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Abstract. A desirable feature in spatio-temporal databases is the ability to an-
swer future queries, based on the current data characteristics (reference position
and velocity vector). Given a moving query and a set of moving objects, a future
query asks for the set of objects that satisfy the query in a given time interval.
The difficulty in such a case is that both the query and the data objects change
positions continuously, and therefore we can not rely on a given fixed reference
position to determine the answer. Existing techniques are either based on sampling,
or on repetitive application of time-parameterized queries in order to provide the
answer. In this paper we develop an efficient method in order to process nearest-
neighbor queries in moving-object databases. The basic advantage of the proposed
approach is that only one query is issued per time interval. The Time-Parameterized
R-tree structure is used to index the moving objects. An extensive performance
evaluation, based on CPU and I/O time, shows that significant improvements are
achieved compared to existing techniques.

Keywords: spatio-temporal databases, moving objects, nearest-neighbors, continu-
ous queries

1. Introduction

Spatio-temporal database systems aim at combining the spatial and
temporal characteristics of data. There are many applications that ben-
efit from efficient processing of spatio-temporal queries such as: mobile
communication systems, traffic control systems (e.g., air-traffic mon-
itoring), geographical information systems, multimedia applications.
The common basis of the above applications is the requirement to
handle both the space and time characteristics of the underlying data
(Sistla, 1997; Wolfson, 1998; Theodoridis, 1998). These applications
pose high requirements concerning the data and the operations that
need to be supported, and therefore new techniques and tools are
needed towards increased processing efficiency.

Many research efforts have focused on indexing schemes and effi-
cient processing techniques for moving-object datasets (Theodoridis,
1996; Kollios, 1999b; Agarwal, 2000; Saltenis, 2000; Song, 2001b; Had-
jieleftheriou, 2002). A moving dataset is composed of objects whose
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positions change with respect to time (e.g., moving vehicles). Examples
of basic queries that could be posed to such a dataset include:

− window query: given a rectangle R that changes position and
size with respect to time, determine the objects that are covered
by R from time point ts to te.

− nearest-neighbor query: given a moving point P determine the
k nearest-neighbors of P within the time interval [ts, te].

− join query: given two moving datasets S1 and S2, determine the
pairs of objects (s1, s2) with s1 ∈ S1 and s2 ∈ S2 such that s1 and
s2 overlap at some point in [ts, te]

Queries that require an answer for a specific time point (time-slice
queries) are special cases of the above examples, and generally are more
easily processed. Queries that must be evaluated for a time interval
[ts, te] are characterized as continuous (Song, 2001a; Tao, 2002a). In
some cases, the query must be evaluated continuously as time advances.
The basic characteristic of continuous queries is that there is a change
in the answer at specific time points, which must be identified in order
to produce correct results.

Among the plethora of spatio-temporal queries we focus on k nearest-
neighbors queries (NN for short). Existing methods are either compu-
tationally intensive performing repetitive queries to the database, or
are restrictive with respect to the application settings (i.e., are applied
only for static datasets, or are applicable for special cases that limit the
space dimensionality or the requested number of NNs). The objective
of this work is twofold:

− to study efficient algorithms for NN query processing on moving
object datasets,

− to compare the proposed algorithms with existing methods through
an extensive experimental evaluation, by considering several pa-
rameters that affect query processing performance.

The rest of the article is organized as follows: In the next section
we give the appropriate background and related work to keep the pa-
per self-contained. In Section 3, the proposed approach is studied in
detail and the application to TPR-trees is presented. In Section 4, a
performance evaluation of all methods is conducted and the results are
interpreted. Finally, Section 5 concludes and provides ideas for future
work in the area.

cnn.tex; 5/02/2003; 12:40; p.2



3

2. Background

2.1. Organizing moving objects

The research conducted in access methods and query processing tech-
niques for moving-object databases are generally categorized in the
following areas:

− query processing techniques for past positions of objects, where
past positions of moving objects are archived and queried, using
multi-version access methods or specialized access methods for
object trajectories (Lomet, 1989; Xu, 1990; Kumar, 1998; Nasci-
mento, 1998; Pfoser, 2000; Tao, 2001a; Tao, 2001b),

− query processing techniques for present and future positions of
objects, where each moving object is represented as a function of
time, giving the ability to determine its future positions according
to the current characteristics of the object movement (reference
position, velocity vector) (Kollios, 1999a; Kollios, 1999b; Agarwal,
2000; Wolfson, 2000; Moreira, 2000; Saltenis, 2000; Procopiuc,
2002; Ishikawa, 2002; Kalashnikov, 2002; Lazaridis, 2002).

We focus on the second category, where it is assumed that the
dataset consists of moving point objects, which are organized by means
of a Time-Parameterized R-tree (TPR-tree) (Saltenis, 2000). The TPR-
tree is an extension of the well known R∗-tree (Beckmann, 1990),
designed to handle object movement. Objects are organized in such
a way that a set of moving objects is bounded by a moving rectan-
gle, in order to maintain a hierarchical organization of the underlying
dataset. The TPR-tree differs from the R-tree (Guttman, 1984) and its
variations in several aspects:

− bounding rectangles in the TPR-tree internal nodes although are
conservative, they are not minimum in general,

− the TPR-tree is efficient for a time interval [t0,H), where H (hori-
zon) is the time point which suggests a reorganization, due to
extensive overlapping of bounding rectangles.

− all metrics used for insertion, reinsertion and node splitting in
TPR-trees are based on integrals which calculate overlap, enlarge-
ment and margin for the time interval [t0, H),

− TPR-trees answer time-parameterized queries (range, NN, joins)
for a given time interval [ts, te], or for a specific time point.
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2.2. Nearest-neighbor queries

Allowing the query and the objects to move, an NN query takes the
following forms:

− Given a query point reference position qpos, a query velocity vector
qv, a time point tx and an integer k, determine the k NNs of q at
tx (time-slice NN query).

− Given a query point reference position q, a query velocity vector
qv, an integer k and a time interval [t1, t2), determine the k NNs
of q according to the movement of the query and the movement of
the objects from t1 to t2 (continuous or time-interval NN query).

The second query type is more difficult to answer, since it requires
knowledge of specific time points which indicate that there is a change
in the answer set (split points).
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Figure 1. A query example

Figure 1 shows an example database of four moving objects. Assume
that the k = 2 NNs are requested for the time interval [0, 5]. Assume
also that the query point is static (black circle). By observing the
movement of the objects with respect to the query, it is evident that for
the time interval [0, 2) the NNs of q are b and a, whereas for the time
interval [2, 5) the NNs are c and d. In the sequel we briefly describe
research results towards solving NN queries in moving datasets.

Kollios et al. (Kollios, 1999a) propose a method able to answer NN
queries for moving objects in 1D space. The method is based on the dual
transformation where a line segment in the native space corresponds
to a point in the transformed space, and vice-versa. The method de-
termines the object that comes closer to the query between [ts, te] and
not the NNs for every time instance.

Zheng et al. (Zheng, 2001) proposed a method for computing a single
NN (k = 1) of a moving query, applied to static points indexed by
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an R-tree. The method is based on Voronoi diagrams and it seems
quite difficult to be extended for other values of k and higher space
dimensions.

In (Song, 2001a) a method is presented to answer such queries on
moving-query, static-objects cases. Objects are indexed by an R-tree,
and sampling is used to query the R-tree at specific points. However,
due to the nature of sampling, the method may return incorrect results
if a split point is missed. A low sampling rate yields more efficient
performance, but increases the probability of incorrect results, whereas
a high sampling rate poses unnecessary computational overhead, but
decreases the probability of incorrect results.

Benetis et al. (Benetis, 2002) propose an algorithm capable of an-
swering NN queries and reverse NN queries in moving-object datasets.
The proposed method is restricted in answering only one NN per query.

In (Tao, 2002a) the authors propose an NN query processing al-
gorithm for moving-query moving-objects, based on the concept of
time-parameterized queries. Each query result is composed of the fol-
lowing components: i) R, is the current result set of the query, ii) T , is
the time point in which the result becomes invalid, and iii) C, the set of
objects that influence the result at time T . Therefore, by continuously
calculating the next set of objects that will influence the result, we
determine the NNs of the query from t1 to t2. A TPR-tree index is
used to organize the moving objects.

The main drawback of the aforementioned method is that the TPR-
tree is searched several times in order to determine the next object that
influences the current result. This implies additional overhead in CPU
and I/O time, which is more severe as the number of requested NNs
increases. In (Tao, 2002b) the same authors present a method which
is applicable for static datasets, in order to overcome the problems of
repetitive NN queries. By assuming that the dataset is indexed by an
R-tree structure, a single query is performed and therefore each partici-
pating tree node is accessed only once. Performance results demonstrate
that NN queries are answered much more efficiently concerning query
response time. However, the proposed techniques can only be applied
for static datasets.

Table I presents a categorization of NN queries with respect to
the characteristics of queries and datasets. There are four different
versions of the problem which are formulated by considering queries
and datasets as static or moving. The table also summarizes the
previously mentioned related work for each problem.
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Table I. NN queries for different query and data charac-
teristics.

Query Data Related Work

Static Static conventional techniques

Static Moving handled by MQMD

Moving Static Roussopoulos et al (Song, 2001a)

Zheng et al. (Zheng, 2001)

Tao et al. (Tao, 2002b)

Moving Moving Tao et al. (Tao, 2002a)

Kollios et at. (Kollios, 1999a)

Benetis et al. (Benetis, 2002)

2.3. Motivation

To the best of the authors knowledge, there is no method based on
the TPR-tree to answer NN queries for moving-query moving-objects
other than the repetitive approach proposed in (Tao, 2002a). Therefore,
motivated by the extensive overhead of the existing method and taking
into account that the continuous algorithm reported in (Tao, 2002b)
can not handle moving-object datasets, we provide efficient methods
for NN query processing for moving-query moving-object databases,
with the following characteristics:

− the method is applied for any number of requested NNs,

− the method can be applied for any number of space dimensions,
since only relative distances are computed during query processing,

− different tree pruning algorithms may be applied during tree traver-
sal,

− each tree node is accessed only once, therefore reducing the con-
sumption of system resources,

− the method not only reports the time points when there is a change
in the result, but also the time points when there is a change in
the order of the NNs in the current result.
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3. NN Query Processing

The challenge is to determine the k NNs of q, given a moving query
q, a query velocity vector vq and a time interval [ts, te]. We want to
answer such a query, by performing only one search, thus avoiding
posing repetitive queries to the database. The answer to the query is
a set of mutually exclusive time intervals, and a sorted list of object
IDs for each time interval, which are the k NNs of q for the respective
interval.

By assuming that the distance between two points is given by the
Euclidean distance, the distance Dq,o(t) between query q and object o
as a function of time is given by the following equation:

Dq,o(t) =
√

c1 · t2 + c2 · t + c3 (1)

where c1, c2, c3 are constants given by:

c1 = (vox − vqx)2 + (voy − vqy)2

c2 = 2 · [(ox − qx) · (vox − vqx) + (oy − qy) · (voy − vqy)]
c3 = (ox − qx)2 + (oy − qy)2

vox, voy are the velocities of object o, vqx, vqy are the velocities of
the query in each dimension, and (ox,oy), (qx, qy) are the reference
positions of the object o and the query q respectively. In the sequel,
we assume that the distance is given by (Dq,o(t))2 in order to perform
simpler calculations.

The movement of an object with respect to the query is visualized
by plotting the function (Dq,o(t))2, as it is illustrated in Figure 2. For
NN query processing the distance from the query point contains all
the necessary information, since the exact position of the object is
irrelevant. Note that since c1 ≥ 0 the plot of the function always has
the shape of a “valley’.
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Figure 2. Visualization of the distance between a moving object and a moving query
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(a) k = 2

(b) k = 3

Figure 3. Relative distance of objects with respect to a moving query

Assume that we have a set of moving objects O and a moving query
q. The objects and the query are represented as points in a multi-
dimensional space. Although the proposed method can be applied to
any number of dimensions, the presentation is restricted to 2D space for
clarity and convenience. Moving queries and objects are characterized
by their reference positions and velocity vectors. Therefore, we have
all the necessary information to define the distance (Dq,o(t))2 for every
object o ∈ O. By visualizing the relative movement of the objects
during [ts, te] a graphical representation is derived, such as the one
depicted in Figure 3.

By inspecting Figure 3 we obtain the k NNs of the moving query
during the time interval [ts, te]. For example, for k = 2 the NNs of q for
the time interval are contained in the shaded area of Figure 3. The NNs
of q for various values of k along with the corresponding time intervals
are depicted in Figure 4. The pair of objects above each time point tx
declare the objects that have an intersection at tx. These time points
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where a modification of the result is performed, are called split points.
Note that not all intersection points are split points. For example, the
intersection of objects a and c in Figure 3 is not considered as a split
point for k = 2 , whereas it is a split point for k = 3.
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Figure 4. NNs of the moving query for k = 2 (top) and k = 3 (bottom)

The previous example demonstrates that the k NNs of a moving
query can be determined by using the functions that represent the
distance of each moving object with respect to the moving query. Based
on the previous discussion, the next section presents the design of an
algorithm for NN query processing (NNS) which operates on moving
objects.

3.1. The NNS Algorithm

The NNS algorithm consists of two parts, which are described sepa-
rately:

− NNS-a algorithm: given a set of moving objects, a moving query
and a time interval, the algorithm returns the k NNs for the given
interval, and

− NNS-b algorithm: given the k NNs, the corresponding time inter-
vals, and a new moving object, the algorithm computes the new
result.

3.1.1. Algorithm NNS-a
We are given a moving query q, a set O of N moving objects, a time
interval [ts, te] and the k NNs of q are requested. The target is to
partition the time interval into one or more sub-intervals, in which
the list of NNs remains unchanged. Each time sub-interval is defined
by two time split points, declaring the beginning and the end of the
sub-interval. During the calculation, the set O is partitioned into three
sub-sets:
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− the set K, which always contains k objects that are currently the
NNs of q,

− the set C, which contain objects that are possible candidates for
subsequent time points, and

− the set R, which contains rejected objects whose contribution to
the answer is impossible for the given time interval [ts, te].

Initially, K = ∅, C = O, and R = ∅. The first step is to determine
the k NNs for time point ts. By inspecting Figure 3 for k = 2 we get
that these objects are a and b. Therefore, K={a, b}, C={c, d, e} and
R=∅. Next, for each o ∈ K the intersections with objects in K + C
are determined. If there are any objects in C that do not intersect any
objects in K, they are removed from C and are put in R, meaning
that they will not be considered again (Proposition 1). In our example,
object e is removed from C and we have K={a, b}, C={c, d} andR={e}.
The currently determined intersections are kept in an ordered list, in
increasing time order. Each intersection is represented as (tx, {u, v}),
where tx is the time point of the intersection and {u, v} is the objects
that intersect at tx.

PROPOSITION 1. Moving objects that do not intersect the k nearest
neighbors of the query at time ts, can be rejected.

Proof
An intersection between o1 and o2 denotes a change in the result. There-
fore, if none of the k nearest-neighbor objects intersect any other object
between [ts, te], there will be no change in the result. This means that
we do not have to consider other objects for determining the nearest-
neighbors. 2

Each intersection is defined by two objects 1 u and v. The cur-
rently determined intersection points comprise the current list of time
split points. According to the example, the split point list has as fol-
lows: (t1, {a, b}), (t2, {a, d}), (tx, {a, c}), (t3, {b, d}), (t4, {b, c}). For each
intersection we distinguish between two cases:

− u ∈ K and v ∈ K
− u ∈ K and v ∈ C (or u ∈ C and v ∈ K)

1 It is assumed that an intersection is defined by two objects. If three or more
objects intersect at the same point tx the conflict is resolved by evaluating the first
derivative for each object at tx and taking the minimum value.

cnn.tex; 5/02/2003; 12:40; p.10



11

In the first case, the current set of NNs does not change. However, the
order of the currently determined objects changes, since two objects in
K intersect, and therefore they exchange their position in the ordered
list of NNs. Therefore, objects u and v exchange their position. In the
second case, object v is inserted into K and therefore the list of NNs
must be updated accordingly (Proposition 2).

PROPOSITION 2. Let us consider a split point at time tx, at which
objects o1 and o2 intersect. If o1 ∈ K and o2 ∈ C then at tx, o1 is the
k-th nearest-neighbor of the query.

Proof
Assume that o1 is not the k-th nearest-neighbor at the time of the
interscection. However, o1 belongs to the result (is among the k nearest-
neighbors) at time tx. The intersection at time tx denotes that objects
o1 and o2 are consequtive in the result. This implies that o2 is already
contained in the current result (set K) which contradicts our assump-
tion that o2 is not contained in the result set. Therefore, object o1 must
be the k-th nearest-neighbor of the query. 2

According to the currently determined split points, the first split
point is t1, where objects a and b intersect. Since both objects are
contained in K, no new objects are inserted into K, and simply objects
a and b exchange their position. Up to this point concerning the sub-
interval [ts, t1) the nearest neighbors of q are a and b. We are ready
now to check the next split point, which is t2 where objects a and d
intersect. Since a ∈ K and d ∈ C object a is removed from K and it is
inserted into C. On the other hand, object d is removed from C and it is
inserted into K taking the position of a. Up to this point, another part
of the answer has been determined, since in the sub-interval [t1, t2) the
NNs of q are b and a. Moving to the next intersection, tx, we see that
this intersection is caused by objects a and c. However, neither of these
objects is contained in K. Therefore, we ignore tx and remove it from
the list of time split points. Since a new object d has been inserted into
K, we check for new intersections between d and objects in K and C.
No new intersections are discovered, and therefore we move to the next
split point t3. Currently, for the time sub-interval [t2, t3) the NNs of q
are b and d. At t3 objects b and d intersect, and this causes a position
exchange. We move to the next split point t4 where objects b and c
intersect. Therefore, object b is removed from K and it is inserted into
C, whereas object c is removed from C and it is inserted into K. Since
c does not have any other intersections with objects in K and C, the
algorithm terminates. The final result is depicted in Figure 4, along
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with the corresponding result for k = 3. The outline of the method is
illustrated in Figure 5.

Algorithm NNS-a
Input: a set of moving objects O, a moving query q,
time interval [ts, te], the number k of requested NNs
Output: a list of elements of the form ([t1, t2], o1, o2, ..., ok)
where o1, ..., ok are the NNs of q from t1 to t2 (CNN-list),
split-list containing the split points
Local: k-list containing the current NNs
1. initialize K = ∅, C = O, and R = ∅
2. initialize split-list with split points ts and te
3. find the k NNs of q at time point ts
4. update k-list
5. foreach u ∈ K do
6. find intersections with v ∈ K
7. find intersections with v ∈ C
8. update split list
9. move irrelevant objects from C to R
10. endfor
11. while more split-points are available do
12. check next time split point tx (intersection)
13. if (u ∈ K) and (v ∈ K) then
14. update CNN-list
15. exchange positions in k-list
16. endif
17. if (u ∈ K) and (v ∈ C) then
18. move u from K to C
19. move v from C to K
20. update k-list
21. update CNN-list
22. if (v participates for the first time in k-list) then
23. determine intersections of v with objects in C
24. update split-list
25. endif
26. endif
27. if (u ∈ C) and (v ∈ C) then
28. ignore split point tx
29. endif
30. endwhile
31. return CNN-list, split-list

Figure 5. The NNS-a algorithm

Each object o ∈ K is responsible for a number of potential time
split points, which are defined by the intersections of o and the objects
contained in C. Therefore, each time an object is inserted into K in-
tersection checks must be performed with the objects in C. In order
to reduce the number of intersection tests, if an object was previously
inserted into K and now it is reinserted, it is not necessary to recompute
the intersections. Moreover, according to Proposition 3, intersections at
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time points prior to the currently examined split point can be safely
ignored.

PROPOSITION 3. If there is a split point at time tx, where o1 ∈ K
and o2 ∈ C intersect, all intersections of o2 with the other objects in K
that occur at a time before tx are not considered as split points.

Proof
This is evident, since the nearest-neighbors of the query object up to
time tx have been already determined and therefore the intersections
at time points prior to tx do not denote a change in the result. 2

Evidently, in order to determine if two objects u and v intersect
at some time point between ts and te, we have to solve an equation.
Let the square of the Euclidean distance between q and the objects be
described by the functions Du,q(t)2 = u1 · t2 +u2 · t+u3 and Dv,q(t)2 =
v1 · t2 + v2 · t + v3 respectively. In order for the two object to have an
intersection in [ts, te] there must be at least one value tx, ts ≤ tx ≤ te
such that:

(u1 − v1) · t2x + (u2 − v2) · tx + (u3 − v3) = 0

From elementary calculus it is known that this equation can be satisfied
by none, one, or two values of tx. If (u2−v2)2−4·(u1−v1)·(u3−v3) < 0,
then there is no intersection between u and v. If (u2 − v2)2 − 4 · (u1 −
v1) · (u3 − v3) = 0 then the two objects intersect at tx = −(u2−v2)

2·(u1−v1) .
Otherwise the objects intersect at two points tx and ty given by:

tx =
−(u2 − v2) +

√
(u2 − v2)2 − 4 · (u1 − v1) · (u3 − v3)

2 · (u1 − v1)

ty =
−(u2 − v2)−

√
(u2 − v2)2 − 4 · (u1 − v1) · (u3 − v3)

2 · (u1 − v1)

3.1.2. Algorithm NNS-b
After the execution of NNS-a, the CNN-list is formulated, which con-
tains elements of the form: ([t1, t2], o1, o2, ..., ok) where o1, ..., ok are the
NNs of q from t1 to t2, in increasing distance order. Let S be the set
containing the NNs of q at any given time between ts and te. Clearly,
k ≤ |S| ≤ |O|. Assume now that we have to consider another object w,
which was not known during the execution of NNS-a. We distinguish
among the following cases, which describe the relation of w to the
current answer:
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case 1: w does not intersect any of the objects in S between ts and te,
and it is “above” the area of relevance. In this case, w is ignored,
since it can not contribute to the NNs. The number of split points
remains the same.

case 2: w does not intersect any of the objects in S between ts and
te, and it is completely “inside” the area of relevance. In this case
w must be taken into account, since it affects the answer from ts
to te (Proposition 4). The number of split points may be reduced.

case 3: w intersects at least one object v ∈ S at time ts ≤ tx ≤ te,
but at time tx v is not contained in the set of NNs. In this case,
again w is ignored, since this intersection can not be considered as
a split point because the answer is not affected. Therefore, no new
split points are generated.

case 4: w intersects at least one object v ∈ S at time ts ≤ tx ≤ te,
and object v is contained in the set of NNs at time tx. In this
case w must be considered because at least one new split point
is generated. We note, however, that some of the old split points
may be discarded.

PROPOSITION 4. Assume that a new object w does not intersect any
of the NNs from ts to te. If at time ts its position among the k NNs is
posw, then it maintains this position throughout the query duration.

Proof
Assume that there is a change in the result at some point tx, where
object w changes its position among the nearest-neighbors. This im-
plies that there is an intersection at time tx, since only an intersection
denotes a result change. This contradicts our assumption that there are
no intersections of w with other objects in the result. 2

The aforementioned cases are depicted in Figure 6. Object e cor-
responds to case 1, since it is above the area of interest. Object f
corresponds to case 2, because it is completely covered by the rele-
vant area. Object g although intersects some objects, the time of these
intersections are irrelevant to the answer, and therefore the situation
corresponds to case 3. Finally, object h intersects a number of objects
at time points that are critical to the answer and therefore corresponds
to case 4.

The outline of the NNS-b algorithm is presented in Figure 7. Note
that in lines 14 and 20 a call to the procedure modify-CNN-list is
performed. This procedure, takes into consideration the CNN-list and
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Figure 6. The four different cases that show the relation of a new object to the
current NNs

Algorithm NNS-b
Input: a list of elements of the form ([t1, t2], o1, o2, ..., ok)
where o1, ..., ok are the NNs of q from t1 to t2 (CNN list),
a new object w, the split-list
Output: an updated list of the form ([t1, t2], o1, o2, ..., ok)
where o1, ..., ok are the NNs of q from t1 to t2 (CNN list)
Local: k-list current list of NNs,
split-list, the current list of split points
1. initialize S = union of NNs from ts to te
2. intersectionFlag = FALSE
3. foreach s ∈ S do
4. check intersection between s and w
5. if (s and w intersect) then // handle cases 3 and 4
6. intersectionFlag = TRUE
7. collect all tj , s // tj is where w and s intersect
8. if (at tj object s contributes to the NNs) then
9. update split-list
10. endif
11. endif
12. endfor
13. if (intersectionFlag == TRUE) then
14. call modify-CNN-list
15. else // handle cases 1 and 2
16. calculate Dq,w(t)2 at time point ts
17. if (Dq,w(ts)2 ≥ D2

kNN ) then
18. ignore w
19. else
20. call modify-CNN-list
21. endif
22. endif
23. return CNN-list, split-list

Figure 7. The NNS-b algorithm

the new split-list that is generated. It scans the split-list in increasing
time order and performs the necessary modifications to the CNN-list
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and the split-list. Some of the split-points may be discarded during the
process. The steps of the procedure are illustrated in Figure 8.

Procedure modify-CNN-list
Input: a list of elements ([t1, t2], o1, o2, ..., ok)
where o1, ..., ok are the NNs of q from t1 to t2 (CNN list),
a new object w, the split-list
Output: an updated list of elements ([t1, t2], o1, o2, ..., ok)
where o1, ..., ok are the NNs of q from t1 to t2 (CNN list)
Local: k-list current list of NNs
1. calculate Dq,w(t)2 at time point ts
2. consult CNN-list and update the current k-list
3. while more split-points are available do
4. check next split-point (tx, {u, v})
5. update CNN-list
6. if (u /∈ k − list) and (v /∈ k − list) then
7. remove split-point (tx, {u, v})
8. elseif (u ∈ k − list) and (v /∈ k − list) then
9. remove u from k-list
10. insert v in k-list
11. update k-list
12. elseif (v ∈ k − list) and (u /∈ k − list) then
13. remove v from k-list
14. insert u in k-list
15. update k-list
16. else
17. exchange positions between u and v
18. update k-list
19. endif
20. endwhile

Figure 8. The modify-CNN-list procedure

3.2. Query Processing with TPR-trees

Having described in detail the query processing algorithms in the pre-
vious section we are ready now to elaborate in the way these methods
are combined with the TPR-tree. Let T be a TPR-tree which is built
to index the underlying data. Starting from the root node of T the tree
is searched in a depth-first-search manner (DFS) 2. The first phase of
the algorithm is completed when m ≥ k objects have been collected
from the dataset. Tree branches are selected for descendant according
to the mindist metric (Roussopoulos, 1995) (Definition 1) between the
moving query and bounding rectangles at time ts. These m moving
objects are used as input to the NNS-a algorithm in order to determine
the result from ts to te. Therefore, up to now we have a first version

2 The proposed methods can also be combined with a breadth-first-search based
algorithm.
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of the split-list and the CNN-list. However, other relevant objects may
reside in leaf nodes of T that are not yet examined.

DEFINITION 1. Given a point p at (p1, p2, ...,pn and a rectangle r
whose lower-left and upper-right corners are (s1, s2 , ..., sn) and (t1, t2, ...,tn),
the distance mindist(p, r) is defined as follows:

mindist(p, r) =

√√√√
n∑

j=1

|pj − rj |2

where:

rj =





sj , pj < sj

tj , pj > tj
pj , otherwise

2

In the second phase of the algorithm, the DFS continues to search
the tree, by selecting possibly relevant tree branches and dis-
carding non-relevant ones. Every time a possibly relevant moving
object is reached, algorithm NNS-b is called in order to update the
split-list and the CNN-list of the result. The algorithm terminates when
there are no relevant branches to examine.

In order to complete the description of the algorithm, the terms
possibly relevant tree branches and possibly relevant moving
objects must be clarified. In other words, the pruning strategy must be
described in detail. Figure 9 illustrates two possible pruning techniques
that can be used to determine relevant and non-relevant tree branches
and moving objects:

Pruning Technique 1 (PT1): In this technique we keep track of the
maximum distance Dmax between the query and the current set
of NNs. In Figure 9(a) this distance is defined between the query
and object b at time tstart. We formulate a moving bounding
rectangle R centered at q with extends Dmax in each dimension
and moving with the same velocity vector as q. If R intersects a
bounding rectangle E in an internal node, the corresponding tree
branch may contain objects that contribute to the answer and
therefore must be examined further. Otherwise, it can be safely
rejected since it is impossible to contain relevant objects. In the
same manner, if a moving object ox found in a leaf node intersects
R it may contribute to the answer, otherwise it is rejected.

Pruning Technique 2 (PT2): This technique differs from the previ-
ous one in the level of granularity that moving bounding rectangles
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(a) one bounding rectangle

(b) many bounding rectangles

Figure 9. Pruning techniques

are formulated. Instead of using only one bounding rectangle, a set
of bounding rectangles is defined according to the currently deter-
mined split points. Note that it is not necessary to consider all split
points, but only these that are defined by the k-th nearest-neighbor
in each time interval. An example set of moving bounding rectan-
gles is illustrated in Figure 9(b). Each internal bounding rectangle
and moving object is checked for intersection with the whole set
of moving bounding rectangles and it is considered relevant only
if it intersects at least one of them.

Other pruning techniques can also be determined by grouping split
points in order to keep the balance between the number of generated
bounding rectangles and the existing empty space. Several pruning
techniques can be combined in a single search by selecting the pre-
ferred technique according to some criteria (e.g., current number of
split-points, existing empty space).
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It is anticipated that PT1 will be more efficient with respect to CPU
time, but less efficient concerning I/O time, because the empty space
will cause unnecessary disk accesses. On the other hand, PT2 seems to
incur more CPU overhead due to the increased number of intersection
computations, but also less I/O time owing to the detailed pruning
performed. Based on the above discussion, we define the NNS-CON
algorithm which operates on TPR-trees and can be used with either of
the two pruning techniques. The outline of the algorithm is illustrated
in In Figure 10.

Algorithm NNS-CON
Input: the TPR-tree root,

a moving query q,
the number k of NNs

Output: the k NNs in [ts, te]
Local: a set O of collected objects,

Flag is FALSE if NNS-a has not yet been called
number col of collected objects
1. if (node is LEAF) then
2. if (|O| < k) then
3. add each entry of node to O
4. update |O|
5. endif
6. if (|O| ≥ k) and (Flag == FALSE) then
7. call NNS-a
8. set Flag=TRUE
9. elseif (|O| ≥ k) and (Flag == TRUE) then
10. apply pruning technique
11. for each entry of node call NNS-b
12. endif
13. elseif (node is INTERNAL) then
14. apply pruning technique
15. sort entries of node wrt mindist at ts
16. call NNS-CON recursively
17. endif

Figure 10. The NNS-CON algorithm

4. Performance Evaluation

4.1. Preliminaries

In the sequel a description of the performance evaluation procedure
is given, aiming at providing a comparison study among the differ-
ent processing methods. The methods under consideration are i) the
NNS-CON algorithm enabled by pruning technique 1 described in the
previous section, and ii) the NNS-REP algorithm which operates by
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posing repetitive NN queries to the TPR-tree (Tao, 2002b). Both algo-
rithms as well as the TPR-tree access method have been implemented
in the C programming language.

Table II. Parameters and corresponding values

Parameter Value

database size, N 10K, 50K, 100K, 1M

space dimensions, d 1, 2, 3

data distribution, D uniform, gaussian

number of NNs, k 1 - 100

travel time, ttravel 26 - 1048 sec.

LRU buffer size, B 0.1% - 20% of tree pages

There are several parameters that contribute to the method perfor-
mance. These parameters, along with their respective values assigned
during the experimentation are summarized in Table II.

The datasets used for the experimentation are synthetically gener-
ated using the uniform or the gauss distribution. The dataspace extends
are 1,000,000 x 1,000,000 meters and the velocity vectors of the moving
objects are uniformly generated, having speed values between 0 and 30
m/sec. Based on these objects, a TPR-tree is constructed. The page
size of the TPR-tree is fixed at 2Kbytes.

The query workload is composed of 500 uniformly distributed queries
having the same characteristics (length, velocity). The comparison study
is performed by using several performance indices, such as: i) the num-
ber of disk accesses, ii) the CPU-time, iii) the I/O time and iv) the total
running time. In order to accurately estimate the I/O time for each
method a disk model is used to model the disk, instead of assigning a
constant value for each disk access (Ruemmler, 1994). Since the usage
of a buffer plays a very important role for the query performance we
assume the existence of an LRU buffer having its size vary between
0.1% and 20% of the database size.

The results presented here correspond to uniformly distributed datasets.
Results performed for gaussian distributions of data and queries demon-
strated similar performance and therefore are omitted. The main dif-
ference between the two distributions is that in the case of the gaus-
sian distribution, the algorithms require more resources since the data
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density increases and therefore more split-points and distance compu-
tations are needed to evaluate the queries.

4.2. Performance Results

Several experimental series have been conducted in order to test the
performance of the different methods. The experimental series are sum-
marized in Table III.

Table III. Experiments conducted

Experiment Varying Parameter Fixed Parameters

N = 1M ,

EXP1 NNs, k B = 10%,

ttravel = 110 sec.

d = 2, D=uniform

N = 1M ,

EXP2 buffer size, B k = 5,

ttravel = 110 sec.

d = 2, D=uniform

N = 1M ,

EXP3 travel time, ttravel k = 5,

B = 10%,

d = 2, D=uniform

space dimensions, d N = 1M,

EXP4 NNs, k B = 10%,

ttravel = 110 sec.

D=uniform

database size, N B = 500 pages,

EXP5 NNs, k d = 2,

D=uniform,

ttravel = 110 sec.

The purpose of the first experiment (EXP1) is to investigate the
behavior of the methods for various values of the requested NNs. The
corresponding results are depicted in Figure 11. By increasing k, more
split points are introduced for the NNS-CON method, whereas more
influence calculations are needed by the NNS-REP method. It is evi-
dent that NNS-CON outperforms significantly the NNS-REP method.
Although both methods are highly affected by k, the performance of
NNS-REP degrades more rapidly. As Figure 11(a) illustrates, NNS-
REP requires a large number of node accesses. However, since there is
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a high locality in the page references performed by a query, the page
faults are limited. As a result, the performance difference occurs due
to the increased CPU cost required by NNS-REP (Figure 12). Another
interesting observation derived from Figure 12 is that the CPU cost
becomes more significant than the I/O cost by increasing the number
of nearest-neighbors.

The next experiment (EXP2) illustrates the impact of the buffer
capacity (Figure 13). Evidently, the more buffer space is available the
less disk accesses are required by both methods. It is interesting that
although the number of node accesses required by NNS-REP is very
large, (see Figure 11(a)) the buffer manages to reduce the number of
disk accesses significantly due to buffer hits. However, even if the buffer
capacity is limited, NNS-CON demonstrates excellent performance.

Experiment EXP3 demonstrates the impact of the travel time to the
performance of the methods. The corresponding results are depicted in
Figure 14. Small travel times are favorable for both methods, because
less CPU and I/O operations are required. On the other hand, large
travel times increase the number of split-points and the number of dis-
tance computations, since the probability that there is a change in the
result increases. However, NNS-CON performs much better for large
travel times in contrast to NNS-REP whose performance is affected
significantly.

The next experiment (EXP4) demonstrates the impact of the space
dimensionality. The increase in the dimensionality has the following
results: i) the database size increases due to smaller tree fanout, ii)
the TPR-tree quality degrades due to overlap increase in bounding
rectangles of internal nodes, and iii) the CPU cost increases because
more computations are required for distance calculations. Both meth-
ods are affected by the dimensionality increase. However, by observing
the relative performance of the methods (NNS-REP over NNS-CON) in
2D and 3D space illustrated in Figure 15, it is realized that NNS-REP
is affected more significantly by the number of space dimensions.

Finally, Figure 16 depicts the impact of database size (EXP5). In this
experiment, the buffer capacity is fixed to 500 pages, and the number
of moving objects is set between 10,000 and 100,000. The number of
requested NNs is varying between 1 and 15, whereas the travel time is
fixed to 110 sec. By increasing the number of moving objects, more tree
nodes are generated and, therefore, more time is needed to search the
TPR-tree. Moreover, by keeping the buffer capacity constant, the buffer
hit ratio decreases, producing more page faults. As Figure 16 illustrates,
the performance ratio (NNS-REP over NNS-CON) increases with the
database size.
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Figure 11. Results for different values of the number of NNs
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5. Concluding Remarks

Applications that rely on the combination of spatial and temporal
characteristics of the objects demand new types of queries and efficient
query processing techniques. An important query type in such a case is
the k nearest-neighbor query, which requires the determination of the k
closest objects to the query for a given time interval [ts, te]. The major
difficulty in such a case is that both queries and objects change positions
continuously, and therefore the methods that solve the problem for the
static case can not be applied directly.

In this work, a study of efficient methods for NN query processing in
moving-object databases is performed, and several performance evalu-
ation experiments are conducted to compare their efficiency. The main
conclusion is that the proposed algorithm outperforms significantly the
repetitive approach for different parameter values. Future research may
focus on:

− extending the algorithm to work with moving rectangles (although
the extension is simple, the complexity of the algorithm increases
due to more distance computations),

− comparing the performance of different pruning techniques,

− studying the performance of the method to other access methods
like the STAR-tree (Procopiuc, 2002),

− modifying the algorithm to provide the ability for incremental com-
putation of the NNs, as the work in (Hjaltason, 1995; Hjaltason,
1999) suggests for static datasets,

− adapting the method to operate on access methods which store
past positions of objects (trajectories), in order to answer past
queries, and

− providing cost estimates concerning the number of node accesses,
the number of intersection checks and the number of distance
computations.
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