
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

�Correspond
E-mail addr

apostol@delab.

yannis@delab.c
1The type o

example of mar
Information Systems 32 (2007) 649–669

www.elsevier.com/locate/infosys
Mining association rules in very large clustered domains

Alexandros Nanopoulos�, Apostolos N. Papadopoulos, Yannis Manolopoulos

Department of Informatics, Aristotle University, 54124, Thessaloniki, Greece

Received 15 June 2005; received in revised form 20 March 2006; accepted 16 April 2006

Recommended by N. Koudas
Abstract

Emerging applications introduce the requirement for novel association-rule mining algorithms that will be scalable not

only with respect to the number of records (number of rows) but also with respect to the domain’s size (number of

columns). In this paper, we focus on the cases where the items of a large domain correlate with each other in a way that

small worlds are formed, that is, the domain is clustered into groups with a large number of intra-group and a small

number of inter-group correlations. This property appears in several real-world cases, e.g., in bioinformatics, e-commerce

applications, and bibliographic analysis, and can help to significantly prune the search space so as to perform efficient

association-rule mining. We develop an algorithm that partitions the domain of items according to their correlations and

we describe a mining algorithm that carefully combines partitions to improve the efficiency. Our experiments show the

superiority of the proposed method against existing algorithms, and that it overcomes the problems (e.g., increase in CPU

cost and possible I/O thrashing) caused by existing algorithms due to the combination of a large domain and a large

number of records.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Association rules; Clustering; Item domain grouping; Data mining
1. Introduction

The mining of association rules involves the
discovery of significant and valid correlations
among items that belong to a particular domain
[1]. The development of association-rule mining
algorithms has attracted remarkable attention dur-
ing the last years [2], where focus has been placed on
efficiency and scalability issues with respect to the
number of records1 [3]. However, emerging applica-
e front matter r 2006 Elsevier B.V. All rights reserved

2006.04.002

ing author. Tel.: +30231091924.

esses: alex@delab.csd.auth.gr (A. Nanopoulos),

csd.auth.gr (A.N. Papadopoulos),

sd.auth.gr (Y. Manolopoulos).

f record depends on the application. For the

ket-basket data, records correspond to transac-
tions, e.g., microarray data analysis, e-commerce,
citation analysis, introduce additional scalability
requirements with respect to the domain’s size,
which may range from several tenths to hundreds of
thousands of items.

For the aforementioned kind of applications, in
several cases it can be expected that items will
correlate with each other (i.e., create patterns) in a
way that small worlds [4] are formed. In such cases,
the very large domain will be partitioned into
smaller groups consisting of items with significant
correlations between them, whereas there will be few
.

(footnote continued)

tions. Henceforth, the terms record and transaction are used

interchangeably.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2006.04.002
mailto:alex@delab.csd.auth.gr
mailto:apostol@delab.csd.auth.gr
mailto:yannis@delab.csd.auth.gr


ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669650
random correlations between items of different
groups. Small worlds usually appear due to a kind
of clustering that is inherent in the examined
phenomena. For instance, microarray data contain
gene networks that consist of genes which express
similar behavior, users of e-commerce sites are
grouped into communities showing similar prefer-
ences, or, in citation databases, authors are sepa-
rated into different scientific disciplines. In all these
examples, despite the very large domain’s size, items
do not correlate with each other uniformly and they
tend to form groups with a large number of intra-
group and a small number of inter-group correla-
tions. This property can help in (i) significantly
pruning the search space and (ii) performing
efficient association-rule mining.

1.1. Motivation

The issue of domain’s cardinality, mainly moti-
vated by biological applications, has been consid-
ered recently for the problem of mining closed
patterns [5,6], which introduced the concept of row

enumeration. Nevertheless, to the best of our
knowledge, the problem of mining (regular) asso-
ciation rules from databases having both a very
large number of items and records, with the ability
to prune the search space based on the previously
described property, has not been considered so far.
Besides, the algorithms in [5,6] are main-memory
based, whereas we focus on disk-resident databases.

On the other hand, existing association-rule
mining algorithms based on column enumeration
can be severely impacted by a large domain. BFS
algorithms (Apriori-like) will produce an excessive
number of candidates, which drastically increase the
CPU and I/O costs (when the candidates do not fit
in main memory, they have to be divided into
chunks and numerous passes are performed for each
chunk [7]). DFS algorithms (e.g., FP-growth [8] and
Eclat [9]) use auxiliary data structures that summar-
ize the database (e.g., FP-tree), which become less
condensed when the domain size increases, because
of the many different items’ combinations. This
affects the CPU and I/O costs and, more impor-
tantly, disk thrashing may occur when the size of
the structures exceeds the available main memory.
With database projection [8] disk thrashing is
avoided, but for large domains I/O cost is still high,
due to the large amount of projections that have to
be examined (one for each frequent item). The
aforementioned factors are amplified by the need of
using relatively low support thresholds, since in
large domains the patterns exist locally, i.e., within
each group, and not globally.

In conclusion, domains with very large size pose
the following requirements to association-rule
mining algorithms:
�
 To control the increase in CPU cost, which is
incurred by the large number of possible items’
combinations.

�
 To avoid disk thrashing caused by the lack of

main memory (needed for candidate sets or for
auxiliary structures). Also, to control the increase
in I/O cost, which is incurred by approaches such
as database projection.

�
 To handle disk-resident data (i.e., databases that

cannot be entirely kept in main memory). This
yields, in contrast to row enumeration ap-
proaches, to the consideration of domains whose
size is very large, but relatively not much larger
compared to the number of records. For
instance, we would like an algorithm able to
mine association rules from a database contain-
ing million rows and hundreds of thousands of
columns.

�
 To be able, in the above cases, to use relatively

low support thresholds.

1.2. Contribution

In this paper, we focus on mining databases with
a very large number of records (disk-resident) and
with a domain that has a very large number of items
whose correlations form a small-world kind of
grouping. Initially we propose a partitioning meth-
od to detect the groups within the domain. This
method acts in an initial phase and detects, very
quickly and with low memory consumption, the
groups of items. Then, in a second phase, we
propose the separate mining of association rules
within groups. During this phase, the merging of
groups is possible. The separate mining of each
partition is performed by (i) focusing each time on
the relevant items and (ii) pruning them later on to
reduce execution time. The technical contributions
of our work are summarized as follows:
�
 The proposed method has the advantage of
scalability to very large domains (up to a million
of items are being considered), since the parti-
tioning approach divides, and thus reduces, the
complexity of the original problem to the



ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 651
manageable sub-problem of mining association
rules in much smaller sub-domains.

�
 The scalability with respect to the number of

records is also maintained, since no assumption is
made for storing the data set in main memory
and, moreover, the size of the corresponding data
structures is not excessive (as in existing ap-
proaches). The problem of thrashing due to
memory shortage is avoided.

�
 The proposed method does not depend on the

algorithm used for mining within each partition,
a fact which increases its flexibility and its
incorporation in existing frameworks. This is
analogous to the approach of [10], which
proposed the partitioning of the records and
used an existing algorithm (AprioriTid) for the
mining within each partition. However, the
raised issues and the required solution in our
case are significantly different than those in [10].

�
 Extensive experimental results are given, for both

synthetic and real data, which show that the
proposed approach leads to substantial perfor-
mance improvements (up to one order of
magnitude), in comparison to existing algo-
rithms.

�
 The discussion of issues related to applications in

which the domain may not be partitioned into
well-separated groups. We describe some hints
on this problem and address interesting points of
future work.

The rest of the paper is organized as follows.
Section 2 overviews related work in the area. In
Section 3 we describe our insight on the presence of
groups within domains, which are determined by
correlations between items. The method for parti-
tioning the domain is presented in Section 4,
whereas the algorithm for mining the partitions is
given in Section 5. Performance results are pre-
sented in Section 6. Section 7 considers the case of
partitions that are not well separated. Finally,
Section 8 draws the conclusions and provides
directions of future work.

2. Related work

Since its introduction [1], the problem of associa-
tion-rule mining has been studied thoroughly [11].
Earlier approaches are characterized as Apriori-like,
because they constitute improvements over the
Apriori algorithm [12]. They explore the search
space in a BFS manner, resulting in an enormous
cost when patterns are long and/or when the
domain size is large. Techniques that reduce the
number of candidates [13] may improve the situa-
tion in the latter case, but are unable to handle a
very large domain (see Section 6.3). Algorithms for
mining generalized association rules [14] are also
Apriori-like. They do not operate on individual
items but they focus on categories at different levels,
by assuming that the items are categorized hier-
archically. Therefore, a large domain can be
replaced by a much smaller number of categories.
Nevertheless, this approach requires the existence of
a predetermined hierarchy and the knowledge of the
items that belong in each category. In contrast, we
focus on a kind of grouping that is determined by
the in-between correlations of items, which is not
predefined and not hierarchical (see Section 3).

A different paradigm consists of algorithms that
operate in a DFS manner. This category includes
algorithms like Tree Projection [15], Eclat [9], and
FP-growth [8], whereas extensions have been devel-
oped for mining maximal patterns (e.g., MAFIA
[16]). Eclat uses a vertical representation of the
database, called covers, which allows for efficient
support counting through intersections of item’s
covers. For large domains, this may lead to a
significant overhead, since a large number of
intersections have to be computed. FP-growth
uses a prefix tree, called FP-tree, as a condense
representation of the database and performs mining
with a recursive procedure over it. Both Eclat and
FP-growth require that their representations have to
fit entirely in main memory. A study of their main-
memory requirements is included in [17]. For large
domains, the aforementioned requirement may not
always hold. To overcome this problem the
technique of database projection has been proposed
in [8]. Nevertheless, as will be shown, for very large
domains this technique results in high execution
times, since projection is performed for each item.
A study of the relation between available main
memory and association-rule mining is described in
[18], but for the different context of dynamic
changes in available memory.

All the previous methods are based on column
enumeration (also denoted as feature enumeration).
For mining closed patterns over databases with
much more columns than rows, e.g., gene-expres-
sion data, row enumeration has been proposed.
CARPENTER [5] is such an algorithm, which finds
closed patterns by testing combination of rows.
CARPENTER works on the basis that its entire



ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669652
database representation is held in main memory,
which holds for relatively small data sets like
microarray data. As the number of rows increases,
pure row enumeration may become inefficient.
COBBLER [6] proposes the dynamic switching
between column and row enumeration and com-
pares favorably against other closed-pattern mining
algorithms like CHARM [19] and CLOSET+ [20].
Similar to CARPENTER, COBBLER runs in main
memory (it uses conditional pointer lists and
performs only one scan of the database to load it
into memory [6]). This assumption may be con-
straining for very large databases, especially in the
context of closely coupling data mining with a
DBMS [21], where memory is provided by the
DBMS and is shared between several mining tasks
and OLTP transactions. As described, differently
from the aforementioned works, our approach
focuses on regular association rules and not closed
patterns. Moreover, we are interested in databases
that are disk-resident and contain a very large
number of columns and a very large number of
rows as well (the rows may be more than the
columns). Finally, our method prunes the search
space by considering groups that are formed by
correlations between items. Nevertheless, since
closed patterns are a specialization of association
rules, in the future we plan to examine the
application of the proposed method for the mining
of closed patterns.

Other algorithms that are influenced by the
characteristics of gene-expression data include
FARMER algorithm [22], which mines a particular
type of closed patterns from microarray data, and
BSC- and FIS-trees [23], which mine regular
association rules from gene-expression data.
Although [23] shows an improvement over FP-
growth, it is limiting because it runs in main
memory and only considers data sets with few
hundred transactions.

Finally, the concept of finding localized patterns
is presented in [24]. This work inspired us to
consider that patterns may not always exist globally.
Instead, in several applications the data set may
contain clusters that provide their own (local)
patterns. Nevertheless, [24] is based on the different
direction of clustering the transactions, whereas we
are interested in clustering the domain. For this
reason, [24] does not pay attention to the problems
resulting from a large domain. Other methods that
partition the database of transactions are described
in [10,25].
3. Correlation-based groups of items

According to the notion of association rules,
correlation between items is determined by their co-
occurrence frequency. Consider a relatively small
domain. Provided that patterns exist, the co-
occurrence probability between items is not uni-
form. Items co-occur more frequently along with
those items with which they form patterns and less
frequently with others. Nevertheless, since the
domain is small, different patterns are expected to
share many common items. For instance, let two
patterns be p1 ¼ fA;C;Dg and p2 ¼ fA;B;Cg, which
share items A and C. We stipulate that items
A;B;C, and D belong to the same group, albeit p1

and p2 do not both contain items B and D. This
grouping of items is defined in the sense that, either
directly (A and C) or obliquely (B and D), they
comprise a set of items among which there exist
patterns, i.e., correlations. Accordingly, in small
domains very few groups (probably only a single
one) will be formed, since items will be shared by
many patterns.

Consider the antipodal case, where the domain is
very large. Assuming that a sufficient fraction of
domain’s items participate into patterns, the items
that are shared between patterns are expected to be
much less compared to the case of a small domain.
This is because of the many more different items’
combinations. Therefore, the probability of having
an item shared by many patterns is now smaller.
Although the latter holds at a global level, at a local
level it is likely to find such a sharing of items by
sub-collections of patterns. Hence, items will tend to
form several isolated groups, which will contribute
their own patterns, whereas there will be few
random correlations between items belonging to
different groups. The reasons for the formation of
such groups, as already explained, lie on inherent
properties of the examined data which produce the
small-world effect. As mentioned, the aforemen-
tioned behavior can be observed in several real-
world cases, e.g., in microarray data (genes are
organized into gene networks) or in citation analysis
(papers belong to research communities), etc.

It is useful to ponder the following visualization,
having the items of a domain comprise the vertex
set of a graph. An edge exists between two verti-
ces i and j if the corresponding 2-itemset ði; jÞ is
frequent. Using the generator of [7], we produced
two synthetic data sets, with 1000 and 100,000
items, respectively. Both data sets contain 100,000



ARTICLE IN PRESS

Fig. 1. Resulting graph for 0.1% support threshold: (a) domain size 1000, (b) domain size 100,000.

Table 1

Symbols and definitions

Symbol Definition

n Number of unique items (domain size)

N Number of transactions

T1,T2 Transactions

S Average transaction size

i; j Items

ði; jÞ 2-itemset and edge

sup Min. support threshold

G Graph induced by 2-itemsets

H Size of hash-table

C;Ci Components

Lp Min. partition size

L List with small partitions

B List with candidate bridges

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 653
transactions, the average size of each transaction is
10, the average pattern size is 4, and the support
threshold is equal to 0.1% (following the terminol-
ogy of [7], these data sets are denoted as
T10I4D100K). Fig. 1a illustrates the resulting graph
for the first data set, whereas, to ease presentation,
Fig. 1b a sample of the second one. The former
graph consists of a single group plus some few
isolated frequent items (which are not depicted for
clarity). In contrast, the latter graph consists of
several separated groups.

Evidently, the characteristics of the formed
groups (e.g., size, shape) depend on the nature of
the application and the properties of the data.
Regarding the inter-group correlations between
items of different groups, if the co-occurrence
frequency between these items is insignificant (with
respect to the user-defined support threshold), then
the items are separable into different groups (as in
the example of Fig. 1b). Therefore, the fact that
inter-group correlations are few and random can
prevent the obstruction of the items’ grouping. Our
experiments show several cases where the detection
of such separate groups is possible. However, in
Section 7 we also consider the detection of groups
even when, initially, it is not possible to find a clear
way to separate the items due to the presence of
significant inter-group correlations.

4. Partitioning the domain

By partitioning a large domain we divide the
items into disconnected groups, so that it becomes
possible to find correlations only between items of
the same group. Thus, the original association-rule
mining task is divided into each group and becomes
manageable. In the rest of this section we describe in
detail the proposed method for partitioning the
domain. In the following section we describe
the mining of the partitions. Table 1 summarizes
the most important symbols used throughout the
study.

4.1. A direct approach

The procedure to partition the domain is based
on the determination of graph connected compo-
nents. A direct approach for this procedure is
detailed as follows. Let sup be the given support
threshold. Based on the Apriori-pruning criterion
[12], no itemset can have support higher than sup

unless all of its sub-sets have also support higher



ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669654
than sup. Therefore, a direct approach to partition
the domain of items can be described as with the
following operations:
1.
 Form an undirected graph G. The vertex set of G

consists of all items with support higher than sup

and the edge set of all candidate 2-itemsets.

2.
 Find the support of each candidate 2-itemset.

3.
 Keep the edges of G that correspond to a

2-itemset with support higher than sup and delete
all the others.
4.
 Find all the connected components of G. Each
component corresponds to a group of the
domain.
2In the following, the terms vertex and item are used

interchangeably.
Due to Apriori criterion, it is impossible to have
an itemset with support higher than sup that
contains items from two components of the graph,
since there is no common edge (i.e., sub-set of length
two) between any two components. One could
extend this approach by considering a graph with
edges determined by sub-sets of larger lengths (e.g.,
3-itemsets, etc). This extension is hardly viable,
because it will result to a partitioning phase with
prohibitive cost.

Prior work [26,27] has used graphs to represent
the supports of the 2-itemsets. However, these
works follow a simplistic implementation of the
graph. In particular, they first compute the supports
of all candidate 2-itemsets, before they filter out the
infrequent ones and keep the frequent to represent
the edges of the graph. This simplistic approach is
possible only for domains with small size (up to few
thousand items). In contrast, for very large
domains, this approach is not feasible, because the
graph cannot be maintained in main memory during
its building. If we want to overcome the latter
problem by simply resorting to virtual memory, we
will result with a severe overhead in execution time.
The reason is that the graph is built dynamically, by
reading records from the database and focusing on
the pairs of items within them. In general, the
records are stored on disk in no particular order.
Consequently, scattered I/O (thrashing) will occur
while accessing the edges in order to update their
support.

Proposition 1. The worst-case complexity of the

direct approach is OðN � S2 þ n2Þ, where N is the

number of transactions, S the average transaction

size, and n the total number of items.
Proof. The direct approach requires one pass of all
transactions to determine the support of 1-itemsets,
requiring a complexity of OðN � SÞ. The graph
construction requires a complexity of Oðn2Þ to
determine the edge set of 2-itemsets. The determina-
tion of the support of all 2-itemsets requires a
complexity of OðN � S2Þ, since all pairs of items
within each transaction should be considered. Next,
all pairs of items should be checked to determine
which 2-itemsets have a support greater than or
equal to sup. This step requires a complexity of
Oðn2Þ. Finally, determining the connected compo-
nents of the graph requires a complexity of Oðn2Þ in
the worst case, since all edges must be checked. In
conclusion, by considering the previous observa-
tions, the complexity of the direct approach is
OðN � S2 þ n2Þ. &

To avoid the aforementioned inadequacies, we
observe that we do not need to follow the direct
approach to partition the domain into groups. That
is, we should not find the support of all candidate
2-itemsets. What we only need to find is the support
of exactly those edges that will allow for the
detection of groups. This way, the graph will
contain much fewer edges, it will fit in main
memory, and much smaller processing cost will be
entailed. This observation is applied through
some steps we propose, which are described in
the sequel.
4.2. Proposed partitioning method

In this section, we describe the proposed parti-
tioning method, that has the objective of identifying
disjoint components in the graph. Therefore, the
proposed method identifies partitions in the case
that they are disjoint. We assume that an initial
scanning of the database has been performed and
the support of all 1-itemsets has been counted (this
phase is common in all association-rule mining
algorithms). The vertex set of the graph consists of
all items with support higher than sup.2 Next, one
extra scan is performed, during which the necessary
edges are determined in order to detect the groups.
Thus, two scans are required in total. In the
following we first elaborate on the graph structure
that is used by our algorithm, and then we describe
the partitioning algorithm.



ARTICLE IN PRESS

(a) (b)

Fig. 2. Example of linked-list representation.

3Since the average partition size may not be known during the

building of the graph, the estimation can be drawn from a sample

of the original transactions.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 655
4.2.1. Graph structure

The graph is stored in the form of adjacency
lists. For each vertex i we will store a list of the
vertices j for which a 2-itemset ði; jÞ is considered
(see Section 4.2.2) during the second database
scanning. Along with an edge we also store the
support of the corresponding 2-itemset. Initially,
all lists are empty and the supports are updated
during the scanning. This way we do not statically
preallocate space for each possible edge, since not
all of them will be considered, and thus a signifi-
cant amount of space is saved. To reduce the cost
of searching vertices within the adjacency lists,
the latter are implemented as hash-tables with
chains. An example of the graph structure is
depicted in Fig. 2a whereas Fig. 2b illustrates its
representation with adjacency lists (support values
are not shown). For illustration purposes the
hash-tables have two positions (in general, a much
larger value is used) and a simple hashing scheme is
used, where even items are hashed in the first
position and odd items in the second. When
searching, e.g., for item 4 in the list of 2, we only
examine the first position. Collisions cause the
formation of chains (e.g., the chain between 3
and 5 in the list of 1). When searching for item 5 in
the list of 1, the whole chain (items 3 and 5) is
searched. Hash-tables may not be fully utilized (e.g.,
the list of 3 has one empty position). For selecting
the size H of hash-tables, there is a tradeoff between
space cost (due to under-utilization when H is large)
and reduced searching speed (due to searching in
chains when H is small). A good estimate for H is to
set it equal to the average number of items in each
partition. The reason is that, in order to avoid a
large number of collisions, for each item i, we have
to allocate a hash-table with size equal to the
expected number of items in the partition that i

belongs to.3

4.2.2. Partitioning algorithm

During the second scan, the necessary edges are
determined, in order to detect the groups. The
outline of the domain partitioning algorithm is
depicted in Fig. 3.

Two vertices belong to the same component, if
there is a connecting path formed by edges with
supports equal or higher than sup. For the edge ði; jÞ,
DomainPartitioning examines the following condi-
tions:
(a)
 If i and j belong to the same component, there is
no need to examine pair ði; jÞ (the corresponding
edge is omitted).
(b)
 If i and j belong to different components of the
graph, we distinguish two additional conditions
according to the support of edge ði; jÞ:
(b1) If the support is larger than zero but lower

than sup� 1, it is increased by one. In case
it is zero, we allocate a new edge by
inserting j in i’s adjacency list with support
one.

(b2) If the support is equal to sup� 1 (about to
become frequent), we perform the opera-
tions defined by the EarlyMerging process
to identify a new component. EarlyMer-
ging is detailed in the following.
The edges that are omitted in the first (a) case are
those that do not yield to new components. An
example is given in Fig. 4, which depicts two
components C and C0. The edges with support equal
to sup are plotted with solid lines, whereas those
with less than sup with dotted line. When pair ði; jÞ is
encountered, we omit the allocation of an edge
between them, since they both belong to C (there is
a path between them formed by edges with solid
lines). To facilitate the testing whether two vertices
belong to the same component, we represent
components with a data structure for disjoint sets.
Since the find operations are more frequent than the
union ones (i.e., merging of components), we used a
Quick-Find structure instead of Quick-Union [28].

An allocation of an unnecessary edge may not be
always avoided. In the example of Fig. 4, for the



ARTICLE IN PRESS

Fig. 3. The proposed partitioning algorithm.

Fig. 4. Example of the examined cases.

4This is the reason we did not consider another case (say, b3).

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669656
pair ði; j0Þ an edge has already been allocated.
This happened before some of the solid lines,
which connect them, have reached support sup.
Nevertheless, in this case we avoid the additional
CPU cost to increase the edge’s support. This is
explained as follows. The operation of testing
if two items belong to the same component is
performed fast through the disjoint-set data struc-
ture, not by examining the path between them.
In contrast, the increase of the support is perfor-
med through the adjacency-list structure. The latter
operation is more costly than the former, due
to the existence of chains in the hash-tables, whereas
the disjoint-set structure is optimized for the
find operation. Moreover, the testing if the items
belong to the same pair has to be performed
in any case, because the items may belong to
different components (the case when an edge
allocation will be required). In conclusion, by
omitting unnecessary edges we save processing cost
and/or space.
Early merging: Two components C and C0 have to
be merged when there exist edges of the form ði; jÞ,
i 2 C, j 2 C0, with support values greater than or
equal to sup. We can, therefore, merge C and C0

upon the first time we find that the support of an
edge ði; jÞ, i 2 C, j 2 C0, is about to reach the value
of sup. This corresponds to b2 case in DomainPar-
titioning algorithm. The merging of C and C0 is
done by joining their representations in the disjoint-
set structure. By merging components as early as
possible, we save processing cost, since we avoid any
further examination of their in-between vertices.
Notice that this way the support of an edge cannot
reach a value higher than sup.4 Therefore, we do not
consider all edges, whereas for those considered we
do not find their actual support. All we find is the
necessary information to identify the components.
Besides processing cost, we may save space cost as
well, if during the merging we prune all other edges,
except ði; jÞ, between C and C0. This is because the
support of these edges is (currently) lower than sup

and will not further change. An example is given in
Fig. 5, which illustrates two components C and C0

that are about to be merged, because the support of
edge ði; jÞ has just become equal to sup. Solid and
dotted lines have the same meaning as in the
example of Fig. 4. Dash-dotted lines between
vertices of C and C0 represent the edges that have
not reached the support threshold and can be
pruned. (Actually, dashed lines within C and C0



ARTICLE IN PRESS

Fig. 5. Example of early merging.

5Consider also the analogous case of, say, two-dimensional

point data that form clusters. In this case, the number of clusters

does not directly depend on the number of points or their

distribution within the clusters. For this reason, the number of

clusters that will be detected by clustering algorithms cannot be

determined a priori.
6As also explained in Section 1.2, any other algorithm can be

used as well.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 657
represent such edges, which could have been
pruned.) We have to note that the pruning of such
edges should be optional, i.e., when main memory
does not suffice, since it requires some additional
cost.

Proposition 2. The worst-case complexity of the

proposed partitioning scheme is OðN � S2 þ n2Þ,
where N is the number of transactions, S the average

transaction size, and n the total number of items.

Proof. The proposed approach requires one pass
of all transactions to determine the support of
1-itemsets, requiring a complexity of OðN � SÞ.
During the subsequent scan performed by the
proposed method, each pair of items should be
checked once to determine if the edge should
be omitted (Step 1) or two components should be
merged (Step 2). This requires a complexity of Oðn2Þ

in the worst case to perform all necessary merges
and OðN � S2Þ to check every 2-itemset in every
transaction. Therefore, the resulting complexity is
OðN � S2 þ n2Þ. &

Although the worst-case complexity given by
Propositions 1 and 2 are the same, the proposed
partitioning algorithm has the advantage that it
does not require the static allocation of the graph
structure. Thus, it performs favorably against the
direct approach that is presented in Section 4.2.1.
This is verified by our experimental results in
Section 6.4.

Finally, we have to note that the existence of
disconnected partitions depends on the intrinsic
mechanism in the data that generates these parti-
tions, e.g., the authors communities, gene expres-
sions, etc. There are several factors that affect the
number of disconnected partitions. We will study
their impact in Section 6.5. Nevertheless, such
factors, like the number of items or the probability
distribution they follow, cannot directly determine
the number of resulting partitions in a way that can
be expressed by a close-formula. The reason is that
they affect the number of partitions only through
their interaction with the mechanism that generates
them and not by themselves. For example, for the
same number of items, entirely different number of
partitions may be resulted, if the mechanism of their
generation changes.5 In contrast, a useful tool to
estimate the number of partitions is sampling. More
precisely, we can generate a (uniform) sample with
respect to the transactions. As the sample contains a
small fraction of the original transactions, we can
apply the partitioning procedure over it with only a
small time overhead. Therefore, an estimation for
the number of clusters can be drawn fast. Sampling
has the advantage that it works regardless from the
underlying factors, thus it is a general tool and does
not require any assumptions about specific distribu-
tions. In Section 6.5 we also evaluate the effective-
ness of sampling for the aforementioned purpose.

5. Mining the partitions

For the set of items in each partition we have to
find the corresponding itemsets with frequency
higher than sup. A straightforward approach would
be to apply an algorithm for frequent-itemset
mining (FIM) separately for each partition. When
the FIM algorithm is applied on a partition, it
performs a scan of the database during which it
takes into account within each transaction only the
items that belong to this partition.

The FIM algorithm is applied on partitions and
does not face the problem of large domain size. For
this reason, existing FIM algorithms can be used.
Since FP-growth is one of the best FIM algorithms,
as long as the number of items is manageable, and
for having a fair comparison with it, we henceforth
employ it for this task.6 Nevertheless, the perfor-
mance of this straightforward approach can be
severely impacted by the inconsideration of two
facts:
�
 The length of several partitions may not be
adequately large to justify the cost of separate
application of an FIM algorithm.



ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669658
�
 In each transaction, the items that participate
during the application of FIM algorithm will no
longer be needed for subsequent applications.

In order to overcome these problems, we propose
the use of two techniques, denoted as partition-

merging and transaction-pruning, which are de-
scribed as follows.

Partition-merging can combine several partitions
for a single application of the FIM algorithm. Each
time an FIM algorithm is applied, a cost is involved
(e.g., FP-growth requires one scan of the database,
the building of the FP-tree on the items of the
partition, and the searching for frequent itemsets in
it). It is pointless to pay this cost just to find few
frequent itemsets from a small partition. The
control of justifiable partition size is achieved
through a cut-off value, called Lp. The partitions
are examined one by one. Each time a partition with
less than Lp items is encountered, its items are
appended to a list L (initially empty). The FIM
algorithm is applied only in two cases: (i) when for
the size jPj of the currently examined partition P it
holds that jPjXLp, or (ii) when jLjXLp. That is,
partitions that are large enough are mined sepa-
rately; otherwise, when the number of items
belonging to small partitions is large enough, then
these partitions are mined together. After a com-
bined application of FIM on the items of L, the
latter becomes empty.

During each application of FIM algorithm,
transactions are read from the data set one by
one. In each transaction, only the items that belong
to the currently examined partition or partitions (in
case of partition-merging) are considered. By using
transaction-trimming, we can discard from the
transaction all the considered items, since they will
contribute nothing to subsequent applications of
FIM algorithm. The result is the reduction of I/O
cost during these subsequent applications, because
smaller transactions will be read. Transaction-
trimming is a technique that has been proposed in
prior works, e.g., [13], and we adopt it here, because
it helps in reducing the overall execution time.7

Notice that transaction-trimming can easily be
7Transaction-trimming needs to write back a modified transac-

tion (not all transactions are modified). This can be done using a

double-buffering technique [29], which overlaps the I/O time to

write the transaction with the CPU cost of processing the next

one (e.g., in FP-growth, the items of a transaction cause the

insertion of several paths into the FP-tree, which takes significant

fraction of CPU time).
incorporated to any FIM algorithm, since it does
not change the logic that the latter is based upon.

The resulting mining scheme is given in Fig. 6.
The special case where a partition contains only one
item is treated separately, since we can immediately
report a singleton itemset that has support higher
than sup. In the end, after having examined all
partitions, the list L may not be empty. In this case,
regardless of its size, we have to apply the FIM
algorithm on its remaining contents. As explained
earlier, we choose the FP-growth algorithm for
the implementation of FIM. However, we applied
an optimization: FP-growth requires two scans
of the database db, one to find the support of
items (singleton itemsets) and resort the items in
each transaction of the db with respect to their
support, and then one to build the FP-tree. In our
implementation, the former task is performed only
once, during an initialization step (second step of
the algorithm MinePartitions), to avoid its repeated
execution during the applications of FIM. The
reason is that the initial sorting of the database is
valid for all partitions and does not have to be
repeated.

Example 1. Assume a domain D ¼ fA;B;C;D;E;
F ;G;H; I ; Jg and the database depicted in Fig. 7a.
Let sup be equal to two and Lp equal to three. It is
easy to verify that four partitions can be identified:
P1 ¼ fA;Bg, P2 ¼ fC;Dg, P3 ¼ fE;F ;Gg (because
itemsets ðE;F Þ and ðE;GÞ are frequent), P4 ¼ fHg,
whereas items I and J are not frequent. MineParti-
tions commences with P1, which has size less than
Lp, thus items A and B are inserted in list L. P2 also
has size less than Lp, thus items C and D are inserted
in L. Now L has size four, which is larger than Lp.
FIM is applied for the elements of L. This identifies
items A, B, C, D (with supports 2, 2, 2, 3,
respectively) and itemsets AB, CD (both with
support 2) as frequent. Due to transaction-trimming
the database now becomes equal to the one depicted
in Fig. 7b.8 Next,L is emptied and P3 is considered.
Since its size is larger than Lp, FIM is applied. It
identifies items E, F, G (with supports 3, 2, 3,
respectively) and itemsets EF, EG (both with support
2) as frequent. Now the database becomes equal to
the one depicted in Fig. 7c. P4 contains a single
item, whose support is known (from the initial scan
before the invocation of MinePartitions). Therefore,
8For concreteness, the infrequent items I and J are still

depicted. However, they can be easily identified and removed

from transactions that are being trimmed.



ARTICLE IN PRESS

Fig. 6. The algorithm that mines the partitions.

(a) (b) (c)

Fig. 7. Example of a database for the application of MineParti-

tions algorithm.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 659
H (with support 2) is reported as frequent. Since no
more partitions exist and L is empty, the algorithm
terminates.

Regarding the selection of Lp, we have to
consider the following. A very small Lp causes the
creation of many small partitions. Therefore, FIM
will be applied many times and will require many
database scans. In contrast, a very large Lp causes
the creation of very few, large partitions. Although
FIM will be applied few times, each application will
be impeded by the large number of the items that
are taken into account (analogously to the problem
produced in the case of a single large domain).
Thus, Lp represents a tradeoff between the number
of times that FIM is applied and the cost for each
application. A natural choice for Lp is to set it equal
to the average number of items in the partitions, as
we want Lp to be tuned according to the sizes of the
resulting partitions in the data set. In our experi-
mental results we examine the impact of Lp and its
analytical estimation.
By carefully tuning Lp, the number of FIM’s
invocations is restricted to only a few times. In each
one, as explained previously, the database is
scanned only once. Moreover, due to the transac-
tion-trimming technique, each scanning is presented
with a significantly reduced database. As a result,
the I/O overhead is limited and the problems caused
by the large domain are overcome (see Section 6). It
is worthwhile to contrast this with an approach like
FP-growth, that opts for only one extra scan
(besides the initial one) and confronts significant
difficulties due to the domain’s size. This case
produces the same problems with a naive selection
of a very large Lp. To the other end, an approach
like database projection [8] (using the partition

projection method) for the case of large domains can
result in a large number of scans. This causes similar
problems as when naively selecting a very low Lp.
Therefore, the proposed approach presents a middle
ground between the two extremes, i.e., it pays off to
perform only some very few additional scans (with
reduced database size each time), to resolve the
difficulties caused by the large domain.

Finally, another optimization that could be
considered is, after the detection of partitions, to
cluster the transactions with respect to the items
they contain. If transactions contain only items
from a single partition (and possibly some infre-
quent items and/or frequent singletons), then during
the invocation of MinePartitions each application
of FIM could be performed only to the correspond-
ing cluster of transactions. Thus, a lot of I/O cost



ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669660
could be saved. This is effective only if the items
within transactions are not intermixed from differ-
ent partitions. This is somehow constraining (e.g., in
the case of market-basket data, we buy items in
clusters, but in a transaction there may be items
from more than one cluster). For this reason we do
not exploit this direction. However, if this assump-
tion holds, then the performance of MinePartitions
can be further improved.

6. Performance results

6.1. Experimental setup

We examine the performance of the proposed
method, henceforth denoted as partition-based
mining (PBM). For comparison we consider the
FP-growth algorithm (denoted as FP), since it has
been reported to have an excellent performance.
However, for a more complete conclusion, we also
include a comparison with an Apriori-like algorithm
and Eclat. As mentioned, for purposes of fair
comparison with FP-growth, in MinePartitions
algorithm we use FP-growth as an implementation
of an FIM algorithm.

The proposed algorithm was implemented in
Cþþ, whereas a Cþþ implementation of FP-
growth was obtained from the FIMI site.9 The latter
did not include the technique of database projec-
tion. For this reason we developed it on top of the
existing code. Although the point when database
projection should be invoked is not analyzed
thoroughly in [8], the experimental results of the
latter paper use the value of 3% for density in order
to determine this point. The selection of the point
affects the performance of FP-growth, because
when FP-tree is small and fits in main memory,
database projection may slow down FP-growth. In
contrast, when FP-tree is large and does not fit in
memory, then database projection overcomes the
problem. We run the experiments by selecting each
time the best value for this point. The implementa-
tion of Eclat was again taken from the FIMI site,
whereas the Apriori-like algorithm was implemen-
ted in Cþþ.

We used synthetic data sets produced by the
generator of [7], which allow us to examine the
impact of several parameters. Each synthetic data
set is denoted as TxIyDz, where x is the average
transaction size, y is the average pattern size, and z
9URL: http://fimi.cs.helsinki.fi/.
is the number of transactions. Also we used two real
data sets. The first one includes papers from the
DBLP site (dblp.uni-trier.de), where each transac-
tion contains the references included in each paper.
There are 7942 transactions (we only used those
papers whose references are provided) and 20,826
distinct papers that are cited (this is the size of the
items’ domain). The second one is obtained from
the Machine Learning Database Repository10 and
includes the Casts table from the Movies data set.
The transactions contain the actors included in the
cast of the listed movies. There are 8766 transac-
tions and 16,608 actors. Although both real data
sets are of moderate size (in terms of the number of
transactions), they are used because of their
relatively high domain and, most importantly,
because due to their nature they are expected to
contain clusters.

We examine the impact of the following para-
meters: support threshold, domain’s size, number of
transactions, and size of transactions. For PBM we
examine the impact of Lp, the benefit from employ-
ing the proposed dynamic approach for finding the
partitions against a simple, static approach, and the
impact of hash-table size H. The performance
measure is the total execution time, which for
PBM includes the time to find the partitions. For all
algorithms we do not measure the time to report the
results (frequent itemsets), since it is the same for all
cases. For the synthetic data, the default data set is
the T10I4D100K with domain size equal to 100,000.
For PBM, the default value for Lp is equal to 500
and H (the size of hash-tables for the linked-list
representation) is set equal to 150.

6.2. Comparison with FP-growth

In the sequel, we demonstrate the performance
comparison between PBM and FP for synthetic
data sets, by varying several parameters, such as
support threshold, number of items, number of
transactions, and average transaction size. We also
compare the two methods with two real data sets.

6.2.1. Varying the support threshold

We compared PBM and FP for two cases of the
data set T10I4D100K. The first has a domain with
size 1000 (small domain), whereas the second with
100,000 (large domain). The relative times (normal-
ization against FP) for the small domain, with
10URL: http://www.ics.uci.edu/�mlearn/MLRepository.html.

http://fimi.cs.helsinki.fi/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


ARTICLE IN PRESS

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6

re
l. 

tim
e

re
l. 

tim
e

support (%)

0 0.1 0.2 0.3 0.4 0.5 0.6
support (%)

PBM
FP

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
FP

PBM

(a)

(b)

Fig. 8. Relative time vs. support threshold.

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 100 200 300 400 500 600 700 800 900 1000

re
l. 

tim
e

re
l. 

tim
e

items (x 1000)

0 100 200 300 400 500 600 700 800 900 1000
items (x 1000)

FP
PBM

FP
PBM

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

(a)

(b)

Fig. 9. Relative time vs. number of items.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 661
respect to support threshold, are depicted in Fig. 8a.
Fig. 8b depicts the relative times (normalization
against PBM) for the large domain. We use relative
times to clearly compare the performance differ-
ences between the two cases, since the number of
patterns and, thus, absolute execution times differ
between them.

As expected, for the small domain, FP outper-
forms PBM for lower and medium support thresh-
olds. The reason is that the cost of detecting
partitions and mining them separately does not
payoff for smaller domains, since only a single large
partition is detected. FP is quite efficient for this
case, because the FP-tree is compact. Notice that as
support threshold increases, the performance of
both algorithms tends to become comparable,
whereas for larger supports PBM performs margin-
ally better. When the support threshold is large,
partitions are starting to exist (several items/item-
sets become infrequent and the single large partition
breaks into smaller ones). This helps PBM in
improving its efficiency. Nevertheless, the absolute
execution times for large supports are very small
and the comparison is of little significance.

For the large domain, PBM clearly outperforms
FP for lower and medium support thresholds. In
this case there exist several partitions and FP is not
as efficient as in the case of the small domain. As
support threshold increases, the performance of
both algorithms becomes comparable. For large
thresholds FP is marginally better, because the
number of frequent items (i.e., the effective size of
the domain) becomes small. Again, the absolute
execution times for large supports are very small
and thus the comparison is not significant.

6.2.2. Varying the number of items

We now move on to examine varying domain’s
sizes. First we use the T10I4D100K data set and
support threshold is set to 0.1%. As previously,
between different domain sizes, absolute execution



ARTICLE IN PRESS

0

10

20

30

40

50

60

70

80

200 300 400 500 600 700 800 900 1000
transactions (x1000)

transactions (x1000)

FP

PBM

10

100

1000

10000

1200 1300 1400 1500 1600 1700 1800 1900 2000

tim
e 

(s
)

tim
e 

(s
)

FP
FPDP
PBM

(a)

(b)

Fig. 10. Execution time vs. number of transactions: (a) range

where FP-tree fits in memory, (b) range where FP-tree does not fit

in memory (logarithmic vertical axis).

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669662
times vary significantly. For clearer comparison,
Fig. 9a illustrates the relative time (normalized by
PBM) for varying domain size. For small domains,
FP performs better than PBM. However, as the size
of the domain increases, PBM becomes better. The
performance difference reaches a peak around
the value of 100,000 and then it slightly decreases.
The reason is that the number of transactions is not
large (100K). When the domain becomes too large,
as the number of transactions is kept constant,
many items become infrequent. This can be more
clearly understood by the result depicted in Fig. 9b,
where the relative times are given for the
T10II4D300K (again the support threshold is
0.1%). Since the number of transactions is larger,
the very large domains still have a large number of
frequent items. Thus, the performance difference
between PBM and FP does not decrease as much as
previously. From this it is understood that the
performance difference is affected by the combina-
tion of domain’s size and database’s size, and PBM
is efficient in the challenging case when both are
large.

6.2.3. Varying the number of transactions

Next, we separately test the impact of the
database’s size by using varying number of transac-
tions. The data set is T10I4Dz with domain size
100,000, and the support threshold is 0.1% (the
absolute value varies with varying z value). For FP,
the size of the database can cause the FP-tree to not
fit in main memory. For this reason we examine two
ranges for the number of transactions. The (abso-
lute) execution times for the first range are depicted
in Fig. 10a, where FP-tree can always fit in memory
and database projection is not used for FP. As
shown, in this range both algorithms scale linearly
to the database’s size. As the latter increases, PBM
significantly outperforms FP. The reason is that, as
the number of transactions increases, the single FP-
tree of FP becomes less condense (more transactions
means more different itemsets and thus paths to be
inserted). This increases the cost of the mining
performed by FP.

The results for the second range of database’s
sizes are illustrated in Fig. 10b (time axis is
logarithmic). In this range, as the number of
transactions is increased, the FP-tree starts to not
fit in main memory. In the figure, this happens
after the size of 1:6� 106. After this point, we
illustrate the execution time of FP both when
it plainly resorts to virtual memory and when
database projection is used (this case is denoted
as FPDP). Although database projection avoids
the problem of lack of main memory, it presents
very high execution times. This is explained by the
large domain’s size, because according to [8],
projection is applied separately for each item.
Thus, it has to be applied for a very large number
of times and this produces a significant overhead.
Regarding the case of FP that resorts to virtual
memory, when the size of the FP-tree marginally
exceeds available memory, its performance does
not degrade very badly. In contrast, for database’s
size higher than the critical point, thrashing causes
an important degradation of FP’s performance,
and for very large values it fails to finish (due to
lack of resources). This result explains the advan-
tage of PBM, which, due to its partitioning
technique and optimizations, is able to avoid the
problem.



ARTICLE IN PRESS

0

50

100

150

200

250

300

350

400

10 15 20 25 30 35 40 45 50

tim
e 

(s
)

transaction size

FP
PBM

Fig. 11. Execution time vs. average transaction size.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

25 30 35 40 45 50

tim
e 

(s
)

support

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

3 4 5 6 7 8 9 10

tim
e 

(s
)

support

FP
PBM

FP
PBM

(a)

(b)

Fig. 12. Execution time vs. support (absolute) for real data: (a)

DBLP database, (b) Movies database.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 663
6.2.4. Varying the transaction size

Another parameter that we investigate is the size
of transactions. We use the TxIyD100K data set,
where y is set as half of x.11 The support threshold is
set to 0.1%. The results are given in Fig. 11. With
increasing transactions’ size, the difference in
execution times also increases. Larger transactions
produce more different items’ combinations to be
inserted in the FP-tree (however, main-memory
shortage does not occur). Hence, FP is impacted.
The same holds for PBM (recall that FIM is
implemented by FP). However, the impact is less
on PBM, because each application of FIM takes
into account in each transaction only the items that
belong to the considered partition. Therefore,
partitioning manages to limit the increase in the
cost produced by larger transactions’ sizes.
6.2.5. Comparison for real data sets

Finally, we compare PBM and FP using the two
real data sets. The results for the DBLP data set
with respect to the support threshold (absolute) are
illustrated in Fig. 12a, whereas the results for the
Movies database in Fig. 12b. Lp is set to 40 in both
cases. These data sets are of moderate size in terms
of the number of transactions. However, their
domains’ sizes are relatively large and, due to their
nature, they contain several partitions. Therefore,
due to the existence of partitions in both cases, PBM
11If y remained static, the larger transactions would contain

many ‘‘random’’ items (i.e., not belonging to a pattern), a case

that would not be characteristic for the measurement of

performance.
compares favorably against FP. In particular, the
DBLP database, for support equal to 25, contains
four partitions: one with size 170, two with size 40,
and one with size 19. Analogously, the Movies
database, for support equal to 4, contains five
partitions: one with size 169, three with size 40, and
one with size 19. With increasing support threshold,
the number of frequent items reduces, thus the
number of partitions reduces too and the execution
time of PBM and FP becomes smaller.

6.3. Comparison with other algorithms

In order to draw a more complete conclusion
about PBM, we include a comparison with an
Apriori-like algorithm and Eclat. The Apriori-like
algorithm uses the hashing technique proposed in
[13], which tries to reduce the number of candidates



ARTICLE IN PRESS

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e 

(s
)

support (%)

DHP
Eclat
PBM

Fig. 13. Comparison with other algorithms: time vs. support.

34

36

38

40

42

44

46

48

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e 

(s
)

Lp

PBM

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0 5 10 15 20 25 30 35 40 45 50

re
l. 

tim
e

d

PBM

(a)

(b)

Fig. 14. (a) Execution time w.r.t. Lp, (b) relative execution time

w.r.t. d.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669664
(applied for the second phase). We use the
T10I4D100K data set with domain’s size equal to
100,000. The result for varying support are depicted
in Fig. 13. Eclat, for small and medium support
thresholds, is severely impacted by the large
domain’s size, for the reasons that have been
explained in Section 2. The execution time of the
Apriori-like algorithm is also high. The reason is
that, despite the use of the hashing technique, it
produces a very large number of candidates. As
support threshold increases, the execution time of
all algorithms converges to a point. In all cases,
PBM presents the best performance.

6.4. Sensitivity of PBM

To understand the characteristics of PBM in
more detail, we measure the impact of Lp, how
helpful is the dynamic graph building, and the
impact of parameter H.

First, we focus on Lp. We use the T10I4D500K
data set, with domain size equal to 100,000. The
execution times for varying Lp values are depicted in
Fig. 14a (support set to 0.1%). As has been
described, very low and very high values of Lp

result in high execution times. The former causes a
problem because of the unnecessarily large number
of invocations of the FIM algorithm. The latter
produces very few large partitions. Therefore, the
corresponding large sub-domains impact the execu-
tion time.

We now evaluate the quality of our analytical
estimation to set Lp equal to the average partition
size. We want to avoid the impact of singleton and
very small partitions on the calculation of the
average partition size. Thus, we do not consider in
the calculation of the average the partitions with
size less than a threshold d. We measure the
execution time of PBM, when Lp is analytically
tuned in the aforementioned way, vs. d. Fig. 14b
presents the latter time relatively to the execution
time that results when we choose manually the best
Lp value (taken from the previous experiment).
When d is very small, the resulting Lp value is
affected and, thus, the execution time is relatively
high. As d increases, Lp quickly improves and the
execution time reduces. When d is set around 50
(that is, when we not consider partitions that are
smaller than about the 10% of the average partition
size, which is 480), the execution time of PBM is
very close to the case when Lp is manually tuned to
the optimum value.

Next, we test the quality of the analytical
prediction for H, which is the size of hash-tables



ARTICLE IN PRESS

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

1.022

1.024

0 5 10 15 20 25 30 35 40 45 50

re
l. 

tim
e

d

PBM

0

100

200

300

400

500

600

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

tim
e 

(s
)

support (%)

Static
Dynamic

(a)

(b)

Fig. 15. (a) Evaluation of the analytical prediction for H, (b)

comparison between static and dynamic partitioning.

12The patterns in the generator of [7] act as seeds to generate

the synthetic transactions.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 665
that are used in the adjacency-list representation of
PBM. We use the synthetic data set T10I4D500K
with domain size 100,000 and support threshold
equal to 0.1%. For the analytical prediction of H,
we use the same threshold d as in the case of Lp.
Similarly, we measure the relative execution time
against the case where the best H value is selected
manually. The results are given in Fig. 15a. For
small values of d, the execution time of the
analytically tuned PBM is relatively high, because
a small H value is produced and long chains tend to
be formed. As d increases, the relative time reduces.
For d around 50, H takes a good value and the
resulting execution time is very close to that of the
best case.

Finally, we compare the dynamic component
detection that PBM uses, against a simplistic, static
approach. The latter uses an adjacency matrix to
represent the array (we discard unnecessary rows
that correspond to non-frequent items), finds the
support of every candidate 2-itemset, keeps only the
frequent ones as edges, and detects components
with a depth-first traversal of the graph. We only
measure the time required to detect components,
since the mining of the partitions is not affected.
To gain better insight, we use the T40I15D200K
data set (domain size 100,000), which is challenging
for the task of partition detection, since it contains
many and large transactions. The results on
execution time with respect to the support thres-
hold are given in Fig. 15b. As support threshold
decreases, the static approach clearly looses out,
due to the large resulting graph and the cost of
finding the support of many edges. For very low
values of support threshold, the static approach fails
to terminate, due to lack of memory to store the
graph.

6.5. Estimating the number of disjoint partitions

In this section, we examine the effectiveness of
sampling as a tool to estimate the number of disjoint
partitions (henceforth denoted as clusters). We use
the T10I4D500K data set. The support threshold is
set to 0.1%. We measure the (absolute) difference
between the number of clusters detected in the
original data set and in the sample. This difference is
denoted as error. Fig. 16a depicts the error, given as
a percentage, with respect to the size of the sample.
As shown, for samples larger than 25%, the error in
estimation is zero. For sample sizes between 10%
and 1%, the error is about 2%. Even when the
sample becomes smaller (e.g., 0.7%), the error is not
higher than 15%. This indicates that sampling is a
useful tool to estimate the number of clustered
partitions, as it yields precise estimations and does
not require knowledge of any data set’s factors.

To clarify further our discussion, we additionally
examine factors that are derived from character-
istics of the data set and affect the number of
clusters. First we examine the impact of the number
of items. We use the T10I4D100K data set. The
number of patterns12 is set to 1000 and the support
threshold to 0.1%. The number of clusters for
varying number of items is given in Fig. 16b (the
horizontal axis is plotted in log scale). When the
number of items is small, all of them correlate with
each other. Thus very few disjoint clusters are
produced. As the number of items increases, the



ARTICLE IN PRESS

0

2

4

6

8

10

12

14

16

0.7 1 2 3 5 10 25 50 100

er
ro

r 
in

 n
um

 o
f c

lu
st

er
s 

(p
er

c.
)

sample size (perc.)

0

10

20

30

40

50

60

70

1 10 100 1000

nu
m

 o
f c

lu
st

er
s

num of items (x1000)

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

nu
m

 o
f c

lu
st

er
s

num of patterns (x1000)

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

 o
f c

lu
st

er
s

support (perc.)

(a) (b)

(c) (d)

Fig. 16. (a) Error w.r.t. sample size, (b) number of clusters w.r.t. number of items, (c) number of clusters w.r.t. number of patterns, (d)

number of clusters w.r.t. support threshold.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669666
number of such clusters increases. After a point, the
latter number remains about constant, as the
additional items do not produce more clusters,
because the number of patterns in the data set is
kept fixed.

Next, we examine the impact of the number of
patterns in the data set. Fig. 16c illustrates the
number of clusters with respect to the number of
patterns. We use the same data set as in the previous
experiment, where we set the number of items equal
to 100,000. When the number of patterns is small,
very few clusters are produced, as they correspond
to the items that these few patterns contain. As the
number of patterns increases, the number of clusters
also increases. However, after a point, the latter
number reduces. This is explained by the fact that
when there are many patterns, the support of their
corresponding itemsets reduces (because the number
of transactions is fixed).
Finally we examine the impact of the support
threshold. Fig. 16d gives the number of clusters with
respect to the latter threshold. When support
threshold is small, all items correlate with all others,
thus the number of disjoint clusters is small. As
support threshold increases, the number of clusters
increases too. However, when support threshold
increases after a point, then the number of clusters
starts to reduce. The reason for this fact is that, as
support threshold increases, fewer items manage to
become large, thus the number of clusters is
reduced, as there are less items to form them.

In summary, there are several factors, whose
interaction with the underlying mechanism that
generates the clusters affects the resulting number of
disjoint clusters. The aforementioned results helped
to produce qualitative conclusions about the impact
of the examined factors. Moreover, our results
demonstrated that sampling is a precise tool to



ARTICLE IN PRESS

(a) (b)

Fig. 17. (a) Example of a bridge between two components, (b) example of the additional searching for an item k 2 C0 that is connected to

item i 2 C.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 667
estimate the number of clusters without requiring
knowledge about any such factors.
7. Non-well-separated partitions

In all cases examined so far, due to the nature of
data and the large size of the domains, we could
detect clearly separated partitions. But one may ask
(a) if it is possible to have data with partitions that
are not clearly separated and (b) how the partitions
can be detected in this case. The most typical
situation to consider for this case is the existence of
‘‘noise’’ in the form of edges that operate as
‘‘bridges’’, connecting items from different parti-
tions, forcing their merging, and thus rendering
their separate mining impossible. See Fig. 17a for an
illustration of a bridge.

Edges that act as bridges can be identified by
revisiting the EarlyMerging procedure (see Section
4.2.2) and performing a test before deciding to
merge two components. For two components C and
C0, when we find that the support of an edge ði; jÞ,
i 2 C, j 2 C0, has reached the value of sup, we
perform an additional searching procedure. We
search if there exists any edge with support equal or
larger13 than sup between i 2 C and a k 2 C0, where
kaj (see Fig. 17b for an example). If there is no
such edge, we equivalently examine if there exists
any edge with support equal or higher than sup

between j 2 C0 and an l 2 C, where lai. If an edge
of any of the two aforementioned types (connected
to i or connected to j) exists, then we merge C and
C0. Otherwise, we can temporarily defer the merging
of C and C0. The reason is that, up to now (due to
the property of antimonotonicity), there cannot be
any frequent itemset with items from both C and C0,
13As will be explained, some mergings may be deferred.

Therefore, in contrast to the case when we merge as early as

possible, there may exist edges with support higher than sup.
besides the 2-itemset ði; jÞ. We utilize a list B that
maintains such edges ði; jÞ as candidate bridges. It is
possible that an edge in B may turn out not to be a
bridge, if the corresponding components are merged
in a following step. Nevertheless, it is not worth
deleting them from B. After the end of the entire
partitioning process, a traversal of B can discard the
edges that are not bridges (by examining for each
edge ði; jÞ in B if i and j belong to different
components). We have to report the actual bridges
as frequent 2-itemsets too, so that these patterns will
not be missed from the output.

Notice that the structure of adjacency lists that
maintains the graph is not directed, thus for an edge
ði; jÞ, ioj, we only store j in i’s adjacency list.
However, the previously described searching proce-
dure may have to examine the adjacency lists of
both i and j. For this reason, when the support of an
edge ði; jÞ reaches the threshold and ði; jÞ is detected
as candidate bridge, we additionally insert i into j’s
adjacency list. With a small increase in space cost,
we save a lot of time during the searching.

During the first steps of the domain partitioning
algorithm, a lot of sub-partitions will be connected
by candidate bridges. Many of them will turn out
not to be actual ones, since several sub-partitions
will eventually merge. By deferring merging at
initial steps, unnecessary cost incurs due to the
previously described searching procedure. We avoid
this shortcoming by deferring a merging only when
jCj þ jC0jXLp, that is, when the components have
an adequate size.

To test the effectiveness of the aforementioned
procedure, we examined a synthetically generated
data set. The reason is that the two real data sets we
examined in Section 6 have clearly separated
partitions and do not include any bridges. More-
over, with synthetic data we have the advantage of
controlling the number of bridges. For the exam-
ined synthetic data set, we artificially generated 10



ARTICLE IN PRESS

0

2

4

6

8

10

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

co
m

po
ne

nt
s

inserted bridges (x 100,000)

PBM w/o
PBM w/

Fig. 18. The number of detected partitions vs. the number of

inserted bridges.

A. Nanopoulos et al. / Information Systems 32 (2007) 649–669668
partitions that do not share any items. Each
partition contained 1000 items and from the items
of each partition we generated 10,000 transactions
(average transaction size 10 and average pattern-
size 4). Next, we inserted transactions contain-
ing bridges, i.e., each transaction contained one
2-itemset between items belonging to different
partitions. To control the effect of bridges, only a
small number of items from each partition could
participate in a bridge (we examined 50), otherwise
the bridges could not reach an adequate support.
Fig. 18 depicts the number of partitions detected
with and without performing the previously de-
scribed procedure (denoted as PBM w/ and PBM
w/o, resp.), with respect to the number of added
bridges. As shown, PBM w/ can significantly reduce
the possibility of incorrect merging.

8. Conclusion

The mining of association rules from domains
with very large number of items is becoming an
exigency, due to emerging applications such as
bioinformatics, e-commerce, and bibliographic ana-
lysis. Recently, this fact prompted researchers to
develop methods that address the asymmetry
between the number of rows and the number of
columns in a data set. In this paper, for very large
domains, we give insight about the presence of
groups determined by correlations between the
items.

Based on the aforementioned observation, we
considered the (classic) problem of mining all
association rules when both the number of rows
and the number of columns are very large, thus no
assumptions are made that the process can un-
conditionally be performed in main memory. To
our knowledge, our results are the first to consider
scalability to databases with hundreds of thousands
of items and millions of transactions.

We developed an algorithm that partitions the
domain of items according to their correlations. For
the partitioning algorithm we provide several
optimizations, which attain fast execution and low
space cost. Additionally, we described a mining
algorithm that carefully combines partitions to
improve the efficiency of the mining procedure.

Our experiments examined the impact of several
parameters through the use of synthetic data and
two characteristic real data sets. The results clearly
show the superiority of the proposed method
against existing algorithms. In summary, the pro-
posed method overcomes the problems caused by
the combination of a large domain and a large
number of transactions. These problems are the
significant increase in CPU cost and possible I/O
thrashing, which impact existing algorithms.

There are some interesting points of future work
that can be examined. The first one is to diverge
from the classic problem of mining all association
rules with respect to minimum support and con-
fidence, and to consider the mining of local pattern
within each group of the domain. This way there
will be no need to use relatively low support
thresholds. Instead, we could discover strong
patterns within each group. Another direction we
could follow is to consider data sets where items are
organized into groups with in-between connections
that present scale-free properties. That is, some
groups act like hubs and make difficult the
separation of the others. Towards this direction,
we have started implementing an algorithm that
finds partitions with items shared with other
partitions. The goal is to include in a partition as
few shared items as possible, by categorizing items
according to their degree of connectivity.

References

[1] R. Aggrawal, T. Imielinski, A. Swami, Mining association

rules between sets of items in very large databases, in:

Proceedings of the ACM SIGMOD Conference, 1993,

pp. 207–216.

[2] J. Hipp, U. Guntzer, G. Nakhaeizadeh, Algorithms for

association rules mining—a general survey and comparison,

SIGKDD Explor. 2 (1) (2000) 58–64.



ARTICLE IN PRESS
A. Nanopoulos et al. / Information Systems 32 (2007) 649–669 669
[3] P. Bradley, J. Gehrke, R. Ramakrishnan, R. Srikant, Scaling

mining algorithms to large databases, Commun. ACM 45 (8)

(2002) 38–43.

[4] D. Watts, S. Strogatz, Collective dynamics of small-world

networks, Nature 363 (1998) 202–204.

[5] F. Pan, G. Cong, A.K.H. Tung, Carpenter: finding closed

patterns in long biological datasets, in: Proceedings of the

SIGKDD Conference, 2003.

[6] F. Pan, A.K.H. Tung, G. Cong, X. Xu, Cobbler: combin-

ing column and row enumeration for closed pattern

discovery, in: Proceedings of the SSDBM Symposium,

2004, pp. 21–30.

[7] R. Agrawal, R. Srikant, Fast algorithms mining association

rules in large databases, Technical Report RJ 9839, IBM

Almaden Research Center, San Jose, CA, 1994.

[8] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns

without candidate generation: a frequent-pattern tree

approach, Data Min. Knowl. Discovery 8 (2004) 53–87.

[9] M.J. Zaki, Scalable algorithms for association mining, IEEE

Trans. Knowl. Data Eng. 12 (3) (2000) 372–390.

[10] A. Savasere, E. Omiecinski, S. Navathe, An effi-

cient algorithm for mining association rules in large

databases, in: Proceedings of the VLDB Conference, 1995,

pp. 432–444.

[11] B. Goethals, M. Zaki, Advances in frequent itemset mining

implementations: introduction to FIMI03, in: Proceedings

of the FIMI Workshop, 2003.

[12] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I.

Verkamo, Fast discovery of association rules, in: Advan-

ces in Knowledge Discovery and Data Mining, 1996,

pp. 307–328.

[13] J.S. Park, M.-S. Chen, P. Yu, Using a hash-based method

with transaction trimming for mining association rules,

IEEE Trans. Knowl. Data Eng. 9 (5) (1997) 813–825.

[14] R. Srikant, R. Aggrawal, Mining generalized association

rules, in: Proceedings of the VLDB Conference, 1995,

pp. 407–419.

[15] R. Agarwal, C. Aggarwal, V.V. Prasad, A tree projection

algorithm for generation of frequent itemsets, J. Parallel

Distrib. Comput. 61 (2001) 350–371.
[16] D. Burdick, M. Calimlim, J. Gehrke, Mafia: a maximal

frequent itemset algorithm for transactional databases, in:

Proceedings of the ICDE Conference, 2001, pp. 443–452.

[17] B. Goethals, Memory issues in frequent itemset mining, in:

Proceedings of the SAC Symposium, 2004, pp. 530–534.

[18] A. Nanopoulos, Y. Manolopoulos, Memory-adaptive asso-

ciation rules mining, Inf. Syst. 29 (5) (2004) 365–384.

[19] M. Zaki, C. Hsiao, Charm: an efficient algorithm for closed

association rule mining, in: Proceedings of the SDM

Conference, 2002.

[20] J. Wang, J. Han, J. Pei, Closet+: searching for the best

strategies for mining frequent closed itemsets, in: Proceed-

ings of the KDD Conference, 2003, pp. 236–245.

[21] R. Agrawal, S. Sarawagi, S. Thomas, Integrating association

rule mining with databases: alternatives and implications,

in: Proceedings of the SIGMOD Conference, 1998,

pp. 343–354.

[22] G. Cong, A.K.H. Tung, X. Xu, F. Pan, J. Yang, Farmer:

finding interesting rule groups in microarray datasets,

in: Proceedings of the SIGMOD Conference, 2004,

pp. 143–154.

[23] X.-R. Jiang, L. Gruenwald, Microarray gene expression data

association rules mining based on BSC-tree and FIS-tree,

Data Knowl. Eng. 53 (1) (2005) 3–29.

[24] C. Aggarwal, C. Procopiuc, P. Yu, Finding localized

associations in market basket data, IEEE Trans. Knowl.

Data Eng. 14 (1) (2002) 51–62.

[25] Y.-J. Tsay, Y.-W. Chang-Chien, An efficient cluster and

decomposition algorithm for mining association rules, Inf.

Sci. 160 (2004) 161–171.

[26] G. Lee, K.L. Lee, A.L. Chen, Efficient graph-based

algorithms for discovering and maintaining association rules

in large databases, Knowl. Inf. Syst. 3 (3) (2001) 338–355.

[27] S.-J. Yen, A.L. Chen, A graph-based approach for

discovering various types of association rules, IEEE Trans.

Knowl. Data Eng. 13 (5) (2001) 839–845.

[28] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

Algorithms, The MIT Press, Cambridge, MA, 1990.

[29] B. Salzberg, Merging sorted runs using large main memory,

Acta Inf. 27 (3) (1989) 195–215.


	Mining association rules in very large clustered domains
	Introduction
	Motivation
	Contribution

	Related work
	Correlation-based groups of items
	Partitioning the domain
	A direct approach
	Proposed partitioning method
	Graph structure
	Partitioning algorithm


	Mining the partitions
	Performance results
	Experimental setup
	Comparison with FP-growth
	Varying the support threshold
	Varying the number of items
	Varying the number of transactions
	Varying the transaction size
	Comparison for real data sets

	Comparison with other algorithms
	Sensitivity of PBM
	Estimating the number of disjoint partitions

	Non-well-separated partitions
	Conclusion
	References


