
A Survey of Web Metrics

DEVANSHU DHYANI, WEE KEONG NG, AND SOURAV S. BHOWMICK

Nanyang Technological University

The unabated growth and increasing significance of the World Wide Web has resulted in
a flurry of research activity to improve its capacity for serving information more
effectively. But at the heart of these efforts lie implicit assumptions about “quality” and
“usefulness” of Web resources and services. This observation points towards
measurements and models that quantify various attributes of web sites. The science of
measuring all aspects of information, especially its storage and retrieval or informetrics
has interested information scientists for decades before the existence of the Web. Is Web
informetrics any different, or is it just an application of classical informetrics to a new
medium? In this article, we examine this issue by classifying and discussing a wide
ranging set of Web metrics. We present the origins, measurement functions,
formulations and comparisons of well-known Web metrics for quantifying Web graph
properties, Web page significance, Web page similarity, search and retrieval, usage
characterization and information theoretic properties. We also discuss how these metrics
can be applied for improving Web information access and use.

Categories and Subject Descriptors: H.1.0 [Models and Principles]: General; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval; I.7.0
[Document and Text Processing]: General

General Terms: Measurement

Additional Key Words and Phrases: Information theoretic, PageRank, quality metrics,
Web graph, Web metrics, Web page similarity

1. INTRODUCTION

The importance of measuring attributes
of known objects in precise quantitative
terms has long been recognized as crucial
for enhancing our understanding of our
environment. This notion has been aptly
summarized by Lord Kelvin:

“When you can measure what you are speak-
ing about, and express it in numbers, you know
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something about it; but when you cannot ex-
press it in numbers, your knowledge is of a
meager and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely
in your thoughts advanced to the state of
science.”

One of the earliest attempts to make
global measurements about the Web was
undertaken by Bray [1996]. The study
attempts to answer simple questions on
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attributes such as the size of the Web,
its connectivity, visibility of sites and the
distribution of formats. Since then, sev-
eral directly observable metrics such as
hit counts, click-through rates, access dis-
tributions and so on have become popu-
lar for quantifying the usage of web sites.
However, many of these metrics tend to
be simplistic about the phenomena that
influence the attributes they observe. For
instance, Pitkow [1997] points out the
problems with hit metering as a reliable
usage metric caused by proxy and client
caches. Given the organic growth of the
Web, we require new metrics that pro-
vide deeper insight on the Web as a whole
and also on individual sites from differ-
ent perspectives. Arguably, the most im-
portant motivation for deriving such met-
rics is the role they can play in improv-
ing the quality of information available on
the Web.

To clarify the exact meaning of fre-
quently used terms, we supply the follow-
ing definition [Boyce et al. 1994]:

Measurement, in most general terms, can be
regarded as the assignment of numbers to ob-
jects (or events or situations) in accord with some
rule [measurement function]. The property of the
objects that determines the assignment accord-
ing to that rule is called magnitude, the measur-
able attribute; the number assigned to a partic-
ular object is called its measure, the amount or
degree of its magnitude. It is to be noted that
the rule defines both the magnitude and the
measure.

In this article, we provide a survey of
well-known metrics for the Web with re-
gard to their magnitudes and measure-
ment functions. Based on the attributes
they measure, these are classified into the
following categories:

—Web Graph Properties. The World
Wide Web can be represented as a graph
structure where Web pages comprise
nodes and hyperlinks denote directed
edges. Graph-based metrics quantify
structural properties of the Web on both
macroscopic and microscopic scales.

—Web Page Significance. Significance
metrics formalize the notions of “qual-
ity” and “relevance” of Web pages with

respect to information needs of users.
Significance metrics are employed to
rate candidate pages in response to a
search query and have an impact on the
quality of search and retrieval on the
Web.

—Usage Characterization. Patterns and
regularities in the way users browse
Web resources can provide invaluable
clues for improving the content, orga-
nization and presentation of Web sites.
Usage characterization metrics mea-
sure user behavior for this purpose.

—Web Page Similarity. Similarity met-
rics quantify the extent of relatedness
between web pages. There has been con-
siderable investigation into what ought
to be regarded as indicators of a re-
lationship between pages. We survey
metrics based on different concepts as
well as those that aggregate various
indicators.

—Web Page Search and Retrieval. These
are metrics for evaluating and compar-
ing the performance of Web search and
retrieval services.

—Information Theoretic. Information
theoretic metrics capture properties
related to information needs, produc-
tion and consumption. We consider
the relationships between a number of
regularities observed in information
generation on the Web.

We find that some of these metrics orig-
inate from diverse areas such as classical
informetrics, library science, information
retrieval, sociology, hypertext and econo-
metrics. Others, such as Web-page-quality
metrics, are entirely specific to the Web.
Figure 1 shows a taxonomy of the metrics
we discuss here.

Metrics, especially those measuring
phenomena, are invariably proposed in
the context of techniques for improving
the quality and usefulness of measurable
objects; in this case, information on the
Web. As such, we also provide some in-
sight on the applicability of Web met-
rics. However, one must understand that
their usefulness is limited by the models
that explain the underlying phenomena

ACM Computing Surveys, Vol. 34, No. 4, December 2002.



A Survey of Web Metrics 471

Fig. 1 . A taxonomy of Web metrics.

and establish causal relationships. A
study of these metrics is a starting point
for developing these models, which can
eventually aid Web content providers
in enhancing web sites and predicting
the consequences of changes in certain
attributes.

2. WEB GRAPH PROPERTIES

Web graph properties are measured by
considering the Web or a portion of it,
such as a web site, as a directed hypertext
graph where nodes represent pages and
edges hyperlinks referred to as the Web
graph. Web graph properties reflect the
structural organization of the hypertext
and hence determine the readability and
ease of navigation. Poorly organized web
sites often cause user disorientation lead-
ing to the “lost in cyberspace” problem.
These metrics can aid web site authoring
and create sites that are easier to traverse.
Variations of this model may label the
edges with weights denoting, for example,
connection quality, or number of hyper-
links. To perform analysis at a higher
granular level, nodes may be employed to
model entire web sites and edges after the
total strength of connectivities amongst
web sites. In the classification below, we
first consider the simplest hypertext
graph model to discuss three types of
graph properties introduced by Botafogo
et al. [1992]; namely, centrality, global
measures and local measures. Then, we
discuss random graph model based on
random networks.

Before discussing metrics for hypertext
graph properties, we introduce some of the
preliminary terms. The hypertext graph of
N nodes (Web pages) can be represented

Fig. 2 . Hyperlink graph exam-
ple.

Table I. Distance Matrix and Associated Centrality
Metrics; K = 5

Nodes a b c d e OD ROC

a 0 1 1 1 1 4 17
b 1 0 2 2 3 8 8.5
c 5 5 0 5 1 16 4.25
d 5 5 5 0 5 20 3.4
e 5 5 5 5 0 20 3.4
ID 16 16 13 13 10 68
RIC 4.25 4.25 5.23 5.23 6.8

as an N×N distance matrix1 C, where ele-
ment Cij is the number of links that have to
be followed to reach node j starting from
node i or simply the distance of j from i.
If nodes i and j are unconnected in the
graph, Cij is set to a suitable predefined
constant K . Figure 2 shows an example
hyperlink graph. The distance matrix for
this graph is shown in Table I.

2.1. Centrality

Centrality measures reflect the extent of
connectedness of a node with respect to
other nodes in the graph. They can be used
to define hierarchies in the hypertext with
the most central node as the root. The out
distance (OD) of a node i is defined as the

1 We differ slightly from Botafogo et al. [1992], where
this matrix is referred to as the converted distance
matrix.
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sum of distances to all other nodes; that
is, the sum of all entries in row i of the
distance matrix C. Similarly, the in dis-
tance (ID) is the sum of all in distances.
Formally,

ODi =
∑

j

Cij

IDi =
∑

j

Cji.

In order to make the above metrics inde-
pendent of the size of the hypertext graph,
they are normalized by the converted dis-
tance or the sum of all pair-wise distances
between nodes thereby yielding the rela-
tive out centrality (ROC ) and the relative
in centrality (RIC ) measures, respectively.
Therefore,

ROCi =
∑

i
∑

j Cij∑
j Cij

RICi =
∑

i
∑

j Cij∑
j Cij

.

The calculation of centrality metrics for
the graph in Figure 2 is shown in Table I.
A central node is one with high values
of relative in- or out-centrality suggesting
that the node is close to other nodes in
hyperspace. Identification of a root node
(a central node with high relative out-
centrality) is the first step towards con-
structing easily navigable hypertext hier-
archies. The hypertext graph may then be
converted to a crosslinked tree structure
using a breadth-first spanning tree algo-
rithm to distinguish between hierarchical
and cross-reference links.

2.2. Global Metrics

Global metrics are concerned with the
hypertext as a whole and not individual
nodes. They are defined in a hierarchically
organized hypertext where the hierarchi-
cal and cross-referencing links are dis-
tinguished. Two global metrics discussed
here are the compactness and stratum.
The compactness metric indicates the ex-
tent of cross referencing; a high compact-
ness means that each node can easily

reach other nodes in the hypertext. Com-
pactness varies between 0 and 1; a com-
pletely disconnected graph has compact-
ness 0 while a fully connected graph has
compactness 1. For high readability and
navigation, both extremes of compactness
values should be avoided. More formally,

Cp =
Max−∑i

∑
j Cij

Max−Min
,

where Max and Min are, respectively, the
maximum and minimum values of the cen-
trality normalization factor—converted
distance. It can be shown that Max and
Min correspond to (N 2 − N )K (for a dis-
connected graph) and (N 2−N ) (for a fully
connected graph), respectively. We note
that the compactness Cp = 0 for a discon-
nected graph as the converted distance be-
comes Max and Cp = 1 when the converted
distance equals Min for a fully connected
graph.

The stratum metric captures the linear
ordering of the Web graph. The concept
of stratum characterizes the linearity in
the structure of a Web graph. Highly lin-
ear web sites, despite their simplicity in
structure, are often tedious to browse. The
higher the stratum, the more linear the
Web graph in question. Stratum is defined
in terms of a sociometric measure called
prestige. The prestige of a node i is the
difference between its status, the sum of
distances to all other nodes (or the sum
of row i of the distance matrix), and its
contrastatus, the sum of finite distances
from all other nodes (or the sum of col-
umn i of the distance matrix). The abso-
lute prestige is the sum of absolute values
of prestige for all nodes in the graph. The
stratum of the hypertext is defined as the
ratio of its absolute prestige to linear ab-
solute prestige (the prestige of a linear hy-
pertext with equal number of nodes). This
normalization by linear absolute prestige
renders the prestige value insensitive to
the hypertext size. Formally,

S =
∑

i(|
∑

j Cij −
∑

j Cji |)
LAP

,
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Table II. Distance Matrix and Stratum Related
Metrics

Absolute
Nodes a b c d e Status prestige
a 0 1 1 1 1 4 3
b 1 0 2 2 3 8 7
c ∞ ∞ 0 ∞ 1 1 2
d ∞ ∞ ∞ 0 ∞ 0 3
e ∞ ∞ ∞ ∞ 0 0 5
Contrastatus 1 1 3 3 5 13 20

where the linear absolute prestige LAP is
the following function of the number of
nodes N .

LAP =


N3

4
, if n is even

N 3 − N
4

, otherwise.

Stratum metrics for the graph of
Figure 2 are shown in Table II. The com-
putation of stratum only considers finite
distances; hence, we invalidate uncon-
nected entries in the distance matrix (de-
noted∞). The linear absolute prestige for
a graph of 5 nodes from the above formula
is 30. The stratum of the graph can be
calculated by normalizing the sum of ab-
solute prestige (Table II) of all nodes by
the LAP. For the graph of Figure 2, this
equals 0.67.

We conclude the survey of global met-
rics by citing some measurements of de-
gree distributions that are reported in
Kleinberg et al. [1999] and Kumar et al.
[1999] and confirmed in Broder et al.
[2000]. In experiments conducted on a sub-
graph of the Web, the in-degree distri-
bution (in-degree versus frequency) has
been found to follow Lotka’s law. That
is, the probability that a node has in-
degree i is proportional to 1/iα, where
α is approximately 2. A similar obser-
vation holds for the out-degree distri-
bution. In Dhyani [2001], we describe
our own experiments to confirm these
findings and use the observation as the
premise for ascertaining distributions of
some well-known hyperlink-based metrics
and, subsequently, we derive other impor-
tant informetric laws related to Lotka’s
law.

Attempts have also been made to study
the macroscopic structure of the WWW.
In their experiments on a crawl of over
200 million pages, Broder et al. [2000]
found that over 90% percent of the Web
comprises a single connected component2

if the links are treated as undirected
edges. Of these, a core of approximately
56 million forms a strongly connected com-
ponent. The maximum distance between
any two pages or the diameter of this core
is only 28 as compared to a diameter of
over 500 for the entire Web graph. The
probability that a path exists between two
randomly chosen pages was measured to
be 24%. The average directed path length
is 16.

The significance of the above obser-
vations are two-fold. First, they become
the starting point for modelling the
graph structure of the Web. For exam-
ple, Kleinberg et al. [1999] have explained
the degree distributions by modeling the
process of copying links while creating
Web pages. These models can be of use
in predicting the behavior of algorithms
on the Web and discovering other struc-
tural properties not evident from direct
observation. Secondly, knowledge of the
structure of the Web and its graph prop-
erties can lead to improved quality of
Web search as demonstrated by hyper
link metrics such as PageRank [Brin and
Page 1998], Authorities/Hubs [Kleinberg
1998], and Hyperinformation [Marchiori
1997].

2.3. Local Metrics

Local metrics measure characteristics of
individual nodes in the hypertext graph.
We discuss two local metrics; namely,
depth and imbalance [Botafogo et al.
1992]. The depth of a node is just its
distance from the root. It indicates the
ease with which the node in question can
be reached and consequently its impor-
tance to the reader. That is, the bigger
the distance of a node from the root, the
harder it is for the reader to reach this

2 A portion of the Web graph such that there exists
a path between any pair of pages.
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node, and consequently the less impor-
tant this node will be in the hypertext.
Nodes that are very deep inside the hy-
pertext are unlikely to be read by the
majority of the readers [Botafogo et al.
1992]. Note that an author may intention-
ally store a low relevance piece of infor-
mation deep inside the hypertext. Con-
sequently, the readers whose interest is
not so strong can browse the hypertext
without seeing the low relevance informa-
tion, while more interested readers will
be able to have a deeper understanding of
the subject by probing deeper into the hy-
pertext. Having access to a depth metric,
web-site designers can locate deep nodes
and verify that they were intentional.

D(a) =
{

[1+Max (D(a1)), 1+Max (D(a2)), . . . , 1+Max (D(an))],
[0] if a has no child (n = 0),

The imbalance metric is based on the as-
sumption that each node in the hypertext
contains only one idea and the link ema-
nating from a node are a further develop-
ment on that idea (except cross-reference
links). Consequently, we might want the
hypertext to be a balanced tree. The im-
balance metric identifies nodes that are
at the root of imbalanced trees and en-
ables the web-site designer to identify im-
balance nodes. Observe that imbalance in
a hypertext does not necessarily indicate
poor design of hypertext [Botafogo et al.
1992]. The crux of the matter is that each
topic should be fully developed. Thus, in

C(a) =

{

1+
∑

C(a1), 1+
∑

C(a2), . . . , 1 +
∑

C(an)
}

,

{0} if a has no child (n = 0),

a university department hypertext, there
may be many more levels of information
on academic staffs and their research
areas than on locations of copying ma-
chines. However, we should expect that

each of the major areas in the hyper-
text is treated with equal importance.
Although balance is not mandatory, too
much imbalance might indicate bias of
the designer or a poorly designed web site
[Botafogo et al. 1992]. Note that, similar
to depth the imbalance metric can be
used as a feedback to the authors. If they
decide that imbalances are desired, then
they can overlook the information.

In order to quantify imbalance, Botafogo
et al. [1992] proposed two imbalance met-
rics: absolute depth imbalance and abso-
lute child imbalance. Let T be a general
rooted tree. Let a1, a2, . . ., an be children
of node a. Then, the depth vector D(a)
[Botafogo et al. 1992] is defined as follows:

where Max (D(ai)) indicates the value of
the largest element in the vector D(ai).
The depth vector is represented within
square brackets. Intuitively, this vector
indicates the maximum distance one can
go by following each of the children of node
a. The absolute depth imbalance of a node
a is defined as the standard deviation of
the elements in vector D(a). That is, the
standard deviation of distances one can
go by successively following each of the
children of a.

Similarly, the child vector C(a)
[Botafogo et al. 1992] is defined as
follows:

where
∑

C(ai) is the sum of all elements
in vector C(ai). The child vector is repre-
sented inside braces { }, and indicates the
size (number of elements) of the subtrees
rooted at a1, a2, . . . , an. The absolute child
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imbalance for node a is the standard devi-
ation of the elements in vector C(a). That
is, it is the standard deviation of the num-
ber of nodes in the subtrees rooted at the
children of a.

2.4. Random Graph Models

The theory of random networks is con-
cerned with the structure and evolution
of large, intricate networks depicting the
elements of complex systems and the
interactions between them. For example,
living systems form huge genetic net-
works whose vertices are proteins and
edges represent the chemical interactions
between them. Similarly, a large network
is formed by the nervous system whose
vertices are nerve cells or neurons con-
nected by axons. In social science, similar
networks can be perceived between indi-
viduals and organizations. We describe
random networks here in the context of
another obvious instance of a large and
complex network—the WWW.

The earliest model of the topology of
these networks, known as the random
graph model, due to Erdos and Renyi, is
described in Barabasi et al. [1999]. Sup-
pose we have a fixed sized graph of N ver-
tices and each pair of vertices is connected
with a probability p. The probability P (k)
that a vertex has k edges is assumed to
follow the Poisson distribution such that
P (k) = e(−λ)

x λk/k! where the mean λ is
defined as

λ = N
(

N − 1
k

)
pk(1− p)N−k−1.

Several random networks such as the
WWW exhibit what is known as the small-
world phenomenon whereby the average
distance between any pair of nodes is
usually a small number. Measurements
by Albert et al. [1999] show that, on av-
erage, two randomly chosen documents
on the Web are a mere 19 clicks away.
The small-world model accounts for this
observation by viewing the N vertices
as a one-dimensional lattice where each
vertex is connected to its two nearest
and next-nearest neighbors. Each edge is

reconnected to a vertex chosen at random
with probability p. The long range connec-
tions generated by this process decrease
the distances between vertices, leading
to the small-world phenomenon. Both the
models predict that the probability distri-
bution of vertex connectivity has an expo-
nential cutoff.

Barabasi and Albert [1999] reported
from their study of the topology of sev-
eral large networks that, irrespective of
the type of network, the connectivity
distribution (or the probability P (k) that
a vertex in the network interacts with k
other vertices) decays as a power law, that
is, P (k) ∼ k−γ , where γ is a small constant
usually between 2.1 and 4, depending on
the network in question. This observation
has been confirmed for the WWW by mea-
surements of Web-page degree distribu-
tions [Kleinberg et al. 1999; Kumar et al.
1999]. The power law distribution sug-
gests that the connectivity of large random
networks is free of scale, an implication
inconsistent with the traditional random
network models outlined above.

The random network models outlined
earlier do not incorporate two generic as-
pects of real networks. First, they as-
sume that the number of vertices N re-
mains fixed over time. In contrast, most
real networks are constantly changing
due to additions and deletions of nodes.
Typically, the number of vertices N in-
creases throughout the lifetime of the
network. The number of pages in the
WWW in particular is reportedly grow-
ing exponentially over time. Second, the
random network models assume that
the probability of an edge existing be-
tween two vertices is uniformally dis-
tributed. However, most real networks
exhibit what is known as preferential
connectivity, that is, newly added ver-
tices are more likely to establish links
with vertices having higher connectiv-
ity. In the WWW context, this mani-
fests in the propensity of Web authors to
include links to highly connected docu-
ments in their web pages. These ingre-
dients form the basis of the scale-free
model proposed by Barabasi and Albert
[Albert and Barabasi 2000; Barabasi
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et al. 1999, 2000]:

—To incorporate the growth of the net-
work, starting with a small number m0
of vertices, we add, at each time step,
a new vertex with m(< m0) edges that
link to m vertices already present in the
network.

—To incorporate preferential attachment,
we assume that the probability 5 that
a new vertex will be connected to ver-
tex i is proportional to the relative con-
nectivity of that vertex, that is, 5(ki) =
ki/
∑

j k j .

After t time steps, the above assump-
tions lead to a network with t+m0 vertices
and mt new edges. It can be shown that the
network evolves to a scale-invariant state
with the probability that a vertex has k
edges following a power law with an expo-
nent γ ≈ 3, thereby reproducing the ob-
served behavior of the WWW and other
random networks. Note that the value of
γ is dependent on the exact form of the
growth and preferential attachment func-
tions defined above and different values
would be obtained if for instance the lin-
ear preferential attachment function were
to be replaced by an exponential function.

3. WEB PAGE SIGNIFICANCE

Perhaps the most well-known Web met-
rics are significance metrics. The signifi-
cance of a web page can be viewed from two
perspectives—its relevance to a specific in-
formation need, such as a user query, and
its absolute quality irrespective of particu-
lar user requirements. Relevance metrics
relate to the similarity of Web pages with
driving queries using a variety of mod-
els for performing the comparison. Qual-
ity metrics typically use link information
to distinguish frequently referred pages
from less visible ones. However, as we
shall see, the quality metrics discussed
here are more sophisticated than simple
in-degree counts. The most obvious use
of significance metrics is in Web search
and retrieval where the most relevant and
high quality set of pages must be selected
from a vast index in response to a user
query. The introduction of quality metrics

has been a recent development for public
search engines, most of which relied ear-
lier on purely textual comparisons of key-
word queries with indexed pages for as-
signing relevance scores. Engines such as
Google [Brin and Page 1998] use a combi-
nation of relevance and quality metrics in
ranking the responses to user queries.

3.1. Relevance

Information retrieval techniques have
been adapted to the Web for determining
relevance of web pages to keyword queries.
We present four algorithms for relevance
ranking as discussed by Yuwono and Lee
[1996]; namely, Boolean spread activation,
most-cited, TFxIDF, and vector spread ac-
tivation. The first two rely on hyperlink
structure without considering term fre-
quencies (to be explained later.) The latter
two are based on the vector space model,
which represents documents and queries
as vectors for calculating their similarity.
Strictly speaking, relevance is a subjec-
tive notion as described in Yuwono and Lee
[1996]:

“. . . a WWW page is considered relevant to a
query if, by accessing the page, the user can find
a resource (URL) containing information perti-
nent to the query, or the page itself is such a
resource.”

As such, the relevance score metrics
detailed below are means to identify
web pages that are potentially useful in
locating the information sought by the
user. We first introduce the notation to be
used in defining the relevance metrics.

M Number of query words
Q j The j th query term, for 1≤ j ≤M
N Number of WWW pages in index
Pi The ith page or its ID
Ri,q Relevance score of Pi with

respect to query q
Lii,k Occurrence of an incoming

link from Pk to Pi
Loi,k Occurrence of an outgoing link

from Pi to Pk
X i, j Occurrence of Q j in Pi

3.1.1. Boolean Spread Activation. In the
Boolean model, the relevance score is
simply the number of query terms that
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appear in the document. Since only con-
junctive queries can be ranked using
this model, disjunctions and negations
have to be transformed into conjunctions.
The Boolean spread activation extends
this model by propagating the occurr-
ence of a query word in a document to its
neighboring documents.3 Thus,

Ri,q =
M∑

j=1

Ii, j ,

where

Ii, j =


c1 if X i, j = 1
c2 if there exists k such that X k, j = 1 and Lii,k + Loi,k > 0
0 otherwise.

The constant c2 (c2 < c1) determines the
(indirect) contribution from neighboring
documents containing a query term. We
may further enhance the Boolean spread
activation model of Yuwono and Lee [1996]
through two (alternative) recursive defi-
nitions of the contribution of each query
term Ii, j as follows:

(1) Ii, j =
{

1 if X i, j = 1
cIk, j if there exists k such that 0 < c < 1, X k, j = 1 and Lik, j + Lok, j > 0;

(2) Ii, j = X i, j + cIk, j ; 0 < c < 1 and Lik, j + Lok, j > 0.

Note that the above definition is recur-
sive as the rank of a page is a function
of whether the search term appears in it
(term X i, j ) or in a page that it is connected
to (cIk, j ) through in- or outlinks. The fur-
ther the page that contains the search
term is from the given page, the lower its
contribution to the score (due to the posi-
tive coefficient c < 1). Although the defini-
tion recursively states the rank based on
contribution of neighboring pages (which
in turn use their neighbors), the compu-
tation can indeed be done iteratively (be-
cause it is a case of tail recursion). The

3 Assuming that documents linked to one another
have some semantic relationships.

choice of implementation is not a subject
of discussion here.

3.1.2. Most-Cited. Each page is assigned
a score, which is the sum of the number of
query words contained in other pages hav-
ing a hyperlink referring to the page (cit-
ing). This algorithm assigns higher scores
to referenced documents rather than ref-
erencing documents.

Ri,q =
N∑

k=1,k 6=i

Lii,k
M∑

j=1

X k, j

 .

The most-cited relevance metric may be
combined with the recursive definition of
Boolean spread activation to overcome the
above problem as follows:

Ii, j = X i, j + c(Lik, j + Lok, j )Ik, j ;
0 < c < 1.

We note two benefits of the (Lik, j + Lok, j )

coefficient. First, the new metric is unbi-
ased with regard to citing and cited pages.
Second, the contribution from neighbor-
ing pages is scaled by the degree of
connectivity.

3.1.3. TFxIDF. Based on the vector
space model, the relevance score of a
document is the sum of weights of the
query terms that appear in the docu-
ment, normalized by the Euclidean vector
length of the document. The weight of
a term is a function of the word’s oc-
currence frequency (also called the term
frequency (TF )) in the document and
the number of documents containing the
word in collection (the inversedocument
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Table III. The Average Precision for Each Search Algorithm

Boolean spread vector spread
activation most-cited TFxIDF activation

Average precision 0.63 0.58 0.75 0.76

frequency (IDF )).

Ri,q =
∑

Q j
(0.5+ 0.5(TFi, j /TFi,max)) IDF j√∑

j∈Pi
(0.5+ 0.5(TFi, j /TFi,max))2 (IDF j )2

,

where

TFi, j Term frequency of Q j in Pi
TFi,max Maximum term frequency

of a keyword in Pi
IDF j log( N∑N

i=1
X i, j

).

The weighing function (product of TF and
IDF as in Lee et al. [1997]) gives higher
weights to terms that occur frequently in
a small set of documents. A less-expensive
evaluation of the relevance score leaves
out the denominator in the above (i.e., the
normalization factor). Performance of sev-
eral approximations of relevance score by
the vector-space model is considered in
Lee et al. [1997].

3.1.4. Vector Spread Activation. The vec-
tor space model is often criticized for not
taking into account hyperlink information
as was done in web page quality mod-
els [Brin and Page 1998; Kleinberg 1998;
Marchiori 1997]. The vector spread activa-
tion method incorporates score propaga-
tion as done in Boolean spread activation.
Each Web page is assigned a relevance
score (according to the TFxIDF model)
and the score of a page is propagated to
those it references. That is, given the score
of Pi as Si,q and the link weight 0 <
α < 1,

Ri,q = Si,q +
N∑

j=1, j 6=i

αLii, j S j ,q .

However, experiments [Yuwono and Lee
1996] show that the vector spread acti-
vation model performs only marginally

better than TFxIDF in terms of retrieval

effectiveness measured by precision and
recall (to be introduced later). Table III
summarizes the average precision for
each search algorithm for 56 test queries
as highlighted in Yuwono and Lee [1996].

Application of the above query relevance
models in search services can be enhanced
through relevance feedback [Lee et al.
1997; Yuwono et al. 1995]. If the user is
able to identify some of the references as
relevant, then certain terms from these
documents can be used to reformulate the
original query into a new one that may
capture some concepts not explicitly spec-
ified earlier.

3.2. Quality

Recent work in Web search has demon-
strated that the quality of a Web page
is dependent on the hyperlink structure
in which it is embedded. Link structure
analysis is based on the notion that a link
from a page p to page q can be viewed as
an endorsement of q by p, and as some
form of positive judgment by p of q’s con-
tent. Two important types of techniques
in link-structure analysis are co-citation
based schemes and random-walk-based
schemes. The main idea behind co-citation
based schemes is the notion that, when
two pages p1 and p2 both point to some
page q, it is reasonable to assume that p1
and p2 share a mutual topic of interest.
Likewise, when p links to both q1 and q2,
it is probable that q1 and q2 share some
mutual topic. On the other hand, random-
walk-based schemes model the Web (or
part of it) as a graph where pages are
nodes and links are edges, and apply some
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Table IV. Evaluation of Search Engines vs. their Hyper Versions

Excite HotBot Lycos WebCrawler OpenText Average
Evaluation increment +5.1 +15.1 +16.4 +14.3 +13.7 +12.9
Std Deviation 2.2 4.1 3.6 1.6 3 2.9

random walk model to the graph. Pages
are then ranked by the probability of vis-
iting them in the modeled random walk.

In this section, we discuss some of the
metrics for link structure analysis. Each
of these metrics is recursively defined for
a Web page in terms of the measures
of its neighboring pages and the degree
of its hyperlink association with them.
Quality metrics can be used in conjunc-
tion with relevance metrics to rank re-
sults of keyword searches. In addition, due
to their independence from specific query
contexts, they may be used generically for
a number of purposes. We mention these
applications in the context of individual
quality metrics. Also, page quality mea-
sures do not rely on page contents which
make them convenient to ascertain and
at the same time sinister “spamdexing”
schemes4 becomes relatively more difficult
to implement.

3.2.1. Hyper-information Content. Accord-
ing to Marchiori [1997], the overall infor-
mation of a web object is not composed only
by its static textual information, but also
hyper information, which is the measure of
the potential information of a Web object
with respect to the Web space. Roughly, it
measures how much information one can
obtain using that page with a browser, and
navigating starting from it. Suppose the
functions I (p), T (p) and H(p) denote the
overall information, textual information
and hyper information, respectively, of p
that map Web pages to nonnegative real
numbers with an upper bound of 1. Then,

I (p) = T (p)+ H(p).

Then it can be shown that given a page
p that points to q, and a suitable fading

4 The judicious use of strategic keywords that makes
pages highly visible to search engine users irrespec-
tive of the relevance of their contents.

factor f (0 < f < 1), we have

I (p) = T (p)+ f T (q).

It can be shown that the contribution of
a page qn at a distance of n clicks from
p to p’s information I (p) is f nT (qn). To
model the case when p contains several
hyperlinks without violating the bounded
property of I (p), the sequential selection of
links b1, b2, . . . , bn embedded in p is inter-
preted as follows:

I (p) = T (p)+ f T (b1)+ · · · + f nT (bn).

Therefore, the sequential selection of links
contained in p is interpreted in the same
way as following consecutive links start-
ing at p.

In order to validate the above notion
of hyper information, Marchiori [1997]
implemented the hyper information as
post-processor of the search engines avail-
able during the time of his work (Excite,
HotBot, Lycos, WebCrawler and Open-
Text). The post-processor remotely query
the search engines, extract the corre-
sponding scores (T (p) function), and cal-
culate the hyper information and there-
fore the overall information by fixing
the depth and fading factors in advance.
Table IV [Marchiori 1997] shows the eval-
uation increment for each search engine
with respect to its hyper version and the
corresponding standard deviation. As can
be seen, the small standard deviations are
empirical evidence of the improvement of
the quality of information provided by the
hyper search engines over their nonhyper
versions.

3.2.2. Impact Factor. The impact factor,
which originated from the field of bib-
liometrics, produces a quantitative esti-
mate of the significance of a scientific jour-
nal. Given the inherent similarity of web
sites to journals arising from the analogy
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between page hyperlinks and paper cita-
tions, the impact factor can also be used
to measure the significance of web sites.
The impact factor [Egghe and Rousseau
1990] of a journal is the ratio of all cita-
tions to a journal to the total number of
source items (that contain the references)
published over a given period of time. The
number of citations to a journal or its in-
degree is limited in depicting its standing.
As pointed out in [Egghe and Rousseau
1990], it does not contain any correction
for the average length of individual pa-
pers. Second, citations from all journals
are regarded as equally important. A more
sophisticated citation-based impact factor
than normalized in-degree count as pro-
posed by Pinski and Narin is discussed in
Egghe and Rousseau [1990] and Kleinberg
[1998]. We follow the more intuitive de-
scription in Kleinberg [1998].

The impact of a journal j is measured
by its influence weight wj . Modeling the
collection of journals as a graph, where
the nodes denoting journals are labeled by
their influence weights and directed edges
by the connection strength between two
nodes, the connection strength Sij on the
edge 〈i, j 〉 is defined as the fraction of cita-
tions from journal i to journal j . Following
the definitions above, the influence weight
of journal j is the sum of influence weights
of its citing journals scaled by their respec-
tive connection strengths with j . That is,

wj =
∑

i

wi Sij.

The nonzero, nonnegative solution w to
the above system of equations (w = ST w)
is given by the principal eigenvector5

of ST .

3.2.3. PageRank. The PageRank mea-
sure [Brin and Page 1998] extends other
citation based ranking measures, which

5 Let M be a n × n matrix. An eigenvalue of M is
a number λ with the property that, for some vector
ω, we have Mω = λω. When the assumption that
|λ1(M )| > |λ2(M )| holds, ω1(M ) is referred to as the
principal eigenvector and all other ωi(M ) as nonprin-
cipal eigenvectors.

merely count the citations to a page. In-
tuitively, a page has a high PageRank if
there are many pages that point to it or
if there are some pages with high PageR-
ank that point to it. Let N be the set of
pages that point to a page p and C(p) be
the number of links going out of a page p.
Then, given a damping factor d , 0≤d ≤1,
the PageRank of p is defined as follows:

R(p) = (1− d )+ d
∑
q∈N

R(q)
C(q)

.

The PageRank may also be considered as
the probability that a random surfer [Brin
and Page 1998] visits the page. A ran-
dom surfer who is given a Web page at
random, keeps clicking on links, without
hitting the “back” button but eventually
gets bored and starts from another ran-
dom page. The probability that the ran-
dom surfer visits a page is its PageRank.
The damping factor d in R(p) is the prob-
ability at each page the random surfer will
get bored and request for another random
page. This ranking is used as one compo-
nent of the Google search engine [Brin and
Page 1998] to help determine how to or-
der the pages returned by a Web search
query. The score of a page with respect to
a query in Google is obtained by combin-
ing the position, font and capitalization in-
formation stored in hitlists (the IR score)
with the PageRank measure. User feed-
back is used to evaluate search results and
adjust the ranking functions. Cho et al.
[1998] describe the use of PageRank for
ordering pages during a crawl so that the
more important pages are visited first. It
has also been used for evaluating the qual-
ity of search engine indexes using random
walks [Henzinger et al. 1999].

3.2.4. Mutual Reinforcement Approach. A
method that treats hyperlinks as con-
ferrals of authority on pages for locat-
ing relevant, authoritative WWW pages
for a broad topic query is introduced by
Kleinberg in [1998]. He suggested that
Web-page importance should depend on
the search query being performed. This
model is based on a mutually reinforcing

ACM Computing Surveys, Vol. 34, No. 4, December 2002.



A Survey of Web Metrics 481

relationship between authorities—pages
that contain a lot of information about a
topic, and hubs—pages that link to many
related authorities. That is, each page
should have a separate authority rating
based on the links going to the page and
hub rating based on the links going from
the page. Kleinberg proposed first using a
text-based Web search engine to get a Root
Set consisting of a short list of Web pages
relevant to a given query. Second, the Root
Set is augmented by pages that link to
pages in the Root Set, and also pages that
are linked from pages in the Root Set, to
obtain a larger Base Set of Web pages. If
N is the number of pages in the final Base
Set, then the data of Kleinberg’s algorithm
consists of an N × N adjacency matrix A,
where Aij = 1 if there are one or more hy-
pertext links from page i to page j ; other-
wise, Aij = 0.

Formally, given a focused subgraph that
contains a relatively small number of
pages relevant to a broad topic,6 the fol-
lowing rule is used to iteratively update
authority and hub weights (denoted xp
and yp, respectively, and initialized to 1)
of a page p:

xp =
∑

q:q→p

yq and dually

yp =
∑

q:p→q

xq

The weights are normalized after each
iteration to prevent them from overflow-
ing. At the end of an arbitrarily large num-
ber of iterations, the authority and hub
weights converge to fixed values. Pages
with weights above a certain threshold can
then be declared as authorities and hubs
respectively. If we represent the focused
subgraph as an adjacency matrix A where
Aij = 1 if there exists a link from page i to
page j , and Aij = 0 otherwise, it has been
shown that the authority and hub vectors
(x = {xp} and y = { yp}) converge to the
principal eigenvectors of AT A and AAT re-
spectively [Kleinberg 1998].

6 The focused subgraph is constructed from a Root
Set obtained from a search engine query.

Authority and hub weights can be used
to enhance Web search by identifying a
small set of high-quality pages on a broad
topic [Chakrabarti et al. 1998a, 1998b].
Pages related to a given page p can be
found by finding the top authorities and
hubs among pages in the vicinity to p
[Dean and Henzinger 1999]. The same al-
gorithm has also been used for finding
densely linked communities of hubs and
authorities [Gibson et al. 1998].

One of the limitations of Kleinberg’s
[1998] mutual reinforcement principle is
that it is susceptible to the Tightly Knit
Communities (TKC) effect. The TKC effect
occurs when a community achieves high
scores in link-analysis algorithms even as
sites in the TKC are not authoritative
on the topic, or pertain to just one as-
pect of the topic. A striking example of
this phenomenon is provided by Cohn and
Chang [2000]. They use Kleinberg’s Algo-
rithm with the search term “jaguar,” and
converge to a collection of sites about the
city of Cincinnati! They found out that
the cause of this is a large number of on-
line newspaper articles in the Cincinnati
Enquirer which discuss the Jacksonville
Jaguars football team, and all link to
the same Cincinnati Enquirer service
pages.

3.2.5. Rafiei and Mendelzon’s Approach.
Generalizations of both PageRank and au-
thorities/hubs models for determining the
topics on which a page has a reputation
are considered by Rafiei and Mendelzon
[2000]. In the one-level influence propaga-
tion model of PageRank, a surfer perform-
ing a random walk may jump to a page
chosen uniformally at random with prob-
ability d or follow an outgoing link from
the current page. Rafiei and Mendelzon
[2000] introduce into this model, topic spe-
cific surfing and parameterize the step
of the walk at which the rank is calcu-
lated. Given that Nt denotes the number of
pages that address topic t, the probability
that a page p will be visited in a random
jump during the walk is d/Nt if p contains
t and zero otherwise. The probability that
the surfer visits p after n steps, following
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a link from page q at step n−1 is ((1−d )/
O(q))Rn−1(q, t), where O(q) is the number
of outgoing links in q and Rn−1(q, t) de-
notes the probability of visiting q for topic
t at step n− 1. The stochastic matrix con-
taining pairwise transition probabilities
according to the above model can be shown
to be aperiodic and irreducible, thereby
converging to stationary state probabili-
ties when n → ∞. In the two-level influ-
ence propagation model of authorities and
hubs [Kleinberg 1998], outgoing links can
be followed directly from the current page
p, or indirectly through a random page q
that has a link to p.

3.2.6. SALSA. Lempel and Morgan
[2000] propose the Stochastic Approach
for Link Structure Analysis (SALSA).
This approach is based upon the theory
of Markov Chains, and relies on the
stochastic properties of random walks7

performed on a collection of sites. Like
Kleinberg’s algorithm, SALSA starts with
a similarly constructed Base Set. It then
performs a random walk by alternately
(a) going uniformly to one of the pages
that links to the current page, and (b)
going uniformly to one of the pages linked
to by the current page. The authority
weights are defined to be the stationary
distribution of the two-step chain doing
first step (a) and then (b), while the hub
weights are defined to be the stationary
distribution of the two-step chain doing
first step (b) and then (a).

Formally, let B(i) = {k : k → i} denote
the set of all nodes that point to i, and let
F (i) = {k : i → k} denote the set of all
nodes that we can reach from i by follow-
ing a forward link. It can be shown that
the Markov Chain for the authorities has
transition probabilities

Pa(i, j ) =
∑

k:k∈B(i)∩B( j )

1
|B(i)|

1
|F (k)| .

7 According to [Rafiei and Mendelzon 2000], a ran-
dom walk on a set of states S = {s1, s2, . . . , sn}, cor-
responds to a sequence of states, one for each step of
the walk. At each step, the walk switches to a new
state or remains in the current state. A random walk
is Markovian if the transition at each step is inde-
pendent of the previous steps and only depends on
the current state.

Assume for the time being the Markov
Chain is irreducible, that is, the under-
lying graph structure consists of a sin-
gle connected component. The authors
prove that the stationary distribution a =
(a1, a2, . . . , aN ) of the Markov Chain satis-
fies ai = |B(i)|/|B|, where B = ⋃i B(i) is
the set of all backward links. Similarly, the
Markov Chain for the hubs has transition
probabilities

Ph(i, j ) =
∑

k:k∈F (i)∩F ( j )

1
|F (i)|

1
|B(k)| .

Lempel and Moran [2000] proved that
the stationary distribution = (h1, h2, . . . ,
hN ) of the Markov Chain satisfies hi =
|F (i)|/|F |, where F = ⋃

i F (i) is the set
of all forward links.

If the underlying graph of the Base Set
consists of more than one component, then
the SALSA algorithm selects a starting
point uniformly at random and performs
a random walk within the connected com-
ponent that contains the node.

Observe that SALSA does not have the
same mutually reinforcing structure that
Kleinberg’s algorithm does [Borodin et al.
2001]. Since ai = |B(i)|/|B|, the rela-
tive authority of site i within a connected
component is determined local links, not
from the structure of the component. Also,
in the special case of a single compo-
nent, SALSA can be viewed as a one-
step truncated version of Kleinberg’s algo-
rithm [Borodin et al. 2001]. Furthermore,
Kleinberg ranks the authorities based on
the structure of the entire graph, and
tends to favor the authorities of tightly
knit communities. The SALSA ranks the
authorities based on the their popular-
ity in the immediate neighborhood, and
favors various authorities from different
communities. Specifically, in SALSA, the
TKC effect is overcome through random
walks on a bipartite Web graph for iden-
tifying authorities and hubs. It has been
shown that the resulting Markov chains
are ergodic and high entries in the sta-
tionary distributions represent sites most
frequently visited in the random walk. If
the Web graph is weighted, the authority
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and hub vectors can be shown to have sta-
tionary distributions with scores propor-
tional to the sum of weights on incoming
and outgoing edges, respectively. This re-
sult suggests a simpler calculation of au-
thority/hub weights than through the mu-
tual reinforcement approach.

3.2.7. Approach of Borodin et al. Borodin
et al. [2001] proposed a set of algo-
rithms for hypertext link analysis. We
highlight some of these algorithms here.
The authors proposed a series of algorithm
that are based on minor modification
of Kleinberg’s algorithm to eliminate
the previously mentioned errant behav-
ior of Kleinberg’s algorithm. They pro-
posed an algorithm called Hub-Averaging-
Kleinberg Algorithm, which is a hybrid of
the Kleinberg and SALSA algorithms as
it alternated between one step of each al-
gorithm. It does the authority rating up-
dates just like Kleinberg (giving each au-
thority a rating equal to the sum of the
hub ratings of all the pages that link to it).
However, it does the hub rating updates
by giving each hub a rating equal to the
average of the authority ratings of all the
pages that it links to. Consequently, a hub
is better if it links to only good authori-
ties, rather than linking to both good and
bad authorities. Note that it shares the fol-
lowing behavior characteristics with the
Kleinberg algorithm: if we consider a full
bipartite graph, then the weights of the
authorities increase exponentially fast for
Hub-Averaging (the rate of increase is the
square root of that of the Kleinberg’s algo-
rithm). However, if one of the hubs point
to a node outside the component, then the
weights of the component drop. This pre-
vents the Hub-Averaging algorithm from
completely following the drifting behav-
ior of the Kleinberg’s algorithm [Borodin
et al. 2001]. Hub-Averaging and SALSA
also share a common characteristic as
the Hub-Averaging algorithm tends to fa-
vor nodes with high in-degree. Namely,
if we consider an isolated component of
one authority with high in-degree, the
authority weight of this node will in-
crease exponentially faster [Borodin et al.
2001].

The authors also proposed two dif-
ferent algorithms called Hub-Threshold
and Authority-Threshold that modifies the
“threshold” of Kleinberg’s algorithm. The
Hub-Threshold algorithm is based on the
notion that a site should not be considered
a good authority simply because many
hubs with very poor hub weights point to
it. When computing the authority weight
of ith page, the Hub-Threshold algorithm
does not take into consideration all hubs
that point to page i. It only considers those
hubs whose hub weight is at least the aver-
age hub weight over all the hubs that point
to page i, computed using the current hub
weights for the nodes.

The Authority-Threshold algorithm, on
the other hand, is based on the notion that
a site should not be considered a good hub
simply because it points to a number of
“acceptable” authorities; rather, to be con-
sidered a good hub it must point to some
of the best authorities. When computing
the hub weight of the ith page, the algo-
rithm counts those authorities which are
among the top K authorities, based on the
current authority values. The value of K
is passed as a parameter to the algorithm.

Finally, the authors also proposed two
algorithms based on Bayesian statisti-
cal approach, namely, Bayesian Algo-
rithm and Simplified Bayesian Algorithm,
as opposed to the more common alge-
braic/graph theoretic approach. The Sim-
plified Bayesian Algorithm is basically
simplification of the Bayesian model in the
Bayesian algorithm. They experimentally
verified that the Simplified Bayesian Al-
gorithm is almost identical to the SALSA
algorithm and have at least 80% overlap
on all queries. This may be due to the
fact that both the algorithms place great
importance on the in-degree of a node
while determining the authority weight of
a node. On the other hand, the Bayesian
algorithm appears to resemble both the
Kleinberg and the SALSA behavior, lean-
ing more towards the first. It has a higher
intersection numbers with Kleinberg than
with SALSA [Borodin et al. 2001].

3.2.8. PicASHOW. PicASHOW [Lempel
and Soffer 2001] is a pictorial retrieval
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system that searches for images on the
Web using hyperlink-structure analysis.
PicASHOW applies co-citation based ap-
proaches and PageRank influenced meth-
ods. It does not require any image analysis
whatsoever and no creation of taxonomies
for preclassification of the images on the
Web. The justification for using co-citation
based measures to images just as it does
to Web pages is as follows: (1) Images that
are co-contained in pages are likely to be
related to the same topic. (2) Images that
are contained in pages that are co-cited
by a certain page are likely related to the
same topic. Furthermore, in the spirit of
PageRank, the authors assumed that im-
ages that are contained in authoritative
pages on topic t are good candidates to be
quality images on that topic.

The topical collection of images from the
Web is formally defined as a quadruple
IC = (P, I, L, E), where P is a set of Web
pages (many of which deal with a certain
topic t), I is the set of images contained in
P , L ⊆ P × P is the set of directed links
that exist on the Web between the pages
P , and E ⊆ P × I is the relation page p
containing image i. A page p contain an
image i if (a) when p is loaded in a Web
browser, i is displayed, or (b) p points to i’s
image file (in some image file format such
as .gif or .jpeg). Based on this definition of
image collection, the steps for finding au-
thoritative images given in a query are as
follows:

(1) The first step is to assemble a large
topical collection of images for a given
query on topic t. This is based on
the notion that by examining a large
enough set of t-relevant pages, it is
possible to identify high quality t-
images. This is achieved by using
Kleinberg’s algorithm. That is, for a
query q on topic t, Kleinberg’s algo-
rithm is used to assemble a q-induced
collection of Web pages by submit-
ting q first to traditional search en-
gines, and adding pages that point to
or pointed by pages in the resultant
set. This is the page set P and the
page-to-page link set L. The set of im-
ages I can be then defined by collect-

ing the images which are contained
in P .

(2) The next step focuses on identify-
ing replicated images in the collec-
tion. This is based on the assumption
that when a web-site creator encoun-
ters an image of his liking on a re-
mote server, the usual course of ac-
tion is to copy the image file to the
local server, thus replicating the im-
age. Note that this behavior is different
from the corresponding behavior with
respect to HTML pages. Most of the
time, authors will not copy a remote
page to the local servers, but rather
provide links from their site to the re-
mote page. In PicASHOW, Lempel and
Soffer [2001] download only the first
1024 bytes of the image and apply a
double hash function to these bytes, so
that each image is represented by a
signature consisting of 32 bytes. Then,
two images with the same signature
are considered identical.

(3) Next, noninformative images are fil-
tered out from the collection. The au-
thors use the following heuristics in or-
der to reduce noninformative images
in the collection: (a) Banners and logos
are noninformative and tend to be wide
and short. Hence, PicASHOW filters
out images with an aspect ratio greater
than some threshold value. (b) Images
that store small files (less than 10 kilo-
bytes) tend to be banners and filtered
out. Even if these files are not banners,
they are usually not quality topical im-
ages. (c) Images stored in file names
containing “logo” or “banner” keyword.
(d) Additionally, cliparts, buttons, spin-
ning globes are filtered out based on as-
pect ratio and file size heuristics. Note
that this approach does not eliminate
all noninformative images.

(4) Finally, the images are ranked based
on different schemes such as in-degree
approach, PageRank-influenced ap-
proach and co-citation based scheme.

Similarly, PicASHOW also finds image
hubs. Just as hubs were defined as pages
that link to many authoritative pages, im-
age hubs are pages that are linked to
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many authoritative images. Specifically,
pages that contain high-quality images
are called image containers, while pages
that point to good image containers are
called image hubs. Thus, image hubs are
removed from the authoritative images
themselves, which are contained in the im-
age containers. The co-citation based im-
age retrieval schemes is used once again
to find both image containers and image
hubs.

4. USAGE CHARACTERIZATION

In this section, we consider the problem
of modeling and predicting web page ac-
cesses. We begin by relating web page
access modeling to prediction for effi-
cient information retrieval on the WWW
and consider a preliminary statistical ap-
proach that relies on the distribution of
interaccess times. Two other approaches
from different domains, namely, Markov
processes and human memory, are also
examined.

4.1. Access Prediction Problem

In the case of the WWW, access prediction
has several advantages. It becomes a ba-
sis for improved quality of information ac-
cess by prefetching documents that have a
high likelihood of access. In the Web envi-
ronment, prefetching can materialize as a
client-side or sever-side function depend-
ing on whether prediction is performed us-
ing the access patterns of a particular user
or those of the whole population. If access
prediction is addressed within the frame-
work of a more general modeling problem,
there are added benefits from using the
model in other contexts. Webmasters can
apply such a model for studying trends
in page accesses recorded in server logs
to identify navigation patterns, improve
site organization and analyze the effects
of changes to their web sites.

While the issue is important for im-
proving information quality on the Web,
it poses several challenges. The scale, ex-
tent, heterogeneity, and dynamism of the
Web even within a site make several ap-
proaches to predicting accesses possible.

However, as we shall see, each has its own
set of limitations and assumptions that
must be kept in mind while applying it to
a particular domain.

Let us first elucidate the general access
prediction problem. Our basic premise is
that page accesses should be predicted
based on universally available informa-
tion on past accesses such as server ac-
cess logs. Given a document repository
and history of past accesses, we would
like to know which documents are more
likely to be accessed within a certain inter-
val and how frequently they are expected
to be accessed. The information used for
prediction, typically found in server logs
comprises the time and URL of an HTTP
request. The identity of the client is neces-
sary only if access prediction is personal-
ized for the client. From this information
about past accesses, several predictor vari-
ables can be determined, for example, the
frequency of accesses within a time inter-
val and interaccess times.

4.2. Statistical Prediction

An obvious prediction is the time until
the next expected access to a document,
say A. The duration can be derived from
a distribution of time intervals between
successive accesses. This kind of statisti-
cal prediction relates a predictor variable
or a set of predictor variables to access
probability for a large sample assumed to
be representative of the entire population.
Future accesses to a document can then
be predicted from the probability distri-
bution using current measurements of its
predictor variable(s). A variant of this ap-
proach is to use separate distributions for
individual documents measured from past
accesses.

Let us illustrate the above approach
for temporal prediction using interaccess
time. Suppose f (t) is the access density
function denoting the probability that a
document is accessed at time t after its
last access or its interaccess time proba-
bility density. Intuitively, the probability
that a document is accessed depends on
the time since its last access and duration
into the future we are predicting. At any
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arbitrary point in time, the probability
that a document A is accessed at a time
T from now is given by

Pr{A is accessed at T } = f (δ + T ),

where δ is the age or the time since the
last access to the document. The function
f (t) has a cumulative distribution F (t) =∑∞

t ′=0 f (t ′), which denotes the probability
that a document will be accessed within
time t from now. Since f (t) is a probability
density, F (∞) = 1, meaning that the doc-
ument will certainly be accessed some-
time in the future. If f (t) is represented
as a continuous distribution, the instan-
taneous probability when δ, T → 0 is
zero, which makes short-term or immedi-
ate prediction difficult. To find the discrete
density f (t) from the access logs, we cal-
culate the proportion of document accesses
that occur t time units after the preceding
access for t ranging from zero to infinity.
This approach assumes that all documents
have identical interaccess time distribu-
tions, that is, all accesses are treated the
same, irrespective of the documents they
involve and that the distributions are free
from periodic changes in access patterns
(such as weekends when interaccess times
are longer.) The implication of the first
assumption is that the prediction is not
conditioned on frequency of past accesses
since all documents in the observed repos-
itory are assumed equally likely to be ac-
cessed giving rise to identical frequency
distributions.

Since frequency distributions are more
likely to vary between documents than
not, it is clear that the above assumptions
make this analysis suitable only on a per-
document basis. However, the approach
still holds, notwithstanding that the dis-
tribution F (t) is now specific to a particu-
lar document. To predict the probability of
access within time T from now, for a par-
ticular document A, we may use A’s distri-
bution function FA(t) to obtain FA(δ + T )
where δ is the age at the current time.
If the interaccess time distributions are
similar but not identical, we could condi-
tion these distributions on the parameters

and find distributions of these parameters
across the documents.

Our use of a single predictor, the interac-
cess time, obtained from the age δ and pre-
diction interval T does not imply that the
technique is univariate. The use of mul-
tiple predictors, such as the frequency of
accesses in a given previous interval can
easily be accommodated into a multidi-
mensional plot of access probability. The
method becomes complicated when sev-
eral dimensions are involved. To allevi-
ate this, we may derive a combined metric
from the predictor variables, transform-
ing the problem back to univariate pre-
diction. However, this requires empirical
determination of correlation between pre-
dictors and subsequently a combination
function.

Given the statistical principle, one
might naturally be led to ask how the dis-
tribution F (t) (or its variant FA(t)) can be
used for actionable prediction. Recall that
F (t) is a cumulative probability distribu-
tion. For a given document age, it tells
us the probability that a document is ac-
cessed within a certain interval of time.
If a single probability distribution is used,
this probability is an indicator of overall
document usage with respect to time in-
terval. If we use individual distributions
FA(t), it can be used to compare the rel-
ative usage of documents. The expected
time to next access T is given by the mean
of the distribution:

E[T ] =
∞∑

t=0

t · f (t).

The expected time T before the next ac-
cess to a document, if it is known for all
documents, can be used as a criteria for
populating server side caches.

The temporal approach discussed above
bases prediction on interaccess times.
Equally, we may use a frequency based
alternative for predicting access. A fre-
quency distribution denotes the probabil-
ity of a certain number of accesses to a
document or a sample of documents over
a fixed time interval. Using an analogous
method to that discussed earlier, we can
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answer the following for prediction over
the next time interval:
— What is the probability that exactly N

documents will be accessed?
— What is the probability that N or more

documents will be accessed?
— How many documents are expected to

be accessed?
This approach has the same drawbacks
as discussed previously—it does not ac-
count for periodic changes in access rates,
rather it aggregates them into a single
distribution and accesses to all documents
are treated the same. Finally, both tempo-
ral and frequency prediction may be com-
bined to ascertain probabilities of a certain
number of accesses during a given time pe-
riod in the future.

4.3. Markov Models

Markov models assume web page accesses
to be “memoryless,” that is, access statis-
tics are independent of events more than
one interval ago. We discuss two Markov
models for predicting web page accesses,
one of our own making and another due to
Sarukkai [2000]. Prior to explaining these
models per se, we introduce the concept of
Markov processes.

4.3.1. Markov Processes. A stochastic
process can be thought of as a sequence
of states {St ; t= 1, 2, . . .} where St repre-
sents the state of the process at discrete
time t, with a certain transition proba-
bility pij between any two states i and j .
A Markov process is a simple form of
stochastic process where the probability
of an outcome depends only on the imme-
diately preceding outcome. Specifically,
the probability of being in a certain state
at time t depends entirely on the state of
the process at time t − 1. To find the state
probabilities at a time t, it is therefore
sufficient to know the state probabilities
at t − 1 and the one-step transition
probabilities, pij defined as

pij = Pr{St = j |St−1 = i}.
The one-step transition probabilities

represent a transition matrix P = (pij).

In a Markov process where the transition
probabilities do not change with time, that
is, a stationary Markov process, the proba-
bility of a transition in n steps from state
i to state j or Pr{St = j |St−n = i} de-
noted by p(n)

ij is given by Pn
ij . Intuitively,

this probability may be calculated as the
summation of the transition probabilities
over all possible n-step paths between i
and j in a graph that is equivalent to the
transition matrix P , with the transition
probability along any path being the
product of all successive one-step transi-
tion probabilities. This is stated precisely
by the well-known Chapman–Kolmogorov
identity [Ross 1983]:

p(m+n)
ij =

∑
h

p(m)
ih p(n)

hj , (m, n) = 1, 2, . . .

(1)

= P (m+n)
ij . (2)

Hence, the matrix of n-step transition
probabilities is simply the nth power of the
one-step transition matrix P . If the initial
state probabilities π0

i = Pr{S0 = i} are
known, we can use the n-step transition
probabilities to find the state probabilities
at time n as follows:

πn
j =

∑
i

Pr{Sn = j |S0 = i} · Pr{S0 = i}

πn
j =

∑
i

p(n)
ij π

0
i .

Representing the state probabilities at
time n as a state distribution vector 5n =
(πn

i ), the above equation can be written in
vector notation as

5n = Pn ·50. (3)

The vector of initial state probabilities 50

is known as the initial state distribution.
Typically, as n → ∞, the initial state
distribution becomes less relevant to the
n-step transition probabilities. In fact, for
large n the rows of Pn become identical to
each other and to the steady state distri-
bution5n. The steady state probability πn

i
as n → ∞ can be interpreted as the frac-
tion of time spent by the process in state i
in the long run.
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4.3.2. Markov Chain Prediction. Markov
processes can be used to model indi-
vidual browsing behavior. We propose a
method [Dhyani 2001] for determining ac-
cess probabilities of web pages within a
site by modeling the browsing process as
an ergodic Markov chain [Ross 1983]. A
Markov chain is simply a sequence of
state distribution vectors at successive
time intervals, that is, 〈50,51, . . . ,5n〉. A
Markov chain is ergodic if it is possible to
go from every state to every other state in
one or more transitions. The approach re-
lies on a-posteriori transition probabilities
that can readily be ascertained from logs of
user accesses maintained by Web servers.
Note that our method can be considered as
a variant of the PageRank. The difference
between PagerRank and our approach is
that PageRank assumes a uniform distri-
bution for following outlinks while we use
observed frequencies. Also, our model does
not perform random jumps to arbitrary
Web pages.

Let us represent a web site as a collec-
tion of K states, each representing a page.
The evolution of a user’s browsing process
may then be described by a stochastic pro-
cess with a random variable X n (at time
n = 1, 2, . . .) acquiring a value xn from
the state space. The process may be char-
acterized as a Markov chain if the con-
ditional probability of X n+1 depends only
on the value of X n and is independent
of all previous values. Let us denote the

τij = Number of accesses from i to j
Total number of accesses from i to all its neighbors

.

nonnegative, normalized probability of
transition from page i to page j as pij,
so that, in terms of the random variable
X n,

pij = P (X n+1 = j | X n = i).

The transition probabilities can be repre-
sented in a K ×K transition matrix P . We
can then derive the following:

— The `-step transition probability p(`)
ij is

the probability that a user navigates

from page i to page j in ` steps.8
This probability is defined generally by
the Chapman–Kolmogorov identity of
Eq. (1).

— In ergodic Markov chains, the amount
of time spent in a state i is proportional
to the steady state probability πi. If user
browsing patterns can be shown to be er-
godic, then pages that occupy the largest
share of browsing time can be identified.
Let 50 denote initial state distribution
vector of a Markov chain; the j th ele-
ment of 50 is the probability that user
is initially at page j .9 The state distri-
bution vector 5n at time n can then be
obtained from Eq. (3).

It can be shown that, for large n, each el-
ement of Pn approaches the steady-state
value for its corresponding transition. We
can thus say that irrespective of the ini-
tial state distribution, the transition prob-
abilities of an ergodic Markov chain will
converge to a stationary distribution, pro-
vided such a distribution exists. The mean
recurrence time of a state j is simply
the inverse of the state probability, that
is, 1/π j .

We now briefly address the issue of ob-
taining transition probabilities pij. It can
be shown that the transition probabil-
ity can be expressed in terms of the a-
posteriori probability τij, which can be ob-
served from browsing phenomena at the
site as follows:

Accesses originating from outside the web
site can be modeled by adding another
node (say ∗) collectively representing out-
side pages outside. The transition proba-
bilities p∗i denote the proportion of times
users enter the web site at page i.

Observe that in relation to actual brows-
ing, our model implies that the transition

8 A more Web savvy term would be click distance.
9 In the Markov chain model for Web browsing, each
new access can be seen as an advancement in the
discrete time variable.
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to the next page is dependent only on
the current page. This assumption cor-
rectly captures the situation whereby a
user selects a link on the current page to
go to the next in the browsing sequence.
However, the model does not account for
external random jumps by entering a fresh
URL into the browser window or browser
based navigation through the “Forward”
and “Back” buttons. Note that pushing
“Back” and “Forward” buttons imply that
the next state in the surf process depends
not only on the current page but also on the
browsing history. Browser-based buttons
can be factored into the model by treat-
ing them as additional links. However, we
use a simplistic assumption because the
a-priori probability of using browser but-
tons depends on the navigability of the
web site and is difficult to determine
by tracking sample user sessions (due to
caching etc). Our model can be useful in
the following applications:

— Relative Web Page Popularity. Since
the transition probability matrix is
known a-priori, the long term proba-
bilities of visiting a page can be deter-
mined. This can be compared with other
pages to find out which pages are more
likely to be accessed than others.

— Local Search Engine Ranking. The
relative popularity measure discussed
above will make localized search en-
gines more effective because it uses ob-
served surfing behavior to rank pages
rather than generalized in-out de-
grees. General purpose measures do not
have this characteristic. For example,
Pagerank assumes that out links are
selected in accordance with a uniform
distribution. However, hyperlinks often
follow the 80/20 rule whereby a small
number of links dominate the outgo-
ing paths from a page. Long-term page
probabilities that account for brows-
ing behavior within the domain will
give more accurate rankings of useful
pages.

— Smart Browsing. Since `-step transi-
tion probabilities are known, we can
predict which pages are likely to be
requested over the next ` steps. The

browser can then initiate advanced ac-
cess for them to improve performance.
It can also serve suggestions to the user
on which pages might be of interest
based on their browsing history.

A variation of Markov chains applied
by Sarukkai [2000] predicts user accesses
based on the sequence of previously fol-
lowed links. Consider a stochastic matrix
P whose elements represent page transi-
tion probabilities and a sequence of vec-
tors, one for each step in the link history
of a user, denoted I1, I2, . . . I t−1. The `th
element in vector Ik is set to 1 if the user
visits page ` at time k, otherwise, it is set
to 0. For appropriate values of constants
a1, a2, . . . , ak , the state probability vector
St for predicting the next link is deter-
mined as follows:

St
j =

t−1∑
k=1

ak I t−k Pk .

The next page to be accessed is predicted
as the one with the highest state proba-
bility in the vector St . The same approach
can be used to generate tours by succes-
sively predicting links of a path.

4.4. Human Memory Model

Psychology research has shown that the
accuracy of recalling a particular item in
memory depends on the number of times
the item was seen or frequency, the time
since last access or recency and the gap
between previous accesses or spacing. In
some ways, the human memory model
is closer to Web-page access modeling.
Recker and Pitkow [1996] have used the
human memory model to predict docu-
ment accesses in a multimedia repository
based on the frequency and recency of past
document accesses. We discuss their ap-
proach below.

4.4.1. Frequency Analysis. Frequency
analysis examines the relationship be-
tween the frequency of document access
during a particular time window and the
probability of access during a subsequent
marginal period called the pane. This
relationship can be derived by observing
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access log data showing the times of
individual access to Web documents. Let
us consider the number of documents
accessed x times during a fixed interval,
say one week. If we know the proportion
of these documents that are also accessed
during the marginal period, then we can
calculate the probability of future access
to a document given that it is accessed
x times as follows. Suppose wx denotes
the number of documents accessed x
times during the window period and
px (px < wx), the number, out of those
accessed during the pane. Then, the
probability that a document A is accessed
during the pane given that it is accessed
x times during the window is given by:

Pr{A is accessed in pane | A is accessed x times during window}
= Pr{A is accessed in pane and A is accessed x times during window}

Pr{A is accessed x times during window} = px

wx
.

The above probability can be aggregated
over successive windows for the given ob-
servation interval to obtain the condi-
tional distribution of need probability, or
the probability that an item will be re-
quired right now, versus the frequency of
access in the previous window. Recker and
Pitkow found that the distribution of need
probability p shows a familiar Power Law
distribution to the human memory model,
that is, as the frequency of document ac-
cesses x increases, the need probability in-
creases according to the function:

p = axb,

where a and b are constants.

4.4.2. Recency Analysis. Recency analy-
sis proceeds in a similar manner except
that the probability of access during the
pane is conditioned upon how recently
the document was last accessed. Instead
of creating bins of similar frequency val-
ues observed over successive windows, the
documents are aggregated into bins of
similar recency values. That is, if x doc-
uments were accessed an interval t ago

(recency time) in the previous window, out
of which x ′ are accessed during the next
pane, then the need probability is calcu-
lated as follows:

Pr{A is accessed in pane | A was

accessed t units ago) = x ′

x
.

The need probability versus recency time
distribution shows an inverse power law
relationship in agreement with retention
memory literature. In addition, recency
analysis shows a much better fit on avail-
able access data than frequency.

Recker and Pitkow [1996] also study
the relationship between the access

distributions and hyperlink structure.
They found that a high correlation ex-
ists between the recency of access, num-
ber of links and document centrality10

in the graph structure. Specifically, docu-
ments that are less recently accessed, have
fewer mean number of links per document,
and lower measures of relative in- and
out-degrees. Thus, recently accessed docu-
ments have higher overall interconnectiv-
ity. This analysis can be applied to optimal
ordering for efficient retrieval. Documents
with high-need probability can be posi-
tioned for faster access (caching strategies
based on need probability) or more conve-
nient (addition of appropriate hyperlinks).

There are several issues in Recker and
Pitkow’s [1996] approach that require
careful consideration before such a model
can be adopted for practical access pre-
diction. First, the window and pane sizes
are known to have a strong impact on
the quality of prediction. No rule for an
ideal setting of these parameters exists
and significant trial and error may be

10 See Section 2 for the definition of centrality and
other hypertext graph measures.
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needed to identify the right values. Sec-
ond, the model does not account for contin-
uous changes in Web repositories such as
aging effects and the addition and deletion
of documents. Finally, although the model
considers multiple predictors, frequency
and recency, the method of combining
these parameters is not scalable. We must
note that there is a difference between pre-
dictors and affecter variables. While fre-
quency and recency of access are strong
predictors, they cannot be established as
factors affecting need probability due to
the absence of a causal relationship. More
fundamental document properties such
visibility (connectivity) and relevance to
popular topics are more likely to be factors
that determine need probability. However,
for prediction purpose, we believe that all
the three factors considered above can be
used.

4.5. Adaptive Web Sites

Usage characterization metrics attempt to
model and measure user behavior from
browsing patterns gathered typically from
server log files. These metrics have facil-
itated adaptive web sites—sites that can
automatically improve their organization
and presentation by learning from visi-
tor access patterns [Perkowitz and Etzioni
1997, 1998, 1999].

A metric that helps find collections of
pages that are visited together in sessions
is the co-occurrence frequency [Perkowitz
and Etzioni 1999]. For a sequence of
page accesses (obtainable from the server
access log), the conditional probability
P (p|q) is the probability that a visitor
will visit page p given that she has al-
ready visited q. The co-occurrence fre-
quency between the pair 〈p, q〉 is then
Min(P (p|q), P (q|p)). Connected compo-
nents in a graph whose edges are labeled
with the co-occurrence frequencies repre-
sent clusters of pages that are likely to be
visited together. The quality of such clus-
ters is defined as the probability that a
user who has visited one page in a cluster
also visits another page in the same clus-
ter. In a related work, Yan et al. [1996]
represent user sessions as vectors where

the weight of the ith page is the degree
of interest in it measured through actions
such as the number of times the page is
accessed or the time the user spends on
it. Users can then be clustered on the ba-
sis of the similarity between their session
vectors (measured as Euclidean distance
or angle measure). As the user navigates
a site, he is assigned to one or more cate-
gories based on the pages accessed so far.
Pages in matching categories are included
as suggestions on top of the HTML docu-
ment returned to the user if they have not
been accessed so far and are unlinked to
the document. The same study finds that
the distribution of time spent by a user on
a page is roughly Zipfian. An analysis of
user navigation patterns by Catledge and
Pitkow [1995] reveals that the distribu-
tion of path lengths within a site is roughly
negative linear with the relationship be-
tween path length p and its frequency f
being f = 0.24p.

4.6. Activation Spread Technique

Pirolli et al. [1996] have recently used
an activation spread technique to iden-
tify pages related to a set of “source”
pages on the basis of link topology, tex-
tual similarity and usage paths. Conceptu-
ally, an activation is introduced at a start-
ing set of web pages in the Web graph
whose edges are weighted by the crite-
ria mentioned above. To elaborate further,
the degree of relevance of Web pages to
one another is conceived as similarities,
or strength of associations, among Web
pages. These strength-of-association re-
lations are represented using a compos-
ite of three graphs. Each graph structure
contains nodes representing Web pages,
and directed arcs among nodes are labeled
with values representing strength of asso-
ciation among pages. These graphs repre-
sent the following:

— The Hypertext Link Topology of a Web
Locality. This graph structure repre-
sents the hypertext link topology of a
Web locality by using arcs labeled with
unit strengths to connect one graph
node to another when there exists a
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hypertext link between the correspond-
ing pages.

— Inter-Page Text Similarity. This type
of graph structure represents the inter-
page text content similarity by label-
ing arcs connecting nodes with the
computed text similarities between cor-
responding Web pages.

— Usage Paths. The last type of graph
structure represents the flow of users
through the locality by labeling the
arcs between two nodes with the num-
ber of users that go from one page to
another.

Each of these graphs is represented by
matrices in the spreading activation al-
gorithm. That is, each row corresponds to
a node representing a page, and similarly
each column corresponds to a node repre-
senting a page. Conceptually, this activa-
tion flows through the graph, modulated
by the arc strengths, the topmost active
nodes represent the most relevant pages
to the source pages. Effectively for a source
page p, the asymptotic activity of page q
in the network is proportional to P (q|p),
the probability that q will be accessed by
a user given that she has visited p.

5. WEB PAGE SIMILARITY

Web page similarity metrics measure
the extent of relatedness between two
or more Web pages. Similarity functions
have mainly been described in the context
of Web page clustering schemes. Cluster-
ing is a natural way of semantically orga-
nizing information and abstracting impor-
tant attributes of a collection of entities.
Clustering has certain obvious advan-
tages in improving information quality
on the WWW. Clusters of Web pages can
provide more complete information on a
topic than individual pages, especially in
an exploratory environment where users
are not aware of several pages of interest.
Clusters partition the information space
such that it becomes possible to treat them
as singular units without regarding the
details of their contents. We must note,
however, that the extent to which these
advantages accrue depends on the qual-

ity and relevance of clusters. While this is
contingent on user needs, intrinsic evalu-
ations can often be made to judge cluster
quality. In our presentation of clustering
methods, we discuss these quality metrics
where applicable.

We classify similarity metrics into
content-based, link-based and usage-based
metrics. Content-based similarity is mea-
sured by comparing the text of documents.
Pages with similar content may be consid-
ered topically related and designated the
same cluster. Link-based measures rely
exclusively on the hyperlink structure of a
Web graph to obtain related pages. Usage-
based similarity is based on patterns of
document access. The intent is to group
pages or even users into meaningful clus-
ters that can aid in better organization
and accessibility of web sites.

5.1. Content-Based Similarity

Document resemblance measures in the
Web context can use subsequences match-
ing or word occurrence statistics. The first
set of metrics using subsequence match-
ing represents the document D as a set
of fixed-size subsequences (or shingles)
S(D). The resemblance and containment
[Broder et al. 1997] of documents are then
defined in terms of the overlap between
their shingle sets. That is, given a pair of
documents A and B, the resemblance de-
noted (r(A, B)) and containment of A in B
(denoted c(A, B)) are defined respectively
as follows:

r(A, B) = |S(A) ∩ S(B)|
|S(A) ∪ S(B)|

c(A, B) = |S(A) ∩ S(B)|
|S(A)| .

Clearly, both the measures vary between
0 and 1; if A = B, then a scalable tech-
nique to cluster documents on the Web
using their resemblance is described in
[Broder et al. 1997]. The algorithm lo-
cates clusters by finding connected com-
ponents in a graph where edges de-
note the resemblance between document
pairs.
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Content-based similarity between Web
pages can also be approached using the
vector space model as in [Weiss et al. 1996].
Each document is represented as a term
vector where the weight of term ti in doc-
ument dk is calculated as follows:

wki =
(0.5+ 0.5(TFk,i/TFk,max))wat

k,i√∑
ti∈dk

(0.5+ 0.5(TFk,i/TFk,max))2
(
wat

k,i

)2
,

where

TFk,i Term frequency of ti in dk
TFk,max Maximum term frequency

of a keyword in dk
wat

k,i Contribution to weight
from term attribute.

Note that this definition of term weights
departs from Section 3.1 by excluding the
inverse document frequency (IDF) and in-
troducing a new factor wat which is config-
urable for categories of terms. The term-
based similarity, denoted St

xy between two
documents dx and d y is the normalized dot
product of their term vectors wx and wy
respectively:

St
xy =

∑
i

wxi ·wyi.

5.2. Link-Based Similarity

Link-based similarity metrics are derived
from citation analysis. The notion of
hyperlinks provides a mechanism for
connection and traversal of information
space as do citations in scholarly enter-
prise. Co-citation analysis has already
been applied in information science to
identify the core sets of articles, authors
or journals in a particular field of study
as well as for clustering works by topical
relatedness. Although the meaning and
significance of citations differs consid-
erably in the two environments due to
the unmediated nature of publishing
on the Web, it is instructive to review
metrics from citation analysis for possible
adaptation. Application of co-citation
analysis for topical clustering of WWW
pages is described in Larson [1996] and

Pitkow and Pirolli [1997]. We discuss
here two types of citation based similarity
measures namely co-citation strength and
bibliometric coupling strength together
with their refinements and applications
to Web page clustering.

To formalize the definition of citation-
based metrics, we first develop a matrix
notation for representing a network of sci-
entific publications. A bibliography may
be represented as a citation graph where
papers are denoted by nodes and refer-
ences by links from citing document to the
cited document. An equivalent matrix rep-
resentation is called the citation matrix
(C) where rows denote citing documents
and columns cited documents. An element
Cij of the matrix has value one (or the num-
ber of references) if there exists a reference
to paper j in paper i, zero otherwise.

Two papers are said to be bibliographi-
cally coupled [Egghe and Rousseau 1990]
if they have one or more items of refer-
ences in common. The bibliographic cou-
pling strength of documents i and j is the
number of references they have in com-
mon. In terms of the citation matrix, the
coupling strength of i and j denoted SB′

ij is
equal to the scalar product of their citation
vectors Ci and Cj . That is,

SB′
ij = Ci · CT

j

= (C · CT )ij.

In order to compare the coupling strength
of different pairs of documents, the above
metric may be unsensitized to the number
of references through the following nor-
malization (U is the unit vector of the
same dimension as C):

SB
ij =

Ci · CT
j

Ci ·U T + Cj ·U T .

An alternate notion is that of co-citation.
Two papers are co-cited if there exists a
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third paper that refers to both of them. The
co-citation strength is the frequency with
which they are cited together. The relative
co-citation strength is defined as follows:

SC
ij =

CT
i · (CT

j )T

CT
i ·U T + CT

j ·U T
.

Bibliographic coupling (and co-citation)
has been applied for clustering docu-
ments. Two criteria discussed by Egghe
and Rousseau [1990] that can be applied
to Web pages are as follows:

(A) A set of papers constitute a related
group G A(P0) if each member of
the group has at least one coupling
unit in common with a fixed paper
P0. That is, the coupling strength
between any paper P and P0 is
greater than zero. Then, G A(P0; n) de-
notes that subset of G A(P0) whose
members are coupled to P0 with
strength n.

(B) A number of papers constitute a re-
lated group GB if each member of the
group has at least one coupling unit
to every other member of the group.

A measure of co-citation based cluster
similarity function is the Jaccard index,
defined as:

Sj (i, j ) = coc(i, j )
cit(i)+ cit( j )− coc(i, j )

,

where coc(i, j ) denotes the co-citation
strength between documents i and j
given by CT

i ·(CT
j )T and cit(i) = CT

i ·U T and
cit( j ) = CT

j · U T are the total number of
citations received by i and j , respectively.
Note that Jaccard’s index is very similar
to the relative co-citation strength defined
by us earlier. Another similarity function
is given by Salton’s cosine equation as
follows:

Ss(i, j ) = coc(i, j )√
cit(i) · cit( j )

In most practical cases, it has been found
that Salton’s similarity strength value is
twice as calculated by the Jaccard index.

Amongst other approaches to co-citation
based clustering, Larson [1996] employs
the multidimensional scaling technique
to discover clusters from the raw co-
citation matrix. Similarly, Pitkow and
Pirolli [1997] apply a transitive clus-
ter growing method once the pairwise
co-citation strengths have been deter-
mined. In another application, Dean and
Henzinger [1999] locate pages related to
a given page by looking for siblings with
the highest co-citation strength. Finally, a
method described by Egghe and Rousseau
[1990] finds connected components in co-
citation networks whose edges are la-
beled by co-citation strengths of document
pairs. The size and number of clusters
(or cluster cohesiveness) can be con-
trolled by removing edges with weights
below a certain threshold co-citation
frequency.

A generalization of citation-based simi-
larity measures considers arbitrarily long
citation paths rather than immediate
neighbors. Weiss et al. [1996] introduce a
weighted linear combination of three com-
ponents as their hyperlink similarity func-
tion for clustering. For suitable values of
weights Wd , Wa and Ws, the hyperlink
similarity between two pages i and j is
defined as:

Sl
ij = Wd Sd

ij +WaSa
ij +WsSs

ij.

We now discuss each of the similarity com-
ponents Sd

ij , Sa
ij and Ss

ij. Let `ij denote the
length of the shortest path from page i
to j and l k

ij that of the shortest path not
traversing k.

— Direct Paths. A link between docu-
ments i and j establishes a semantic
relation between the two documents.
If these semantic relations are transi-
tive, then a path between two nodes
also implies a semantic relation. As the
length of the shortest path between the
two documents increases, the seman-
tic relationship between the two docu-
ments tend to weaken. Hence, the direct
path component relates the similarity
between two pages i and j denoted Ss

ij
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as inversely proportional to the shortest
path lengths between them. That is,

Ss
ij =

1

2lij + 2lji
.

Observe that the denominator ensures
that as shortest paths increase in
length, the similarity between the doc-
uments decreases.

— Common Ancestors. This component
generalizes co-citation by including suc-
cessively weakening contributions from
distant ancestors that are common to i
and j . That is, the similarity between
two documents is proportional to the
number of ancestors that the two doc-
uments have in common. Let A denote
the set of all common ancestors of i
and j ,

Sa
ij =

∑
x∈A

1

2l j
xi + 2l i

x j
.

Because direct paths have already been
considered in similarity component Ss,
only exclusive paths from the common
ancestor to the nodes in question are
involved in the Sa component. Observe
that, as the shortest paths increase in
length, the similarity decreases. Also,
the more common ancestors, the higher
the similarity.

— Common Descendents. This compo-
nent generalizes bibliographic coupling
in the same way as Sa. That is, the sim-
ilarity between two documents is also
proportional to the number of descen-
dants that the two documents have in
common. Let D denote the set of all com-
mon descendants of i and j ,

Sd
ij =

∑
x∈D

1

2l j
ix + 2l i

j x
.

The computation normalizes Sd
ij to lie

between 0 and 1 before it is included in
Sl

ij in the same way as the normaliza-
tion for Sa

ij.

5.3. Usage-Based Similarity

Information obtained from the interaction
of users with material on the Web can be

of immense use in improving the quality
of online content. We now discuss some of
the approaches proposed for relating Web
documents based on user accesses. Web
sites that automatically improve their or-
ganization and presentation by learning
from access patterns are addressed by
Perkowitz and Etzioni [1997, 1998, 1999].
Sites may be adaptive through customiza-
tion (modifying pages in real time to suit
individual users, e.g., goal recognition) or
optimization (altering the site itself to
make navigation easier for all, e.g., link
promotion).

5.3.1. Clustering using Server Logs. The
optimization approach is introduced by
Perkowitz and Etzioni [1998, 1999] as an
algorithm that generates a candidate in-
dex page containing clusters of web pages
on the same topic. Their method assumes
that a user visits conceptually related
pages during an interaction with the site.
The index page synthesis problem can be
stated as follows: Given a web site and a
visitor access log, create new index pages
containing collections of links to related
but currently unlinked pages. The Page-
Gather cluster mining algorithm for gen-
erating the contents of the index page
creates a small number of cohesive but
possibly overlapping clusters through five
steps:

(1) Process access logs into visits.
(2) Compute the co-occurrence frequen-

cies between pages and create a sim-
ilarity matrix. The matrix entry for a
pair of pages pi and pj is defined as
the co-occurrence frequency given by
min(P (p1|p2), P (p2|p1)). If two pages
are already linked, the corresponding
matrix cell is set to zero.

(3) Create a graph corresponding to
the matrix and find the maximal
cliques11 or connected components12 in
the graph. Each clique or connected

11 A clique is a subgraph in which every pair of nodes
has an edge between them; a maximum clique is one
that is not a subset of a larger clique.
12 A connected component is a subgraph in which ev-
ery pair of nodes has a path between them.
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component then represents a set of
pages that are likely to be visited to-
gether (and hence related, by the above
assumption).

(4) Rank the clusters found and choose
which to output. The clusters are
sorted using the average co-occurrence
frequency between all pairs of docu-
ments in a cluster.

(5) For each cluster, create a Web page
consisting of links to the documents
and present it to the Webmaster for
evaluation.

Experiments [Perkowitz and Etzioni
1998, 1999] show that PageGather outper-
forms other clustering algorithms such as
K-means, HAC, and a-priori frequency set
calculation in efficiency as well as quality.
Quality of clusters is measured by approx-
imating the following: If the user visits
a page in a cluster, what is the likeli-
hood that he will visit more pages from
the same cluster? Suppose n(i) represents
the number of pages in cluster i visited
during a session, then the quality of clus-
ter i is given by the probability P{n(i)≥2|
n(i)≥1}.

As we have seen, Perkowitz and
Etzioni’s approach relies on co-occurrence
frequency to related pages. However, does
frequent co-occurrence necessarily indi-
cate semantic relationship? Certainly this
assumption disregards a certain amount
of arbitrariness that prevails in the often
serendipitous browsing behavior of users.
In exploratory browsing, pages accessed in
the same session may not be related. For
instance, high co-occurrence could also be
due to site structure, such as coercive hy-
perlinks, rather than a persistent interest
on the users behalf. The method discounts
the nature of relationship between pages
grouped together which might be a useful
clue in obtaining more refined clusters.

Server logs can also help cluster users
based on the similarity between the sets of
pages they visit as described by Yan et al.
[1996]. Clustering users is a natural way
customization, whereby pages in a user’s
cluster that have not been explored yet can
be suggested as navigational hints in the
form of dynamically generated links. This

type of dynamic hypertext configuration is
performed as follows:

(1) Preprocessing. Suppose a web site
has n HTML pages. Each user
session13 is represented using an
n-dimensional session vector whose
ith element is the weight or degree
of interest assigned to the ith page.
The weight can be measured through
actions such as the number of times
the page is accessed or the time the
user spends on it.

(2) Clustering. User session vectors that
are close to each other in the n-
dimensional vector space, as deter-
mined by Euclidean or angular dis-
tance, are clustered together.

(3) Dynamic Link Generation. As the
user navigates a site, she is assigned
to one or more categories based on the
pages accessed so far if their number
exceeds a predefined threshold. Pages
in matching categories are included as
suggestions on top of the HTML docu-
ment returned to the user if they have
not been accessed so far and are un-
linked to the document.

However, this approach towards cus-
tomization assumes that

— Pages visited in each session are se-
mantically related.

— Users will be interested in all pages
accessed by other users in the same
cluster (during dynamic hyperlink
generation).

As for the optimization technique dis-
cussed earlier, these assumptions are not
entirely valid. Similarity between session
vectors does not necessarily imply a rela-
tionship between user interests. Both the
techniques described above ignore the ef-
fect of proxies and browser caches on the
accuracy of individual session tracking.
Requests for cached pages are not logged
by the server. Users behind a proxy or
firewall cannot be distinguished and are
assigned the same IP address, affecting

13 A session is approximated as requests originating
from the same host within 24 hours.
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the granularity of clusters. Finally, esti-
mates such as the number of accesses and
time spent are not truly representative of
a user’s interest in a page.

6. WEB SEARCH AND RETRIEVAL

In Section 3, we introduced significance
metrics for ranking responses of search
engines to user queries. Here, we review
metrics for evaluating and comparing the
performance of Web search and retrieval
services. We discuss them under two cat-
egories: effectiveness and search engine
comparison.

6.1. Effectiveness

A large proportion of Web search engines
employ information retrieval techniques
such as the vector space model similar-
ity for keyword based queries. Their re-
trieval effectiveness, or the quality of re-
sults returned in response to a query, is
measured through two metrics, namely,
precision and recall. Let N denote the
number of responses of a search to a
keyword query Q , of which N ′ are rel-
evant to Q . If R relevant Web pages
exist in all, then the effectiveness met-
rics are defined as follows [Hawking
et al. 1999 Lee et al. 1997 Yuwono and
Lee 1996]:

— Precision. The proportion of pages re-
turned that are relevant. That is,
Precision = N ′/N .

— Recall. The proportion of relevant
pages returned. That is, Recall = N ′/R.

We assume here the definition of relevant
pages stated in Section 3.1. Precision and
recall usually exhibit a trade-off relation-
ship that is depicted through Precision–
Recall curves. Metrics that combine pre-
cision and recall are discussed in [Boyce
et al. 1994]. One problem with measuring
recall is that the total number of pages rel-
evant to a query is difficult to ascertain
given the size of the Web.

Recently, Brewington and Cybenko
[2000] proposed a metric for the currency
of a search engine. This metric can be
used to answer questions about how fast

a search engine must reindex the Web to
remain “current.” They introduce the con-
cept of (α, β)-currency of a search engine
with respect to a changing collection of
Web pages. Informally, the search engine
data for a given Web page is said to be
β-current if the pages has not changed be-
tween the last time it was indexed and β
time units ago. Formally, expected prob-
ability of a single page being β-current
over all values of the observation time tn
is given as follows:

Pr(β − current|λ, T, β)

= β

T
+ 1− exp (−λ(T − β))

λT
,

where λ is the change rate of each Web
page [Brewington and Cybenko 2000] and
T is an associated distribution of reindex-
ing times (a periodic reindexing system
will have a single constant To). Observe
that β is the grace period for allowing un-
observed changes to a Web page and re-
laxes the temporal aspect of what it means
to be current. The smaller β means more
current our information about the page is.

A search engine for a collection of pages
is then said to be (α, β)-current if a ran-
domly chose page in the collection has a
search engine entry that is β-current with
probability at least α. It can be shown that
the expected probability α is as follows:

α =
∫ ∞

0

[
σ

δ

(
t
δ

)σ−1

exp (−(t/δ)σ )

]

×
[
β

To
+ 1− exp (−(1/t)(To − β))

(1/t)To

]
dt,

where δ and σ are scale and shape parame-
ters, respectively, in Weibull distributions
[Montgomery and Runger 1994]. Note that
the above integral can only be evaluated
in closed form when the Weibull shape pa-
rameter σ is 1. Otherwise, numerical eval-
uation is required. Also, the integral gives
an α for every pair of (To, β).

6.2. Search Engine Comparison

The comparison of public domain search
services has been the subject of several
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studies. One approach for comparing mul-
tiple search services describes the follow-
ing metrics using a meta-search service
such as MetaCrawler [Selberg and Etzioni
1995]:

— Coverage. Coverage measures the
number of hits returned by each service
on an average measured as the per-
centage of a pre-set maximum allowed
hits per search engine. The uniqueness
of coverage can be measured as the
percentage of references not returned
by any other engine. The absolute cov-
erage of a public search engine or the
fraction of the Web it indexes has been
reported to be a maximum of one-third
of the Web [Lawrence and Giles 1998,
1999]. The same study analyzes the
overlap between pairs of engines to
estimate a lower bound on the size of
the indexable Web as 320 million pages.
Note that the estimation of the size of
the indexable Web is only valid till April
1998 [Lawrence and Giles 1998]. More
recently, it has been estimated that the
number of unique pages on the Internet

size(E1)
size(E2)

=
|E1 ∩ E2|
|E2|

|E1 ∩ E2|
|E1|

= Fraction of URLs sampled from E2 found in E1
Fraction of URLs sampled from E1 found in E2

.

is 2.1 billion and number of unique
pages added per day is 7.3 million
[Murray and Moore 2000]. These statis-
tics are valid as of July 10, 2000.

— Relevance. Two relevance metrics are
used. One metric is the proportion of
hits from each engine that is followed
by the user, or its precision. The other
metric is the proportion of overall hits
followed by the user per search engine
(i.e., market share).

— Performance. Performance is mea-
sured by each service’s average
response time a query.

Other metrics to evaluate search en-
gines indexes are size, overlap and qual-
ity. A standardized, statistical way of
measuring relative search engine size
and overlap using random queries (with-
out privileged access) is described by
Bharat and Broder [1998]. Suppose we
have two procedures, one for sampling
pages uniformly at random from the in-
dex of a particular search engine and an-
other for checking whether a particular
page is indexed by a particular search
engine.

Based on approximations of these proce-
dures through queries using public inter-
faces, the overlap and relative size of two
search engines indexes E1 and E2 can be
estimated as follows:

— Overlap. Fraction of URLs sampled
from E1 found in E2. This approximates
the following fraction:

|E1 ∩ E2|
|E1|

— Size Comparison. The size ratio of E1
and E2 is given by:

Sampling is performed by randomly se-
lecting a URL from the pages returned
for a query composed using keywords from
a preconstructed lexicon. To test whether
the URL is indexed by a particular search
engine (i.e., checking), a strong query14

(which uniquely identifies the page) is con-
structed. The presence of the URL is then
tested in the set of pages returned. Note
that the response to a strong query may

14 A conjunctive query of k most significant keywords
in the Web page. Significance is taken to be inversely
proportional to frequency in the lexicon.
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contain multiple URLs due to mirroring,
multiple aliases, and so on.

A simple methodology for approximat-
ing index quality using random walks
is proposed by Henzinger et al. [1999].
The definition of quality is based on the
PageRank measure defined in the Google
search engine [Brin and Page 1998]. Sup-
pose each page on the Web is assigned a
weight w scaled by the sum of all page
weights. Then, the quality w(S) and av-
erage page quality a(S) of a search engine
index S is defined as

w(S) =
∑
p∈S

R(p)

a(S) = w(S)
|S| ,

where R(p) is the PageRank15 of a page p
as defined in Brin and Page [1998]. This
approach approximates the quality of a
search engine index S by independently
selecting pages p1, p2, . . . , pn and testing
whether each page is in S. Let I [pi ∈ S]
be 1 if pi is in S and 0 otherwise, then the
estimate of w(S) is given by the fraction of
pages in the sample sequence that are in
the index. That is,

w̄(S) = 1
n

n∑
i=1

I [pi ∈ S].

Consequently, one needs to measure the
fraction of pages in the sample sequence
that are in the index S in order to approx-
imate the quality of S. To achieve this, the
authors pointed out that there is a require-
ment of two components. First, a mech-
anism is required for selecting pages ac-
cording to w. Second, a method for testing
whether a page is indexed by a search
engine.

The authors adopted the approach used
by Bharat and Broder [1998] in order
to test whether a URL is indexed by a
search engine. However, selecting pages

15 In Henzinger et al. [1999], the (1 − d ) term in
the definition of PageRank is normalized by the total
number of pages on the web T .

according to a weight distribution w is sig-
nificantly harder. It is also difficult to se-
lect Web pages according to the PageRank
distribution. To solve this problem,
Henzinger et al. [1999] proposed a sam-
pling algorithm that provides a quality
measure close to that which would be ob-
tained using the PageRank distribution.
This approach is based on the assumption
that one has the means to choose a page
uniformly at random. In that case, one
could perform a random walk with an
equilibrium distribution corresponding to
the PageRank measure. At each step, the
walk would either jump to a random page
with probability d or follow a random
link with probability 1 − d . By executing
this walk for a long period of time, one
could generate a sample sequence and
the pages in the sample sequence would
have a distribution close to the PageRank
distribution.

As pointed out by the authors, there are
two problems with the implementation of
such a random walk. First, no method is
known for choosing a Web page uniformly
at random. Second, it is not clear how
many steps one would have to perform in
order to remove the bias of the initial state
and thereby approximate the equilibrium
distribution. To solve the first problem, the
authors adopted the following approach:
the walk occasionally chooses a host uni-
formly at random from the set of hosts en-
countered on the walk thus far, and jumps
to a page chosen uniformly at random from
the set of pages discovered on that host
thus far. Obviously, the equilibrium distri-
bution of this approach does not match the
PageRank distribution, since pages that
have not been visited yet cannot be cho-
sen, and pages on hosts with a small num-
ber of pages are more likely to be chosen
than pages on hosts with a large number
of pages. However, the authors experimen-
tally showed [Henzinger et al. 1999] that
this bias does not prevent the walk from
approximating a good quality metric that
show similar behavior as PageRank.

For the second problem, it is obvious
that one has to start the random walk
from some initial page. Hence, this intro-
duces a bias towards pages close to the
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initial page. The authors experimentally
justified that as a substantial portion of
the Web is highly connected, with reason-
ably short paths between pair of pages,
randomly walking over a small subgraph
of the Web suffices to handle the initial
bias [Henzinger et al. 1999].

Henzinger et al. [1999] provided some
experimental results based on their ran-
dom walks. First, the results demonstrate
that the random walk approach does cap-
ture the intuitive notion of quality and
the weight distribution appears heavily
skewed towards pages user would con-
sider useful. Second, the results com-
pared the measured quality of several
search engine indexes. For instance, com-
paring the quality scores of the search
engine indexes according to their size,
Alta Vista scored the highest under the
quality metric; Excite does extremely well
for a search engine of intermediate size.
Similarly, comparing the average page
quality of the search engine indexes, the
authors found out that larger search en-
gines sometimes have higher average page
quality.

7. INFORMATION THEORETIC

The final category of Web metrics com-
prises metrics that measure properties
related to information needs, production
and consumption. Here, we consider two
properties discussed by Pitkow and Pirolli
[1997], namely, desirability and surviv-
ability of Web documents and rate of
change of Web pages as discussed by
Brewington and Cybenko [2000].

The desirability of a page is the proba-
bility that its information will be needed in
a given time interval. Given that the fre-
quency of page access on the WWW is ap-
proximately a negative binomial distribu-
tion, the information desirability seems to
follow the Burrell Gamma-Poisson (BGP)
model, which assumes that accesses to
information are Poisson events and their
desirability is modeled by a Poisson pa-
rameter. The logarithm of need probability
satisfies a negative linear relationship
with the logarithm of time since last
access.

Survival analysis models the probabil-
ity that a particular item will be deleted
at a particular time. The survival function
defined over time t is the probability that
a page survives at least up to time t. That
is, for a survival time T , distribution func-
tion F (t), and the corresponding density
function f (t), the survival function is:

S(t) = 1− F (t)
= P{T > t}.

The hazard rate is defined as the probabil-
ity that a page will be deleted in the next
unit of time, given that it has survived to
time t:

1(t) = f (t)
S(t)

.

Brewington and Cybenko [2000] devel-
oped an exponential probabilistic model
for the times between individual Web page
changes based on observational data on
the rates of change for a large sample
of Web pages. They observed pages at a
rate of about 100,000 pages per day for
period of over seven months, recording
how and when these pages have changed.
About one page in five is younger than
eleven days, and half of the Web’s content
is younger than three months. In this con-
text, the age of a Web page is defined as the
difference between a downloaded page’s
last-modified timestamp and the time at
downloading and lifetime is the time be-
tween changes. About one page in four is
older than one year and sometimes much
older than that. Inspired by this findings,
the author model the changes in a single
Web page as a renewal process. If g (t) is
the age probability density and λ is the
change rate, then it can be shown that

g (t) = λ exp(λt).

Note that the lifetime probability density
is related to the age probability density as
the act of observing “the age is t units” is
the same as knowing “the lifetime is no
smaller than t units.” Consequently, we
can estimate a page’s lifetime PDF, assum-
ing an exponential distribution, using only
page age observations, which can be easily
obtained from the data.
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The authors also modeled the age distri-
bution for the entire Web using the joint
distribution of the exponential growth
rate of Web pages and the change rate λ.
Using a distribution over the inverse rate
λ = 1/x and exponential growth rate pa-
rameter ε, it can be shown that the age
probability density for the entire web is as
follows:

g (t) =
∫ ∞

0

(
ε + 1

x

)
× exp

((
ε + 1

x

)
t
)

w(x) dx.

Note that the authors observed that the
shape of the distribution w(x) in the above
equation roughly follows Weibull distri-
bution Montgomery and Runger [1994],
which is given by

w(t) = σ

δ

(
t
δ

)σ−1

exp (− (t/δ)σ ).

where δ is the scale parameter and δ is
a shape parameter. The shape parameter
can be varied to change the shape peaked
distribution to an exponential to a uni-
modal distribution. The scale parameter
adjust the mean of the distribution. Nu-
merically, the authors found out that the
optimal values are ε = 0.00176, σ = 0.78
and δ = 651.1.

8. CONCLUSION

In this article, we have reviewed and clas-
sified some well known Web metrics. Our
approach has been to consider these met-
rics in the context of improving Web con-
tent while intuitively explaining their ori-
gins and formulations. This analysis is
fundamental to modeling the phenomena
that give rise to the measurements. To our
knowledge, this is the first survey that in-
corporates an extensive treatment of wide
range of metrics and measurement func-
tions. Nevertheless, we do not claim this
survey is complete and acknowledge any
omissions. We hope that this initiative
would serve as a reference point for fur-
ther evolution of new metrics for charac-
terizing and quantifying information on

the Web and developing the explanatory
models associated with them.
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