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Abstract. This paper is about action computation tree logic (ACTL), a propo-
sitional branching-time temporal logic very suitable for specifying properties of
concurrent systems described with processes. A new variant of ACTL is in-
troduced, which is based on temporal operators until and unless, whereas all
other temporal operators are derived from them. A fixed point characterisation
usable for global model checking with the ability of witnesses and counterexam-
ples generation is shown. The relationship of the new ACTL with CTL and the
classical ACTL is discussed.
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1 Introduction

Many temporal logics have been developed for expressing properties of CCS-like pro-
cesses. In 1985, M. Hennessy and R. Milner introduced a simple modal logic called
process logic (nowadays known as HML — Hennessy-Milner logic) and proved that it
can provide a characterisation of strong equivalence [1]. In 1989, C. Stirling proposed
a variant of HML, which is adequate with respect to observational equivalence [2]. In
1990, R. De Nicola and F. Vaandrager defined HMLU, another variant of HML, which
includes indexed until operators and is adequate with respect to branching bisimulation
equivalence [3]. In the same year, the same authors also introduced action computa-
tion tree logic (ACTL), an action-based branching time logic, which is interpreted over
transition-labelled structures and is capable of expressing properties about sequences
of executed actions [4, 5]. ACTL has all the nice characteristics of CTL [6], a popular
temporal logic interpreted over Kripke structures, including the feasibility of efficient
model checking. In the definition of ACTL, a distinction was made between internal
actions and visible actions. The given semantics includes indexed temporal operators
X and U, which allowed a derivation of others. In 1993, R. De Nicola et al. gave some
additional notes on ACTL and proposed it as a general framework for verifying prop-
erties in process algebrae [7]. They also showed how to exploit a CTL model checker
for ACTL model checking.

ACTL is successfully integrated in some verification tools. In [8], M. Ferrero and M.

Cusinato describe an effective BDD-based ACTL model checker Severo. The proposed
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approach slightly differs from the one of De Nicola et al. since invisible actions are
treated equally to visible actions. In [9], R. Mateescu reports on successful verification
of a bounded retransmission protocol by using ACTL and Lotos. Only a fragment of
ACTL is used. ACTL was implemented in functional programming language XTL and
the verification was performed by checking given properties with the XTL prototype
model checker, which is a part of the CADP toolbox [10]. In [11], A. Bouali, S. Gnesi, and
S. Larosa introduce verification environment JACK, which includes the ACTL model
checker AMC encoded by G. Ferro. AMC is capable of generating counterexamples but
unfortunately, it is also reported to be pretty limited in size of verification problems
due to an explicit representation of the state space. As A. Fantechi et al. report in
[12], this work has been later extended with SAM, a symbolic model checker for µ-
ACTL [13], which is an extension of ACTL with fixed point operators. The JACK
environment was successfully used in a couple of projects, e.g. in verification of a
railway signalling system design [14, 15]. There are two other ACTL approaches known
to us. In [16], C. A. Middelburg describes a first-order version of ACTL∗ for reasoning
about telecommunication services and features described with SDL. In [17], P. Asirelli

and S. Gnesi report about using an ACTL model checker implemented in Prolog in a
deductive database management system Gedblog.

The model checkers used in projects involving ACTL are of very different types.
Severo and AMC are special-purpose ACTL model checkers written from the scratch. In
other approaches, ACTL formulae are transformed either into another type of temporal
logic or into special programming languages. In the first case, the modal µ-calculus
[18, 19] is of considerable importance because of its expressiveness. In the second case,
interpreters are used to carry out verification. An example of such an approach is
SAM, integrated in the JACK environment, where ACTL formulae are transformed
into programming language BSP.

This paper introduces a new, enriched variant of ACTL, which is based on temporal
operators until (U) and unless (W), whereas all other temporal operators are derived
from them. We call it ACTL with unless operator. In the literature, temporal operator
W is also known as weak until and has not been introduced in ACTL. All formulae of
ACTL can be rendered by the ACTL with unless operator whereas the opposite is not
true.

The paper is further organised as follows. In Section 2 we give the syntax and se-
mantics of the ACTL with unless operator. The proposed semantics covers finite and
infinite fullpaths. We also give useful abbreviations and BNF-style syntactic rules for
implementation of a comprehensible formulae parser. The section is concluded with
a comparison between CTL and ACTL with unless operator. Section 3 is on the im-
plementation aspects of model checking using ACTL with unless operator. Two fixed
point characterisations of operators are given. In the second one, the formulae are trans-
formed to contain only operators EU, EG, AW, and AF. This enables an effective
generation of witnesses and counterexamples. In discussion in Section 4, we describe
the relationship between the ACTL with unless operator and the ACTL studied ear-
lier. We give three interesting properties which cannot be expressed with the ACTL
proposed in [4], but they can be expressed using the ACTL with unless operator. In
the conclusion we give some remarks and list directions for further work.
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2 Action Computation Tree Logic with unless operator

The ACTL with unless operator is a propositional branching time temporal logic in-
terpreted over labelled transition systems (LTSs). In this section, we introduce and
discuss this new variant of action computation tree logic. For simplicity, we refer to it
as ACTL.

Definition 1 (Labelled Transition System): A labelled transition system (LTS) is
a 4-tuple L = (S,Aτ , δ, s0) where:

– S is a non-empty set of states;
– Aτ is a finite, non-empty set of actions containing visible actions and silent action

τ not visible to an external observer;
– δ ⊆ S ×Aτ × S is the transition relation;
– s0 is the initial state.

Set of actions Aτ will be called an alphabet of the LTS. In comparison to [4], silent
action τ is here defined to be in the alphabet. An element (p, α, q) ∈ δ is called an α-
transition or shortly a transition from state p to state q. τ -transition is called internal

transition. If there exists an α-transition from a given state, we say that in this state
the LTS can perform α-transition or that it can perform action α. A state is called a
deadlocked state iff there are no transitions from that state. The set of all deadlocked
states in S will be denoted with Sdead . Let L = (S,Aτ , δ, s0) be an LTS. A sequence of
transitions (p0, a1, p1), (p1, a2, p2), ... where ∀i≥ 0 . (pi, ai+1, pi+1) ∈ δ is called a path

in L. Moreover, pi and ai are called the i-th state and the i-th action on this path,
respectively, and the transition ending in the i-th state is called the i-th transition on
this path. We will also use notations st(π, i) and act(π, i) for identification of particular
states and transitions on paths (Fig. 1):

– st(π, 0) is the first state on the path π,
– st(π, i) is a state reached after the i-th transition on the path π (i≥1),
– act(π, i) is an action executed during the i-th transition on the path π (i≥1).

act(π,1)

st(π,2)

act(π,2) act(π,3)

...

st(π,0) st(π,1)

Fig. 1. A path π in an LTS

A sequence of transitions starting and ending in the same state is called a cycle.
If a path is infinite or ends in a deadlocked state, it is called an infinite fullpath or a
finite fullpath, respectively. The empty fullpath is a finite fullpath with one state and no
transitions. The number of transitions in finite fullpath π will be denoted with len(π).
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An ACTL formula may include constants true and false, action variables α∈Aτ ,
standard Boolean operators ¬,∧,∨,=⇒, ⇔, path quantifiers E (“there exists a path”)
and A (“for all paths”), and temporal operators U (“until”), W (“unless” or “weak
until”), X (“for the next transition”), F (“for some transition in the future”), and
G (“for all transitions in the future”). The formal definition of ACTL syntax and
semantics includes constant true, Boolean operators ¬ and ∧, and temporal operators
U and W. Other Boolean and temporal operators are derived from them, whereas
constant false = ¬true.

Definition 2 (ACTL syntax): Let α be a visible action or silent action τ . Then,
χ, ϕ, and γ are action formula, state formula (also called ACTL formula), and path

formula, respectively, iff they meet the following syntactic rules:

χ ::= true | α | ¬χ | χ ∧ χ′

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ′ | E γ | A γ

γ ::= [ϕ{χ} U {χ′}ϕ′] | [ϕ{χ} W {χ′}ϕ′]

Definition 3 (ACTL semantics): Let L = (S,Aτ , δ, s0) be an LTS and α ∈ Aτ .
Satisfaction of action formula χ by an action a∈Aτ (written a |=χ), state formula ϕ
by a state p∈S (written p |=ϕ), path formula γ by a finite fullpath π (written π |=γ),
and path formula γ by an infinite fullpath σ (written σ |= γ) in an LTS L is given
inductively by the following semantic rules:

a |= true always
a |= α iff a = α
a |= ¬χ iff a 6|= χ
a |= χ ∧ χ′ iff a |= χ ∧ a |= χ′

p |= true always
p |= ¬ϕ iff p 6|= ϕ
p |= ϕ ∧ ϕ′ iff p |= ϕ ∧ p |= ϕ′

p |= E γ iff there exists a finite fullpath π where: p=st(π, 0) ∧ π |=γ
or there exists an infinite fullpath σ where: p=st(σ, 0) ∧ σ |=γ

p |= A γ iff for all finite fullpaths π: p=st(π, 0) =⇒ π |=γ
and for all infinite fullpaths σ: p=st(σ, 0) =⇒ σ |=γ

π |= [ϕ{χ} U {χ′}ϕ′] iff st(π, 0) |=ϕ ∧ ∃ i∈ [1, len(π)] . (
act(π, i) |=χ′ ∧ st(π, i) |=ϕ′ ∧
∀j∈ [1, i−1]. (act(π, j) |=χ ∧ st(π, j) |=ϕ))

π |= [ϕ{χ} W {χ′}ϕ′] iff π |= [ϕ{χ} U {χ′}ϕ′] or st(π, 0) |=ϕ ∧
∀i∈ [1, len(π) ] . (act(π, i) |=χ ∧ st(π, i) |=ϕ)

σ |= [ϕ{χ} U {χ′}ϕ′] iff st(σ, 0) |=ϕ ∧ ∃i≥1. (
act(σ, i) |=χ′ ∧ st(σ, i) |=ϕ′ ∧
∀j∈ [1, i−1]. (act(σ, j) |=χ ∧ st(σ, j) |=ϕ))

σ |= [ϕ{χ} W {χ′}ϕ′] iff σ |= [ϕ{χ} U {χ′}ϕ′] or st(σ, 0) |=ϕ ∧
∀i≥1 . (act(σ, i) |=χ ∧ st(σ, i) |=ϕ)
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A state p where ACTL formula ϕ holds is called ϕ-state and a transition (p, a, q)
where action formula χ holds for action a is called χ-transition. A χ-transition (p, a, q)
where ACTL formula ϕ holds in state q is called (χ, ϕ)-transition. Further, we will also
use the following notation:

– Sϕ ⊆ S denotes the set of all ϕ-states from S and S¬ϕ ⊆ S denotes the set of all
states from S which are not ϕ-states;

– δχ⊆δ denotes the set of all χ-transitions from δ and δ¬χ⊆δ denotes the set of all
transitions from δ which are not χ-transitions;

– δ(χ,ϕ)⊆δ denotes the set of all (χ, ϕ)-transitions from δ and δ¬(χ,ϕ)⊆δ denotes the
set of all transitions from δ which are not (χ, ϕ)-transitions.

In ACTL formulae, each temporal operator is immediately preceded by a path
quantifier forming thus an ACTL operator. The meaning of ACTL operators EU, AU,
EW, and AW is given in Definition 3. ACTL operators EX, AX, EF, AF, EG and
AG can be derived from them:

EX{χ} ϕ = E[true {false} U {χ} ϕ]

EF{χ} ϕ = E[true {true} U {χ} ϕ]

EG ϕ{χ} = E[ϕ {χ} W {false} false]

AX{χ} ϕ = A[true {false} U {χ} ϕ]

AF{χ} ϕ = A[true {true} U {χ} ϕ]

AG ϕ{χ} = A[ϕ {χ} W {false} false]

An informal explanation of ACTL formulae may be helpful. Path quantifier E re-
quires that the property expressed by the path formula is satisfied for at least one
fullpath starting in the given state. On the other hand, path quantifier A requires that
the property expressed by the path formula is satisfied for all fullpaths starting in the
given state. The meaning of the temporal operators can be explained as follows:

– X{χ} ϕ is satisfied on a fullpath iff its first transition is a (χ, ϕ)-transition.

– F{χ} ϕ is satisfied on a fullpath iff there exists a (χ, ϕ)-transition on it.

– Gϕ{χ} is satisfied on a fullpath iff the ACTL formula ϕ holds in its first state and
the fullpath is an empty fullpath or all transitions on it are (χ, ϕ)-transitions.

– [ϕ {χ} U {χ′} ϕ′] is satisfied on a fullpath iff the ACTL formula ϕ holds in its
first state and the fullpath consists of a finite and possibly empty sequence of
(χ, ϕ)-transitions followed by a (χ′, ϕ′)-transition.

– [ϕ {χ}W {χ′} ϕ′] is satisfied on a fullpath iff formula [ϕ {χ}U {χ′} ϕ′] is satisfied
on it or formula G ϕ{χ} is satisfied on it.

There are some trivial cases for evaluating ACTL formulae. In a deadlocked state,
formulae EG ϕ{χ}, AG ϕ{χ}, E [ϕ {χ} W {χ′} ϕ′], and A [ϕ {χ} W {χ′} ϕ′] hold
only if the state is a ϕ-state. Formulae EX {χ} ϕ, AX {χ} ϕ, EF {χ} ϕ, AF {χ} ϕ,
E [ϕ{χ}U{χ′}ϕ′], and A [ϕ{χ}U{χ′}ϕ′] do not hold in a deadlocked state. Moreover,
if there exists a finite fullpath starting in state p which is an empty fullpath or consists
only of (χ, ϕ)-transitions, then ACTL formulae E[ϕ{χ}W{χ′}ϕ′] and EGϕ{χ} hold in
state p whenever p is a ϕ-state. If there exists a finite fullpath starting in state p which
is an empty fullpath or consists only of transitions which are not (χ′, ϕ′)-transitions,
then ACTL formulae A [ϕ {χ} U {χ′} ϕ′] and AF{χ′} ϕ′ do not hold in state p.
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In many ACTL formulae the constant true can be omitted without introducing
ambiguities. For example:

E[true {χ} U {χ′} ϕ′] = E [{χ} U {χ′} ϕ′]

A[ϕ {true} U {true} ϕ′] = A [ϕ U ϕ′]

Despite many operators and abbreviations, a comprehensible parser can be easily
constructed. Moreover, patterns of ACTL formulae for expressing safety and liveness
properties are pretty simple and similar to CTL patterns. BNF-style rules in Fig. 2 rep-
resent the complete ACTL syntax as defined in this section, including derived Boolean
operators and derived ACTL operators and considering the proposed abbreviations.

<ACTL> ::= ’FALSE’ | ’TRUE’

<ACTL> ::= ’E’ ’[’ <LEFT> ’U’ <RIGHT> ’]’

<ACTL> ::= ’A’ ’[’ <LEFT> ’U’ <RIGHT> ’]’

<ACTL> ::= ’E’ ’[’ <LEFT> ’W’ <RIGHT> ’]’

<ACTL> ::= ’A’ ’[’ <LEFT> ’W’ <RIGHT> ’]’

<ACTL> ::= ’EX’ <RIGHT> | ’AX’ <RIGHT>

<ACTL> ::= ’EF’ <RIGHT> | ’AF’ <RIGHT>

<ACTL> ::= ’EG’ <LEFT> | ’AG’ <LEFT>

<ACTL> ::= ’(’ <ACTL> ’)’ | ’NOT’ <ACTL> |

<ACTL> ’AND’ <ACTL> | <ACTL> ’OR’ <ACTL> |

<ACTL> ’EQV’ <ACTL> | <ACTL> ’IMPL’ <ACTL>

<LEFT> ::= <ACTL> | <ACTL> ’{’ <ACTION> ’}’ | ’{’ <ACTION> ’}’

<RIGHT> ::= <ACTL> | ’{’ <ACTION> ’}’ <ACTL> | ’{’ <ACTION> ’}’

<ACTION> ::= ’FALSE’ | ’TRUE’ | ’TAU’ | visible_action

<ACTION> ::= ’(’ <ACTION> ’)’ | ’NOT’ <ACTION> |

<ACTION> ’AND’ <ACTION> | <ACTION> ’OR’ <ACTION> |

<ACTION> ’IMPL’ <ACTION> | <ACTION> ’EQV’ <ACTION>

Fig. 2. The syntactic rules for an effective ACTL formulae parser

The ACTL with unless operator is an action-based version of CTL. Although this
paper is not concerned with CTL, let us make some comparison, which will help the
reader understand similarities and differences in the meaning of CTL and ACTL formu-
lae. First of all, CTL is defined over Kripke structures, where all fullpaths are infinite.
We defined the ACTL with unless operator over LTSs where fullpaths can either be
infinite or end in a deadlocked state. This is not an essential difference between these
two logics because the meaning of CTL formulae over finite fullpaths can be defined,
too. Further in this comparison we will address only LTSs without deadlocked states.

The presented variant of ACTL contains until operator U and unless operator W.
Unless operator is not so common in CTL, but it can be introduced as follows:

E[ϕ W ϕ′] = ¬A[¬ϕ′ U (¬ϕ ∧ ¬ϕ′)]

A[ϕ W ϕ′] = ¬E[¬ϕ′ U (¬ϕ ∧ ¬ϕ′)]

An adequate set of temporal connectives for the given temporal logic is a subset of
the logic’s temporal connectives that is sufficient to express equivalents for all formulae.
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Considering only standard CTL operators, a minimal adequate set for CTL has 3
elements. One of them must be EX or AX, one of them must be EG, AF, or AU,
and finally, one of them must be EU [20, 21]. On the other hand, at least 4 elements
are neccessary in any adequate set for the ACTL with unless operator, because none
of its operators EU, AU, EW, and AW can be expressed with others three. It seems
that in comparison to CTL, the ACTL with unless operator needs one extra basic
connective and it is not clear, which one. But beware of jumping to conclusions since
their semantics are not compatible. The ACTL with unless operator uses strict until

operator [22, 23], from which temporal operator X can be derived. This is not possible
in CTL with standard reflexive operators. However, strict until U> and strict unless

W> operators, which ignore the first state on the path, can be introduced into CTL
as well:

E[ϕ U> ϕ′] = EX E[ϕ U ϕ′]

E[ϕ W> ϕ′] = EX E[ϕ W ϕ′]

A[ϕ U> ϕ′] = AX A[ϕ U ϕ′]

A[ϕ W> ϕ′] = AX A[ϕ W ϕ′]

Then, all the standard CTL operators can be expressed either using only EU> and
EW>, or using only EU> and AU>, as it is shown below. In the ACTL with unless

operator, none of this is possible. We may conclude that it needs twice as many different
temporal operators as CTL to express all different formulae.

EX ϕ = E[false U> ϕ]

EF ϕ = ϕ ∨ E[true U> ϕ]

EG ϕ = ϕ ∧ E[ϕ W> false]

E[ϕ U ϕ′] = ϕ′ ∨ (ϕ ∧ E[ϕ U> ϕ′])

AX ϕ = A[false U> ϕ]

AF ϕ = ϕ ∨ A[true U> ϕ]

AG ϕ = ϕ ∧ A[ϕ W> false]

A[ϕ U ϕ′] = ϕ′ ∨ (ϕ ∧ A[ϕ U> ϕ′])

3 ACTL Model Checking

ACTL model checking problem is to determine if the given ACTL formula is valid
in the given finite-state LTS, i.e. if it holds in its initial state. We will present two
approaches for global model checking based on fixed point calculation, similar to the
one devised for CTL model checking in [24]. With global model checking the evaluation
of a given ACTL formula includes the evaluation of all its subformulae. Such methods
also require the complete construction of the LTS before starting the verification.

The first method is derived directly from the definition of ACTL and it is imple-
mented by introducing auxiliary ACTL operators EX+ and AX+ [8]:

EX+[{χ} ϕ ∨ {χ′} ϕ′] = EX{χ} ϕ ∨ EX{χ′} ϕ′

AX+[{χ} ϕ ∨ {χ′} ϕ′] = ¬EX{¬χ ∧ ¬χ′} true ∧ ¬EX{true} (¬ϕ ∧ ¬ϕ′) ∧

¬EX{¬χ} ¬ϕ′ ∧ ¬EX{¬χ′} ¬ϕ

Let L = (S,Aτ , δ, s0) be a finite-state LTS. ACTL formula EX+[{χ} ϕ ∨ {χ′}ϕ′]
holds in a state p iff there exists either a (χ, ϕ)-transition or a (χ′, ϕ′)-transition from
state p. ACTL formula AX+[{χ}ϕ∨{χ′}ϕ′] holds in a state p iff each transition from
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state p is a (χ, ϕ)-transition or a (χ′, ϕ′)-transition. Let /ϕ/ denote the subset of states
in L where ACTL formula ϕ holds. The sets of states /EX+[{χ} ϕ ∨ {χ′}ϕ′]/ and
/AX+[{χ} ϕ ∨ {χ′}ϕ′]/ can be calculated using expressions 1 and 2, respectively.

/EX+[{χ} ϕ ∨ {χ′}ϕ′]/ = {q∈S | ∃a∈Aτ ∃q′∈S .

((q, a, q′) ∈ δ(χ,ϕ) ∨ (q, a, q′) ∈ δ(χ′,ϕ′))} (1)

/AX+[{χ} ϕ ∨ {χ′}ϕ′]/ = {q∈S | ∀a∈Aτ ∀q′∈S . (q, a, q′)∈δ =⇒

((q, a, q′) ∈ δ(χ,ϕ) ∨ (q, a, q′) ∈ δ(χ′,ϕ′))} (2)

Finally, let Z denote a set of states, ΦZ an ACTL formula which holds in a state s
iff s ∈ Z, and lfpZ. f(Z) and gfpZ. f(Z) the least fixed point and greatest fixed point
of function f(Z), respectively. The sets of those states in LTS L where basic ACTL
formulae with ACTL operators EU, AU, EW, and AW hold can be calculated as
stated in formulae 3, 4, 5, and 6.

/E[ϕ{χ}U{χ′}ϕ′]/ = lfpZ. (Sϕ ∩ /EX+[{χ′}ϕ′ ∨ {χ}ΦZ ]/) (3)

/A[ϕ{χ}U{χ′}ϕ′]/ = lfpZ. (Sϕ ∩ /AX+[{χ′}ϕ′ ∨ {χ}ΦZ ]/) (4)

/E[ϕ{χ} W {χ′}ϕ′]/ = gfpZ. (Sϕ ∩ (Sdead ∪ /EX+[{χ′}ϕ′ ∨ {χ}ΦZ ]/)) (5)

/A[ϕ{χ} W {χ′}ϕ′]/ = gfpZ. (Sϕ ∩ (Sdead ∪ /AX+[{χ′}ϕ′ ∨ {χ}ΦZ ]/)) (6)

A path showing that an ACTL formula is valid or not valid in the given finate-state
LTS is called a witness or a counterexample, respectively. For each ACTL formula, either
its validity or invalidity can be confirmed with a single path, but not both. The so far
proposed characterisation is not directly amenable to the generation of diagnostics, i.e.
witnesses and counterexamples. We propose a different approach, where a backward
global computation of validity of an ACTL formula can be followed by a forward
computation generating the diagnostic.

First of all, the ACTL formula to be evaluated is transformed to contain only ACTL
operators EU, EG, AW, and AF. This is always possible as ACTL operators EW
and AU can be expressed as follows:

E[ϕ{χ}W {χ′}ϕ′] = E[ϕ{χ}U {χ′}ϕ′] ∨ EG ϕ{χ}

A[ϕ{χ}U {χ′}ϕ′] = A[ϕ{χ}W {χ′}ϕ′] ∧ AF {χ′}ϕ′

Then, considering ideas from [25] and [26], ACTL model checking and diagnostics gen-
eration is implemented resolving each ACTL operator separately. Valid ACTL formulae
E[ϕ{χ}U {χ′}ϕ′] and EG ϕ{χ} have at least one witness and invalid ACTL formulae
A[ϕ{χ}W {χ′}ϕ′] and AF {χ′}ϕ′ have at least one counterexample.

Resolving ACTL operator EU: Let X(χ,ϕ,ϕ′,χ′) be the set of states calculated
by the fixed point formula 7:

X(χ,ϕ,ϕ′,χ′) = lfpZ . {q∈Sϕ | ∃a∈Aτ ∃q′∈S . (q, a, q′)∈δ(χ′,ϕ′) ∨

∃a∈Aτ ∃q′∈Z. (q, a, q′)∈δχ} (7)
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Then, X(χ,ϕ,ϕ′,χ′) is the set of all states where ACTL formula E[ϕ{χ}U {χ′}ϕ′]

holds. The least fixed point can be effectively determined by calculating the sequence
of sets of states X0

(χ,ϕ,ϕ′,χ′), X1
(χ,ϕ,ϕ′,χ′), ... where Xi

(χ,ϕ,ϕ′,χ′) ⊆ S is given as follows:

X0
(χ,ϕ,ϕ′,χ′) = {q∈Sϕ | ∃a∈Aτ ∃q′∈S . (q, a, q′)∈δ(χ′,ϕ′)} (8)

∀i > 0 : Xi
(χ,ϕ,ϕ′,χ′) = Xi−1

(χ,ϕ,ϕ′,χ′) ∪

{q∈Sϕ | ∃a∈Aτ ∃q′∈Xi−1
(χ,ϕ,ϕ′,χ′) . (q, a, q′)∈δχ} (9)

Suppose that ACTL formula E[ϕ{χ}U {χ′}ϕ′] holds in the initial state s0 and let

Xn
(χ,ϕ,ϕ′,χ′) be the first set in the sequence X0

(χ,ϕ,ϕ′,χ′), X1
(χ,ϕ,ϕ′,χ′), ... which contains

state s0. Then, a witness exists which is a finite path beginning in ϕ-state s0 and
consisting of a sequence of n (χ, ϕ)-transitions followed by a (χ′, ϕ′)-transition (see Fig.
3). To construct this witness, we start in state s0 and follow a path where ∀i∈ [1, n−

1] . si∈Xn−i
(χ,ϕ,ϕ′,χ′) \Xn−i−1

(χ,ϕ,ϕ′,χ′) , sn∈X0
(χ,ϕ,ϕ′,χ′) , ∀i∈ [0, n−1] . (si, ai+1, si+1)∈δ(χ,ϕ),

and (sn, an+1, sn+1)∈δ(χ′,ϕ′).

Xn

...

(χ, ϕ) (χ, ϕ) (χ′, ϕ′)(χ, ϕ) (χ, ϕ)

Xn−1 X1 X0

ϕ

s1s0 sn sn+1

Fig. 3. Resolving ACTL operator EU

Resolving ACTL operator EG: Let C(χ,ϕ) be the set of states calculated by the
fixed point formula 10:

C(χ,ϕ) = gfpZ. ({q∈Sϕ | q∈Sdead ∨ ∃a∈Aτ ∃q′∈Z. (q, a, q′)∈δ(χ,ϕ)}) (10)

Then, C(χ,ϕ) is the set of all states where ACTL formula EG ϕ{χ} holds.

Suppose that ACTL formula EG ϕ{χ} holds in the initial state s0. A witness is
trivial if s0 is a deadlocked ϕ-state. Otherwise, a witness exists which is a finite path
beginning in ϕ-state s0 consisting only of (χ, ϕ)-transitions and leading to a deadlocked
state or an infinite path beginning in ϕ-state s0 and consisting of a sequence of j
(χ, ϕ)-transitions followed by a cycle of n (χ, ϕ)-transitions (see Fig. 4). To construct
this witness, we start in state s0 and follow a path where ∀i∈ [0, j−1] . (si, ai+1, si+1)∈

δ(χ,ϕ) until a state appears which is on a cycle of (χ, ϕ)-transitions or the deadlocked

state is reached. Checking whether a state s∈C(χ,ϕ) is on a cycle of (χ, ϕ)-transitions

can be done by calculating a sequence of sets of states Y 0
(χ,ϕ)(s), Y 1

(χ,ϕ)(s), ... where

Y i
(χ,ϕ)(s) ⊆ S is given as follows:

Y 0
(χ,ϕ)(s) = {q∈C(χ,ϕ) | ∃a∈Aτ . (q, a, s)∈δ(χ,ϕ)} (11)
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∀i > 0 : Y i
(χ,ϕ)(s) = Y i−1

(χ,ϕ)(s) ∪

{q∈C(χ,ϕ) | ∃q′∈Y i−1
(χ,ϕ)(s) ∃a∈Aτ . (q, a, q′)∈δ(χ,ϕ)} (12)

The state s is on a cycle of n (χ, ϕ)-transitions if s∈Y n−1
(χ,ϕ)(s) \Y n−2

(χ,ϕ)(s).

Suppose that sj is the first state found to be on a cycle of (χ, ϕ)-transitions.
After reaching it, the witness continues with states on the cycle. They can be de-
termined considering the already calculated sets of states Y 0

(χ,ϕ)(sj), Y 1
(χ,ϕ)(sj), ...,

Y n−1
(χ,ϕ)(sj). We start with the state sj and follow a path where ∀i∈ [j+1, j+n− 2] . si∈

Y j+n−i−1
(χ,ϕ) (sj) \Y j+n−i−2

(χ,ϕ) (sj), sj+n−1 ∈ Y 0
(χ,ϕ)(sj), sj+n = sj , and ∀i ∈ [j, j + n−

1] . (si, ai+1, si+1)∈δ(χ,ϕ).

(χ, ϕ) (χ, ϕ)
ϕ

(χ, ϕ)

Y n−1 Y 1

sj

Y n−2

s0

...

sj+1 sj+n−2 sj+n−1

Y 0

(χ, ϕ)
...

(χ, ϕ)

(χ, ϕ)

Fig. 4. Resolving ACTL operator EG

Resolving ACTL operator AW: Let X¬(χ,ϕ,ϕ′,χ′) be the set of states calculated
by the fixed point formula 13:

X¬(χ,ϕ,ϕ′,χ′) = lfpZ. ( S¬ϕ ∨ { q∈S |

∃a∈Aτ ∃q′∈S. (q, a, q′)∈(δ¬(χ,ϕ) ∩ δ¬(χ′,ϕ′)) ∨

∃a∈Aτ ∃q′∈Z. (q, a, q′)∈δ¬(χ′,ϕ′) } ) (13)

Then, X¬(χ,ϕ,ϕ′,χ′) is the set of all states where ACTL formula A[ϕ{χ}W {χ′}ϕ′]

does not hold. The least fixed point can be effectively determined by calculating the
sequence of sets of states X0

¬(χ,ϕ,ϕ′,χ′), X1
¬(χ,ϕ,ϕ′,χ′), ... where Xi

¬(χ,ϕ,ϕ′,χ′) ⊆ S is given
as follows:

X0
¬(χ,ϕ,ϕ′,χ′) = {q∈S | q∈S¬ϕ ∨

∃a∈Aτ ∃q′∈S . (q, a, q′)∈(δ¬(χ,ϕ) ∩ δ¬(χ′,ϕ′))} (14)

∀i > 0 : Xi
¬(χ,ϕ,ϕ′,χ′) = Xi−1

¬(χ,ϕ,ϕ′,χ′) ∪

{q∈S | ∃a∈Aτ ∃q′∈Xi−1
¬(χ,ϕ,ϕ′,χ′) . (q, a, q′)∈δ¬(χ′,ϕ′)} (15)

Suppose that ACTL formula A[ϕ{χ}W {χ′}ϕ′] does not hold in the initial state

s0 and let Xn
¬(χ,ϕ,ϕ′,χ′) be the first set in the sequence X0

¬(χ,ϕ,ϕ′,χ′), X1
¬(χ,ϕ,ϕ′,χ′), ...

which contains state s0. A counterexample is trivial if s0 is not ϕ-state. Otherwise,
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a counterexample exists which is a finite path beginning in state s0 and consisting
of a sequence of n transitions which are (χ, ϕ)-transitions but not (χ′, ϕ′)-transitions

followed by a transition which is not a (χ, ϕ)-transition and also not a (χ′, ϕ′)-transition
(see Fig. 5). To construct this counterexample, we start in state s0 and follow a path

where ∀i ∈ [1, n−1] . si ∈ Xn−i
¬(χ,ϕ,ϕ′,χ′) \Xn−i−1

¬(χ,ϕ,ϕ′,χ′), sn ∈ X0
¬(χ,ϕ,ϕ′,χ′), ∀i ∈ [0, n−

1] . (si, ai+1, si+1)∈δ¬(χ′,ϕ′), and (sn, an+1, sn+1)∈δ¬(χ,ϕ) ∩ δ¬(χ′,ϕ′).

Xn

(χ, ϕ) (χ, ϕ) ¬(χ, ϕ)

s1

(χ, ϕ) (χ, ϕ)

Xn−1 X1 X0

ϕ ...

¬(χ′, ϕ′) ¬(χ′, ϕ′)¬(χ′, ϕ′) ¬(χ′, ϕ′) ¬(χ′, ϕ′)
s0 sn+1sn

Fig. 5. Resolving ACTL operator AW

Resolving ACTL operator AF: Let C¬(χ,ϕ) be the set of states calculated by
the fixed point formula 16:

C¬(χ,ϕ) = gfpZ. ({q∈S | q∈Sdead ∨ ∃a∈Aτ ∃q′∈Z. (q, a, q′)∈δ¬(χ,ϕ)}) (16)

Then, C¬(χ,ϕ) is the set of all states where ACTL formula AF{χ} ϕ does not hold.

Suppose that ACTL formula AF{χ} ϕ does not hold in the initial state s0. A
counterexample is trivial if s0 is a deadlocked state. Otherwise, a counterexample exists
which is a finite path beginning in state s0 consisting only of transitions which are not
(χ, ϕ)-transitions and leading to a deadlocked state or an infinite path beginning in
state s0 and consisting of a sequence of j transitions which are not (χ, ϕ)-transitions
followed by a cycle of n transitions which are not (χ, ϕ)-transitions (see Fig. 6). To
construct this counterexample, we start in state s0 and follow a path where ∀i∈ [0, j−
1] . (si, ai+1, si+1)∈δ¬(χ,ϕ) until a state appears which is on a cycle of transitions which
are not (χ, ϕ)-transitions or the deadlocked state is reached. Checking whether a state
s∈C¬(χ,ϕ) is on a cycle of transitions which are not (χ, ϕ)-transitions can be done by
calculating a sequence of sets of states Y 0

¬(χ,ϕ)(s), Y 1
¬(χ,ϕ)(s), ... where Y i

¬(χ,ϕ)(s) ⊆ S

is given as follows:

Y 0
¬(χ,ϕ)(s) = {q∈C¬(χ,ϕ) | ∃a∈Aτ . (q, a, s)∈δ¬(χ,ϕ)} (17)

∀i > 0 : Y i
¬(χ,ϕ)(s) = Y i−1

¬(χ,ϕ)(s) ∪

{q∈C¬(χ,ϕ) | ∃q′∈Y i−1
¬(χ,ϕ)(s) ∃a∈Aτ . (q, a, q′)∈δ¬(χ,ϕ)} (18)

The state s is on a cycle of n transitions which are not (χ, ϕ)-transitions if s ∈

Y n−1
¬(χ,ϕ)(s) \Y n−2

¬(χ,ϕ)(s).
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Suppose that sj is the first state found to be on a cycle of transitions which are not
(χ, ϕ)-transitions. After reaching it, the counterexample continues with states on the
cycle. They can be determined considering already calculated sets of states Y 0

¬(χ,ϕ)(sj),

Y 1
¬(χ,ϕ)(sj), ..., Y n−1

¬(χ,ϕ)(sj). We start with the state sj and follow a path where ∀i ∈

[j+1, j+n− 2] . si∈Y j+n−i−1
¬(χ,ϕ) (sj) \Y j+n−i−2

¬(χ,ϕ) (sj), sj+n−1∈Y 0
¬(χ,ϕ)(sj), sj+n =sj , and

∀i∈ [j, j+n− 1] . (si, ai+1, si+1)∈δ¬(χ,ϕ).

Y n−1 Y 1

¬(χ, ϕ)sj

Y n−2

s0

...

sj+1 sj+n−2 sj+n−1

Y 0

...

¬(χ, ϕ) ¬(χ, ϕ) ¬(χ, ϕ) ¬(χ, ϕ)¬(χ, ϕ)

Fig. 6. Resolving ACTL operator AF

4 Discussion

There are some important differences between the ACTL syntax and semantics pro-
posed in this paper and those introduced by R. De Nicola and F. Vaandrager in [4]
(addressed as the classical ACTL). Our definition contains the additional operator W,
the path operator ϕχU ϕ′ is absent, and the operators EX and AX are derived from
U. Additionally, we allow deadlocked states in the LTS and the usage of silent action
τ in action formulae. It is also worth noting that the classical ACTL is given in terms
of states and actions (e.g. “from the initial state, such a next state can be reached
with a χ-action, where the formula ϕ holds etc.”), whereas the variant of ACTL pro-
posed here is elegantly given in terms of transitions (e.g. “in the initial state there is a
(χ,ϕ)-transition etc.”).

Internal transitions are an important concept in process algebrae. The classical
ACTL semantics explicitly differs between the silent action and visible actions. In the
ACTL with unless operator, a special meaning of action τ is ignored. Consequently,
its formulae have different meaning as syntactically similar formulae in the classical
ACTL. For example, let us compare formulae E [ϕ{α} U {α′}ϕ′] and ∃(ϕ αUα′ ϕ′),
where α and α′ are visible actions. The first formula is valid only if there exists a path
consisting of (α,ϕ)-transitions followed by a (α′, ϕ′)-transition. Considering the last
formula, the satisfactory path can also include internal transitions. Further we show
that the properties stated with the classical ACTL can be equivalently expressed using
the ACTL with unless operator by explicitly using τ in the formulae.

Let χ and χ′ be action formulae which do not contain silent action τ . Then the
following equivalences between the classical ACTL (denoted by |=DV 90) and the ACTL
with unless operator (denoted by |=) exist:

p |=DV 90 ∃(ϕχUχ′ ϕ′) ≡ p |= E [ϕ{χ ∨ τ} U {χ′}ϕ′]

p |=DV 90 ∀(ϕχUχ′ ϕ′) ≡ p |= A [ϕ{χ ∨ τ} U {χ′}ϕ′]
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p |=DV 90 ∃(ϕχU ϕ′) ≡ p |= (ϕ′ ∨ E [ϕ{χ ∨ τ} U {χ ∨ τ}ϕ′])

p |=DV 90 ∀(ϕχU ϕ′) ≡ p |= (ϕ′ ∨ A [ϕ{χ ∨ τ} U {χ ∨ τ}ϕ′])

p |=DV 90 ∃Xχϕ ≡ p |= EX {χ} ϕ

p |=DV 90 ∀Xχϕ ≡ p |= AX {χ} ϕ

p |=DV 90 ∀Xτϕ ≡ p |= EX {τ} ϕ

p |=DV 90 ∃Xτϕ ≡ p |= AX {τ} ϕ

Hence, the ACTL with unless operator can render all formulae expressible in the
classical ACTL. One should notice that formula E[ϕ {χ} U ϕ′] is the abbreviation of
formula E[ϕ {χ}U {true}ϕ′] and has different meaning than the formula ∃(ϕχUϕ′) in
the classical ACTL. The mapping of derived temporal operators and Hennessy-Milner
modalities of the classical ACTL is shown by the following equivalences:

p |=DV 90 ∃F ϕ ≡ p |= ϕ ∨ EF ϕ

p |=DV 90 ∀F ϕ ≡ p |= ϕ ∨ AF ϕ

p |=DV 90 ∃G ϕ ≡ p |= EG ϕ

p |=DV 90 ∀G ϕ ≡ p |= AG ϕ

p |=DV 90 ϕ <χ> ϕ′ ≡ p |= E [ϕ{τ} U {χ}ϕ′]

p |=DV 90 ϕ <ε> ϕ′ ≡ p |= (ϕ′ ∨ E [ϕ{τ} U {τ}ϕ′])

In the classical ACTL, unless operator is not expressible due to the presence of
actions in temporal operators. Additionaly, temporal operator G derived from unless

operator is more expressive than the one defined in the classical ACTL. Suppose that
a and b are visible actions and that χ and χ′ are action formulae without silent action
τ . For an LTS without internal transitions, the following interesting properties cannot
be expressed with the classical ACTL, but they can be expressed using the ACTL with
unless operator:

– On all paths, the transitions are χ-transitions at least as long as they are χ′-
transitions: A[{χ} W {¬χ′}].

– There exists a path, such that a can be performed in its states at least as long as
action b can be performed in them: E[(EX{a}) W (¬EX{b})].

– There exists a path consisting only of χ-transitions such that in all states on this
path action a can be performed: EG (EX{a}) {χ}.

5 Conclusion

ACTL is a propositional branching-time temporal logic similar to CTL, but it describes
the occurence of transitions rather than states over time. In this paper, we introduced a
new enriched variant of ACTL with unless operator, which could be denoted as ACTL-
W. It can render all formulae expressible in the classical ACTL. The proposed syntax
allows constant true to be omitted from the formulae, which contributes a lot to clarity
and flexibility. This results in a framework where the properties can be expressed with
patterns similar to those used with CTL.
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We expressed the formulae of the classical ACTL with the mathematical notation
for path quantifiers and action formulae written in indices. On the other hand, the
formulae of the ACTL with unless operator are given in a parser-friendly notation. The
distinct syntax prevents the reader from misunderstanding the meaning of temporal
operators, which are not the same in these approaches. On the computer, a different
solution must be used. We propose that path quantifiers in the syntax of the ACTL
with unless operator are doubled, for example EEX, EEF, EEG, EEU, and EEW,
and similar for the ACTL operators with path quantifier A. In this way, both types
of operators could coexist and the compatibility with existing ACTL model checkers
would be preserved.

While the syntax and semantics of the ACTL with unless operator are comprehen-
sively explored, there is still a lot of work to do in the field of model checking. We
described two fixed point characterisations of ACTL operators and showed how to gen-
erate witnesses and counterexamples with a two-pass algorithm. Because the presented
approaches are intended for global model checking, the symbolic representations (such
as BDDs) are indispensable to avoid the state explosion problem. Another drawback of
the proposed methods is that only single paths are produced, which may be a serious
limitation in practice. A full diagnostic in the form of a tree-like structure could be
generated for a formula containing nested temporal operators. Local model checking,
on-the-fly verification, and the generation of the full diagnostics are widely investigated
topics on the µ-calculus, which is strictly more expressive than ACTL. Those results
can serve as a starting point for more powerful ACTL model checkers.

There are some other directions for extending the presented work. Fairness con-
straints can be introduced. An interface for translation from the natural languages to
ACTL formulae would be of great value and would increase the usability of ACTL
model checkers signifficantly. An important field of further work is also the adaption
of ACTL for process algebrae with data-passing.
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