple-

mentation that relies on arrays rather than the general priority

queue, leading to faster (main memory) acceses.

• Pending (PND): The priority of an item is the number of

points that it has not yet processed. For example, if a skyline

point dominates 100 points, and it has already “seen” 30, its

priority will be 70. Therefore, the more dominated points it

has yet to see, the higher the priority of the skyline point.

• Upper Bound (UBS): The priority of a skyline point is given

by the upper bound of its score. In other words, its priority

is its potential to achieve a high final score. Similarly to the

previous scheme, a higher upper bound results in a higher

priority for the skyline point. Given that the upper bound can

be used as a point’s priority, it is even more important to have

an efficient technique to compute it, like Algorithm 2.

4. PERFORMANCE EVALUATION
In this section, we report on the results of our experimental eval-

uation. The experiments were run on a Quad-Core @2.5GHz ma-

chine, with 8Gb RAM, running Linux. The code was written in

C++ and compiled with g++ 4.7.2, with -O3 optimization. The

datasets we consider were indexed by an aggregate R*-tree, with a

4Kb page size. An associated cache with 20% of the correspond-

ing R*-tree’s blocks was used with every experiment. Unless stated

otherwise, the reported timings are in seconds, measured as CPU

processing time and assuming a default value of 8ms per page fault.

Datasets and Algorithms. We generated datasets with indepen-

dent (IND) and anticorrelated (ANT) distributions, as in [2], and

also use Forest Cover 4. Table 1 shows their basic properties. Al-

though the datasets may seem rather small in size (up to 500K), one

should keep in mind that our weighting scheme extracts all of the

minimal layers for each skyline point. This problem is known to be

difficult for high dimensionality even in the RAM model [3].

The algorithms that we evaluate are Baseline and SkyIR. For

SkyIR we want to compare the performance of the Loose (LS)

and Collaborative (CB) bounds, and how the three prioritization

schemes affect the results. We use the abbreviations as suffixes to

indicate what we compare each time.

Runtime. Figure 4(a) shows the total runtime for the indepen-

dent distribution, when varying the dataset cardinality, with k=5.

4http://kdd.ics.uci.edu

Table 1: Dataset Statistics

Data set Cardinality Dimensionality

Independent (IND) 100K, 200K, 500K 2,3,4

Anticorrelated (ANT) 100K, 200K, 500K 2,3,4

Forest Cover (FC) 580K 2,3,4

The naive approach is the worst, whereas SkyIR with collaborative

bounds performs the best of the techniques, and we have obtained

similar results when varying dimensionality and k.

As seen in Figure 4(b), the UBS prioritization scheme outper-

forms all others, resulting in up to 3× improvement compared to

the baseline. Similar results are obtained for different priorities

with the loose bounds, but the differences are less pronounced. An

important observation from these plots is that the problem we are

solving is not linear with the cardinality of points. The reason is

that as the cardinality increases, there are more minimal layers to

extract, and the computational costs are increased a lot, as a result

of both more CPU processing and page faults.
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Figure 4: Total runtime versus cardinality for IND, k=5

Figures 5(a)-(b) demonstrate how each prioritization scheme per-

forms with the collaborative bounds. Figure 5(a) shows the perfor-

mance when varying the data dimensionality. We observe that UBS

performs the best for d = 3, 4, while being slightly worse for d=2.

The reason for that is our array-based implementation, which is

faster than the reordering of the priority queue maintained by PND

and UBS. However, as seen in Figure 5(b) there is a huge improve-

ment with UBS for d>2. The improvement increases with lower

values of k, going up to 40%, because the collaborative bounds can

prune away more points, reducing the computational costs.

Figures 6(a) and (b) demonstrate how the prioritization schemes

perform for the ANT, versus dimensionality and k, respectively.

Once again, UBS is better than PND. The loose bounds appear to

be slightly better than the collaborative, but not considerably. The

difference comes from the fact that the loose bounds are less com-

putationally intensive. The more interesting fact, however, is that

ANT appears to be easier when compared to IND. In particular, for

d=4, it takes ∼6000 seconds for CB to compute the top-5 for IND,

whereas it takes ∼4000 seconds for ANT. The reason is again that

IND has more layers to extract, and is more CPU hungry. Even

though ANT has a lot of page faults, its CPU time is minimal.
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Figure 5: Total runtime for various prioritization with IND, CB
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Finally, Figure 7 compares the loose and collaborative bounds,

when applying the UBS technique on the real dataset FC. We ob-

serve that the CB technique performs better than LB for all tested

dimensions.
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Memory Consumption. Finally, we compute the maximum num-

ber of items that we must maintain in memory while computing

the top-k result. Figures 8(a) and (b) show this for IND and ANT,

respectively, using the CB technique. We observe that the number

of maintained items increases as the cardinality of IND also in-

creases. On the other hand, increasing the dimensionality of ANT,

does not have a similar effect: the number of memory points in-

creases as we go from 2D to 3D, but drops again as we proceed to

4D. This may be explained again by the fact that ANT has less lay-

ers of minima to retrieve. For a fixed cardinality, more dimensions

spread the points more, increasing the points retrieved with each

layer. This decreases the information we must store to proceed to

the next layer, giving as the plot of Figure 8(b).

Generally speaking, the schemes RRB and UBS behave almost

the same (with the exception of ANT). We should stress the fact,

however, that the pending scheme (PND) always results in less

memory utilization. This is because the scheme will stick to a sin-

gle point and try to reduce its number of pending points as much as

possible, whereas the other schemes will rotate more over different

points. This is an interesting outcome, because PND would be a

good alternative in systems with limited resources.

5. CONCLUSIONS
In this paper, we proposed a novel model for ranking skyline

points, based on the renowned tf-idf weighting scheme from In-

formation Retrieval domain. We presented efficient techniques for

finding the top-k result, by bounding the maximum score of a sky-

line point and employing pruning, combined with different visiting

orders. We also experimentally evaluated the proposed bounding

and prioritization schemes in terms of efficiency.

Since the layers of minima problem is a difficult one (especially

for the external memory model) as future work we plan to inves-

tigate the alternative to check only the first few layers of minima

instead of computing the whole set. This is expected to improve

performance at the cost of result accuracy. A second direction is to
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Figure 8: Maximum memory consumption for CB, k=5

study the application of collaborative lower bounds in combination

with the upper bounds studied in this work. Finally, we will work

on the theoretical aspects of the problem in order to provide closed-

form formulae for the cost of our algorithms. A potential starting

point could be the application of a recurrence equation to estimate

the number of layers combined with the cost of the BBS algorithm.
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