Continuous Outlier Detection in Data Streams:
An Extensible Framework and State-Of-The-Art Algorithms

D. Georgiadis
Aristotle University
Thessaloniki, Greece
dkgeorgi@csd.auth.gr

A. N. Papadopoulos
Aristotle University
Thessaloniki, Greece

papadopo@csd.auth.gr

ABSTRACT

Anomaly detection is an important data mining task, aiming
at the discovery of elements that show significant diversion
from the expected behavior; such elements are termed as
outliers. One of the most widely employed criteria for de-
termining whether an element is an outlier is based on the
number of neighboring elements within a fixed distance (R),
against a fixed threshold (k). Such outliers are referred to as
distance-based outliers and are the focus of this work. In this
demo, we show both an extendible framework for outlier de-
tection algorithms and specific outlier detection algorithms
for the demanding case where outlier detection is continu-
ously performed over a data stream. More specifically: i)
first we demonstrate a novel flavor of an open-source pub-
licly available tool for Massive Online Analysis (MOA) that
is endowed with capabilities to encapsulate algorithms that
continuously detect outliers and ii) second, we present four
online outlier detection algorithms. Two of these algorithms
have been designed by the authors of this demo, with a view
to improving on key aspects related to outlier mining, such
as running time, flexibility and space requirements.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
data mining

General Terms

Algorithms, Performance

Keywords

outlier detection, continuous processing, data streams, met-
ric space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD ’13 New York, USA

Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

M. Kontaki
Aristotle University
Thessaloniki, Greece
kontaki@csd.auth.gr

K. Tsichlas
Aristotle University
Thessaloniki, Greece
tsichlas@csd.auth.gr

A. Gounaris
Aristotle University
Thessaloniki, Greece
gounaria@csd.auth.gr

Y. Manolopoulos
Aristotle University
Thessaloniki, Greece
manolopo@csd.auth.gr

1. INTRODUCTION

Outlier mining is considered an important task in many
applications, such as fraud detection, plagiarism, computer
network management, event detection (e.g., in sensor net-
works), to name a few. An object is characterized as outlier
if it does not show the expected behavior, which means that
it corresponds either to noise or to important knowledge.
In both cases, these deviating objects must be detected and
reported.

In this work, we focus on distance-based outliers [6], where
objects belong to a metric space, and, thus, the distance
function used satisfies the triangular inequality. According
to this definition, an object x is marked as outlier, if there
are less than k objects located at a distance at most R from
z. Figure 1 illustrates an example, where object b is an
outlier for k=3, since there are less than 3 objects in the
R-neighborhood of b. The rest of the objects are marked
as inliers, because there are at least 3 objects in their R-
neighborhood.

Figure 1: Distance-based outlier example for £=3.

We are interested in outlier detection over data streams
[1], where new objects are continuously arrive whereas old
ones expire. We follow the count-based sliding window ap-
proach, where each time a new object arrives the oldest
one expires, thus, keeping the set of active objects constant.
The set of active objects is organized by means of a metric-
based access method, e.g., an M-tree [5], to facilitate effi-
cient range query processing; range query processing is the
main approach to computing the number of objects in the
R-neighborhood of an object.

Mining data streams is more challenging than mining a
static set of objects, mainly because of the dynamic nature
of the objects. In our case, an object may change its status
through its lifetime. For example, an object x that is an

outlier at time ¢; may lose this property at time t2 and
become and inlier. Evidently, there may be objects that
retain the same state (either inlier or outlier) from the time
they become active until the time they expire.

The goal of this demonstration is two -fold:

1. to perform a comparison of the state-of-the-art algo-

rithms for continuous outlier detection over data streams

using the sliding window approach, and

2. to implement these algorithms in the MOA system [3],
thus extending its capabilities further, beyond classi-
fication and clustering tasks which are currently sup-
ported.

There are four algorithms that have been implemented and
compared: STORM [2], Abstract-C [8], COD [7] and MCOD
[7]. We note that algorithms COD and MCOD have been
designed by the authors of this demonstration and they are
studied in detail in [7]. The rest of the work is organized as
follows. In the next section we describe briefly the extensions
that we performed in MOA toward supporting continuous
outlier detection. Section 3 presents the algorithms under
study, whereas Section 4 describes the demonstration sce-
narios that will be considered. Finally, Section 5 concludes
the work and discusses briefly some future directions.

2. EXTENDING THE MOA FRAMEWORK

MOA is an open source, publicly available! data mining
tool that builds upon the work in WEKA? [3]. Tts main
purpose is to provide an easily extensible framework for im-
plementing, evaluating and benchmarking classification and
clustering algorithms tailored to streaming scenarios. The
MOA system architecture revolves around a three-phase set-
ting process that is common to any data mining task: i) first,
a data stream is defined and configured; ii) second, the clas-
sification or clustering algorithm is selected and configured;
and iii) finally, the evaluation method or measure is chosen.
After this setup, which also includes the definition of the
size of the sliding window, streaming data mining tasks are
ready to run and produce results. Each of the above three
phases is extensible.

The data mining tasks currently supported by MOA in-
clude stream classification and clustering. Although there
exist clustering algorithms that are capable of producing
the set of outliers as a by-product (e.g., [4]), MOA does not
currently support stream outlier detection as a stand-alone
function. Our extensions aim to fill this gap. We started
by creating a new tab in the tool that is devoted to out-
lier detection going beyond the suggested MOA extensibility
points. We largely built upon the code for the clustering tab
and we created a new package, namely moa.gui.outliertab,
as shown in Figures 2 and 3. This is the first step towards
rendering outlier detection a first class citizen in MOA.

The second phase in the extensions aimed to allow for uni-
form implementation of stream outlier detection algorithms.
Again, we tried to reuse the code in clustering to the largest
possible extent. Outlier detection algorithms inherit an ab-
stract class called MyBaseOutlierDetector, which extends
AbstractClusterer. According to that, each outlier detec-
tion algorithm basically implements three methods:

from http://moa.cs.waikato.ac.nz/
’http://www.cs.waikato.ac.nz/ml/weka/

Classfication | Clustering | Octiers

Setup | Visualzation

BEIE

Wisualsation Speed
L 2 LT 2
. . & . . i
. . . . °
. 2 . . 2 .
®e *e
.t e o R -t
. * A o S . .
. o, (3 [N [N
.
. >
© D - . . Dim1: 0,277
. "y Dim2: 0,287
. . ° ‘ . id: 3116

count_after: 45

Inn_before|: 4

21,0

. . - —
e ® s
. .
. .
. ¢ . L4
© . . © . .
.. .
. .
Evaluation
Process time per abject

0 5000

10000 15000 20000

25000 30000 35000

Figure 2: The new outlier functionality in MOA.

B 110A Graphical User Interface.
Classification | Clustering |} Outiers
Setup | visualization
Outlier Detection Algorithm Setup
Stream RandomREBFGeneratorEvents -n
Algorithen! | AbstractC. AbstractC

Algorithmz | SimpleCOD. SimpleCOD

Algorithm 1,
Algorithu 0,
Algorithu 1,
Algorithu 0,
Algorithu 1,
Algorithu 0,
Algorithu 1,
Algorithu 0,
Algorithm 1,
Algorithm o,
Algorithu 1,
Algorithu 0,
Algorithu 1,
Algorithu 0,
Algorithu 1,
Algorithu 0,
Algorithm 1,
Algorithm o,
Algorithu 1,

process time per chject (me): 0,292
process time per cbject (ms): 1,817
process time per cbject (ms): 0,433
process time per object (msi: 3,064
process time per cbject (msh: 0,758
process time per cbiect (us): 4,373
process time per cbiect (us): 1,367
process time per chiect (ms): 6,473
process time per chject (me): 2,334
process time per chject (ms): 7,781
process time per cbject (ms): 3,133
process time per object (msi: 9,314
process time per cbject (msh: 4,195
process time per object (msh: 12,758
process time per cbject (us): §,813
process time per chject (ms): 14,247
process time per chject (me): 8,572
process time per chject (ms): 17,334
process time per cbject (ms): 9,338

EBX

Algorithul Statistics:
Todes always inlier: 513 (91,3%)

Todes always outlier: 87 (8,75)

Hodes both inlier and outlier: 0 (0,0%)
(sum: Lo00)

Export a5 bt file. .

Figure 3: Detailed statistics gathering screenshot.

e void Init(), which initializes the algorithm;

e void ProcessNewStreamObj(Instance inst) , which adds
a new object in the current window and, if the window
is full, it discards the oldest object?;

e Vector< Outlier> getOutliersResult(), which returns the
current set of outliers either for visualization or for
evaluation.

In Section 3, we discuss more thoroughly the exact state-of-
the-art algorithms that have already been implemented.

In the final step, we extended the moa.gui.visualization
package for visualizing outliers. The visualization extensions
are responsible for drawing outliers and inliers in different

3 At the moment, the implementation considers only count-
based sliding windows.

colors and to support mouse click events on outliers so that
they report the number of preceding and succeeding neigh-
bors (see Figure 2). Moreover, the system is capable of
reporting performance statistics related to the evolving av-
erage processing time per data object and the number of
objects that have been outliers or inliers throughout their
lifetime, or have changes status at some point in their life-
time (see bottom panel in Figure 2 and Figure 3).

3. ALGORITHMICS

Continuous outlier detection is a special class of steam
data mining. Typically, stream data mining algorithms as-
sume that each object is inspected at most once. However, in
continuous outlier detection we need to be capable of report-
ing, at each time point, the outliers among all the objects
in the current sliding window. This entails that we need to
continuously inspect each object that has not expired (ei-
ther directly or indirectly) rather than inspecting it only
once (e.g., when it arrives). The reason is that an object
may change its outlierness status during its lifetime. This
characteristic aggravates the need for high time and space
efficiency.

The criteria according to which an object is classified as
an outlier may vary across different techniques. In this work,
we focus on distance-based outliers, which capture a broad
range of scenarios: Given two parameters, R > 0 and k > 0,
a distance-based outlier is every object that has less than k
neighbors in distance at most equal to R [6]. Moreover, we
are mostly interested in exact algorithms. In the sequel, we
will briefly describe four distance-based continuous outlier
algorithms that we are also going to demonstrate. We will
present them in chronological order of their first proposal.

3.1 STORM and Abstract-C

A naive solution to the problem of continuous detection of
distance-based outliers over windowed data streams would
involve keeping for each object the complete set of its neigh-
bors. Clearly, such an approach is characterized by quadratic
space requirements in the worst case; as such, it is practically
infeasible for large windows. Two more efficient approaches
to this problem are as follows. According to STORM [2],
for each object p, it is sufficient to keep at most k preceding
neighbors and just the number of its succeeding neighbors to
detect the distance-based outliers for specific R and k. Fur-
thermore, for each new object, a range query with radius R is
executed to determine the new object’s neighbors, which are
then added to its list of preceding neighbors. Furthermore,
for each such neighbor, its number of succeeding neighbors
is increased by one. At any time instance, the approach
adopted by [2] to decide if an object p is an outlier involves
the computation of the objects in the list of preceding neigh-
bors that have not expired yet. This cost is O(logk), which
means that the cost for all objects is O(nlogk).

The Abstract-C approach in [8] reduces this cost to O(n),
as it continuously keeps the number of neighbors of an ob-
ject for all window slides until its expiration. Because of
that, the approach in [8] has worst case space requirements
O(n * windowsize), as it maintains as many counters for
each object as the window slides for which this object is ac-
tive. In the worst case, the space requirements can become
equal to O(nz), Moreover, each of these counters may be
updated multiple times before becoming obsolete. However,
[8] can answer queries with multiple values of k, and works

for both time-based and count-based sliding windows. The
extended version of MOA to be demonstrated supports the
two approaches mentioned above and, additionally, the ap-
proximate flavor of STORM.

3.2 COD and MCOD

COD and MCOD have been recently proposed by the au-
thors in order to combine the best of the time and space
complexities of STORM and Abstract-C, and also to signif-
icantly improve average case performance through the vast
reduction of the amount of the costly range queries per-
formed [7].

The improved efficiency of COD (Continuous Outlier De-
tection) stems from the adoption of an event-based approach.
Instead of checking each object continuously, the algorithm
computes the next time point in the future when, due to
object departures, an object may become an outlier and in-
spects an object only at that time point. In addition, a
priority queue structure is used to store objects. Such a
structure supports the detection of the objects that may
have become outliers in O(1) as explained in full detail in
[7]. The main difference from STORM is that the number of
objects needed to be examined in each slide is significantly
pruned. Also, compared to Abstract-C, it is faster and re-
quires less space. Moreover, in [7], it is also shown how
COD is adapted for multiquery cases, i.e., outliers accord-
ing to multiple values of R and k are detected concurrently,
yielding another algorithm called ACOD.

MCOD (Micro-cluster-based Continuous Outlier Detec-
tion) builds on top of COD and employs the same event
queue. Its distinctive characteristic is that it mitigates the
need to evaluate range queries for each new object with re-
spect to all other active objects, which is common in pro-
posals such as [8, 2]. The solution is based on the concept
of evolving micro-clusters that correspond to regions con-
taining inliers exclusively. Then the range queries for each
new object are performed with respect to the (fewer) micro-
cluster centers instead of the preceding active objects. In
realistic data with few outliers and dense regions, MCOD
exhibits the best performance. Both COD and MCOD have
been re-engineered and incorporated in the extended MOA.

In summary, the approach in [2] has acceptable memory
requirements (O(kn)), negligible time requirements to up-
date the information for each existing object due to the ar-
rival of new objects and the expiration of old objects (O(1)
for each new object), and significant time requirements to
produce outliers (O(nlogk)). On the other hand, the ap-
proach in [8] has high memory requirements O (nxwindowsize),
high runtime requirements to update existing information
due to changes in the window population (O(n*windowsize)
per new object), and low time requirements to produce the
actual outliers (O(n)). In addition, both approaches require
a range query with regard to all current objects for each new
object’s arrival. COD and MCOD have O(n) space require-
ments and they are faster than the exact algorithms of both
[2] and [8].

4. DEMONSTRATION SCENARIOS

The demonstration of continuous outlier detection algo-
rithms will be performed using MOA’s visualization func-
tionality. We focus on two different aspects of continuous
outlier detection: i) the exploration of the outlier and inlier
evolution and ii) the performance comparison among the

‘ % o .

\. L

. .

. . .
.

. . LY »

- = . -
.
% .
o
. ¢ SN . .
- N .
. . &l .
? . - K ’.!
. . -
outlier inlier *
.
.
% . e
. <
. . "
.

(a) arrival of a new object

(b) the object becomes an outlier

(c) the object becomes an inlier

Figure 4: Example of outlier evolution.

implemented algorithms. The demonstration will be based
on both synthetic as well as on real-world data sets with
different characteristics.

4.1 Exploring Data Evolution

This part of the demonstration involves the exploration
of data streams with respect to outliers and their evolution.
In this part, we will demonstrate visually the way objects
change their status (from inlier to outlier and vice versa)
during their lifetime inside the sliding window.

An example is illustrated in Figure 4, where in 4(a) a new
object is inserted and become an inlier, in 4(b) the same
object becomes an outlier due to object expiration in its R-
neighborhood and finally in 4(c) the object becomes again an
inlier due to the arrival of new objects in its R-neighborhood.
Evidently, by setting different values for the parameters k
and R the outliers change accordingly, and we are able to
spot the timestamps that these changes took place.

4.2 Comparison of Algorithms

In the second part of the demonstration, we will show
a performance comparison among the implemented algo-
rithms. In particular, first we will show: i) how STORM
compares to Abstract-C, ii) how Abstract-C compares to
COD and MCOD and iii) how COD compares to MCOD.
The MOA framework, supports pairwise comparison of algo-
rithms, which is a very useful feature. Each time an update
takes place, i.e., an arrival followed by an expiration, the
time required to handle this update is monitored and online
aggregate statistics are continuously displayed as also shown
in Figure 3. At the end of execution a summary is displayed
containing important information related to the efficiency
of the compared algorithms such as the runtime, the num-
ber of range queries executed and the maximum amount of
allocated memory.

5. CONCLUSIONS AND FUTURE WORK

In this demonstration, we study the problem of outlier
detection over a data stream. In particular, we describe
four online algorithms that currently are at the state-of-the-
art in the topic. We have implemented these algorithms in
the MOA framework, after having extended its functionality
with outlier detection capabilities. By using the visualiza-
tion functionality of MOA we were able to illustrate the

output of the algorithms in an intuitive and clear way. We
will offer the implemented outlier extensions to the MOA
community. In addition, we plan to evaluate density-based
outlier detection algorithms over data streams and extend
MOA accordingly.

Another important issue for further investigation is the
ability to visualize data streams in any metric space. Cur-
rently, only multidimensional data sets are supported (in
particular, 2D data sets) due to visualization limitations.
The challenge is to integrate into MOA effective visualiza-
tion of general metric spaces.

6. REFERENCES

[1] C. C. Aggarwal, editor. Data Streams - Models and
Algorithms, volume 31 of Advances in Database
Systems. Springer, 2007.

F. Angiulli and F. Fassetti. Distance-based outlier

queries in data streams: the novel task and algorithms.

Data Mining and Knowledge Discovery, 20(2):290-324,

2010.

[3] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen,

H. Kremer, T. Jansen, and T. Seidl. Moa: Massive
online analysis, a framework for stream classification
and clustering. Journal of Machine Learning Research -
Proceedings Track, 11:44-50, 2010.

[4] F. Cao, M. Ester, W. Qian, and A. Zhou.
Density-based clustering over an evolving data stream
with noise. In SDM, 2006.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In VLDB Conference, pages 426—435, 1997.

[6] E. Knorr and R. Ng. Algorithms for mining

distance-based outliers in large data sets. In VLDDB,

1998.

M. Kontaki, A. Gounaris, A. N. Papadopoulos,

K. Tsichlas, and Y. Manolopoulos. Continuous

monitoring of distance-based outliers over data streams.

In ICDE, pages 135-146, 2011.

[8] D. Yang, E. Rundensteiner, and M. Ward.
Neighbor-based pattern detection for windows over
streaming data. In EDBT, pages 529-540, 2009.

2

[7

