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Abstract. Research and industrial experience reveal that code reviews as a part 

of software inspection might be the most cost-effective technique a team can use 

to reduce defects. Tools that automate code inspection mostly focus on the detec-

tion of a priori known defect patterns and security vulnerabilities. Automated de-

tection of logical errors, due to a faulty implementation of applications’ function-

ality is a relatively uncharted territory. Automation can be based on profiling the 

intended behavior behind the source code. In this paper, we present a new code 

profiling method that combines an information flow analysis, the crosschecking 

of dynamic invariants with symbolic execution, and the use of fuzzy logic. Our 

goal is to detect logical errors and exploitable vulnerabilities. The theoretical un-

derpinnings and the practical implementation of our approach are discussed. We 

test the APP_LogGIC tool that implements the proposed analysis on two real-

world applications. The results show that profiling the intended program behav-

ior is feasible in diverse applications. We discuss the heuristics used to overcome 

the problem of state space explosion and of the large data sets. Code metrics and 

test results are provided to demonstrate the effectiveness of the approach. 

Keywords:  risk, logical errors, source code profiling, static analysis, dynamic 

analysis, input vectors, fuzzy logic. 

1 Introduction 

Software development is the process of deriving an executable program description 

from a set of given requirements that reflect the intended program behavior, i.e. what 

the programmer wants his code to do and what not to do. It is an intellectual activity 

that translates intended functionality - in the form of requirements - into source code. 

Modern techniques for static and dynamic analysis of programs have been proven ef-

fective in detecting a priori known flaws, but they do not go far enough in the detection 

of logical errors: erroneous translation of software requirements causing unintended 

program behavior, due to execution flow deviations.  

These errors are not a priori known like the flaws that can be detected by most static 

analysis and software model checking techniques. As an example, we consider the fol-



lowing [5]: “a web store application allows, using coupons, to obtain a one-time-dis-

count-per-coupon on certain items; a faulty implementation can lead to using the same 

coupon multiple times, thus eventually zeroing the price”. Automated detection of such 

program behavior is a relatively uncharted territory. 

We address this problem by extracting the programmed behavior of Applications 

Under Test (AUTs) with code profiling techniques. Potential logical errors are then 

detected and classified by applying heuristics on the gathered data. Our approach is 

based on previous research [5-7]. In this paper, we augment and reconstruct the pre-

sented method in order to be able to make tests on complex, real-world applications. 

We change the static analysis, from scripted execution of possible paths to symbolic 

execution with various types of data listeners for the source code variables. Addition-

ally, we formally define logical errors and lay the foundations of the method. We de-

velop a new parser for Daikon’s invariants in order to present test results using diverse, 

complex AUTs: a Jet Controller from NASA and an SSH framework; thus proving that 

our method can be utilized to detect different kinds of errors. The method consists of 

the following steps:  

1. For an AUT, a representation of its programmed behavior is generated in the form 

of dynamic invariants, i.e. source code rules in the form of assert statements. Invar-

iants are collected by dynamic analysis of the AUT with the MIT Daikon tool [12]. 

2. A preliminary analysis with the JPF tool from NASA and custom-made methods 

gathers the following data: (i) a set of execution paths and program states along these 

paths and (ii) input data vectors and a map of all program points, in which execution 

can follow different paths (execution flow branching points).  

3. Logical errors are then detected by crosschecking information gathered with the dy-

namic invariants collected, during the steps (1) and (2). Invariants are checked upon 

multiple execution paths and their accessed program states.  

4. Logical errors due to faulty input data manipulation are also detected by a tainted 

object propagation analysis. “Tainted” input data are traced throughout the source 

code and the applied sanitization checks are verified.     

The main contributions of this paper are summarized as follows: 

─ We elaborate on our approach that was first discussed in [6] and [7], to show how 

the programmed behavior of an AUT can be validated efficiently and can be used as 

a map for logical error detection. 

─ We introduce fuzzy logic membership sets used to classify logical errors: (i) Sever-

ity, with values from a scale quantifying the impact of a logical error, with respect 

to how it affects the AUT’s execution flow and (ii) Vulnerability: with values from 

a scale quantifying the likelihood of a logical error and how dangerous it is. The 

proposed fuzzy sets aim to automate reasoning based on the analysis findings, simi-

larly to a code audit process. 

─ We analyze two real-world, open source applications with diverse characteristics: 

the Reaction Jet Control (RJC) application from NASA's Apollo Lunar Lander and 

an SSH framework called JSCH from the JCraft company [18. Tests involve the 

injection of logically malformed data based on code metrics [15], which divert the 

AUT’s execution paths to non-intended states. 



In Section 2, we review previous work on the used techniques. Section 3 provides the 

background terminology and some definitions needed to describe our approach. In Sec-

tion 4, we present the method implementation in the APP_LogGIC tool and we discuss 

the problems faced and the found solutions. Section 5 focuses on the results of our 

experiments with the two AUTs. Finally, we conclude with a review of the main aspects 

of our approach and a discussion on possible future research directions. 

2 Related Work 

In [5], the authors describe how they used the Daikon tool [13] to infer a set of behav-

ioral specifications called likely invariants that represent the behavioral aspects during 

the execution of web applets. They use NASA's Java Pathfinder (JPF) [8, 9] for model 

checking the application behavior over symbolic input, in order to validate whether the 

Daikon results are satisfied or violated. The analysis yields execution paths that, under 

specific conditions, can indicate the presence of certain types of logic errors that are 

encountered in web applications. The described method is applicable only to single-

execution web applets. Also, it is not shown that the approach can scale to larger, stand-

alone applications.  

A variant of the same method is used in [6] and [7], where we presented a first imp-

lementation of the APP_LogGIC tool. In [6], we specifically targeted logical errors in 

GUI applications. We presented a preliminary deployment of a Fuzzy Logic ranking 

system to address the problem of false positives, problem relative to multiple areas of 

code analysis. Authors in [31] deal with similar issues concerning false positives/neg-

atives in static analysis. We applied the method on lab test-beds. In [7], the Fuzzy Logic 

ranking system was formally defined and developed.  

The research presented in [10], focuses exclusively on specific flaws found in web 

applications. In [11], the authors combine analysis techniques to identify multi-module 

vulnerabilities in web applications, but they do not address the problem of profiling 

source code behavior or logical errors per se.  

In our current work, the method that we first proposed in [6-7] is evolved to a more 

complete and effective approach with the capacity to be tested on real-world complex 

applications, instead of test-beds and simple GUI AUT. Also, we move towards limit-

ing false positives through classification and heuristics. 

3 Profiling the behavior behind the source code 

Judging from experiments, requirements analysis [17] and previous research [5-7] on 

profiling the logic behind an AUT, we need: (i) a set of parsable logical rules (dynamic 

invariants) referring to the intended program functionality, (ii) a set of finite execution 

paths and variable valuations with adequate coverage of the AUT functionality, (iii) the 

boolean valuation of the logical rules over the set of execution paths to enable detection 

of logical errors and (iv) a classification system for source code instructions to filter 

variables in branch conditions and data input vectors. 

 



3.1 Extracting intended program functionality as Rules (Dynamic Invariants) 

The functionality of an AUT is captured in the form of dynamic invariants generated 

by the Daikon tool from MIT. Invariants are logical rules for variables, such as 

p!=null or var==“string” that hold true at certain point(s) of a program in all 

monitored executions. Dynamic invariants represent the programmed behavior. If the 

monitored executions are representative use-case scenarios of the AUT, then the gen-

erated dynamic invariants refer to the AUT’s intended functionality. Intuitively, if an 

execution path is found that violates a (combination of) dynamic invariant(s), this 

means that a possible logical error exists, which affects the variable(s) referred in the 

invariant. 

3.2 Program states and their variables 

In order to verify Daikon invariants we need to crosscheck them with a set of finite 

execution paths and variable valuations, with adequate coverage of the AUT function-

ality. In this section, we introduce formal definitions for the used data sets. 

An imperative program P = (X, L, ℓ0, T) defines [27] a set X of typed variables, a 

set L of control locations, an initial location ℓ0 ∈ L, and a set T of transitions. Each 

transition τ ∈ T is a tuple (ℓ, ρ, ℓ΄), where ℓ, ℓ΄ ∈ L are control locations, and ρ is a 

constraint over free variables from X ∪ X΄, where X denotes values at control location 

ℓ and X΄ denotes the values of the variables in set X at control location ℓ΄. For verifi-

cation purposes, the set L of control locations comprises the source code points, which 

control the execution flow of a program, i.e. conditional statements (such as branches 

and loops). 

State of a program P is a valuation of the variables in X. The set of all possible states 

is denoted as u.X. We shall represent sets of states using constraints. For a constraint ρ 

over X ∪ X΄ and a valuation (s, s΄) ∈ u.X × u.X΄, we write (s, s΄) |= ρ if the valuation 

satisfies the constraint ρ. We focus on AUTs with an explicitly provided initial state 

that assigns specific values to all variables in X. Finite computation of the program P is 

any sequence (ℓ0, s0), (ℓ1, s1), ... , (ℓk, sk) ∈ (L × u.X), where ℓ0 is the initial location, s0 

is an initial state, and for each i ∈ {0, ..., k −1}, there is a transition (ℓi, ρ, ℓi+1) ∈ T such 

that (si, si+1) |= ρ. A location ℓ is reachable if there exists some state s such that (ℓ, s) 

appears in some computation. An execution path or, simply, path of the program P is 

any sequence π = (ℓ0, ρ0, ℓ1), (ℓ1, ρ1, ℓ2), ... , (ℓk-1, ρk-1, ℓk) of transitions, where ℓ0 is the 

initial location.  

3.3 Source code profiling for logical error detection 

According to NIST [21], the impact that a source code point has in a program may be 

captured by the program’s Input Vectors (entry points and variables with user data) and 

Branch Conditions (e.g. conditional statements like if-statements). These characteris-

tics determine the program’s execution flow. Our approach studies how the AUT’s ex-

ecution is affected by crosschecking the truth values of the extracted dynamic invari-

ants. A logical error is defined as follows: 



Definition 1. A logical error manifests if there are execution paths πi and πj with the 

same prefix, such that for some k  0 the transition (ℓk, ρk, ℓk+1) results in states (ℓk+1, 

si), (ℓk+1, sj) with si ≠ sj and for the dynamic invariant rk, (si-1, si) ⊨ rk in πi and (sj-1, sj) 

⊭ rk in πj, i.e. rk is satisfied in πi and is violated in πj. 

If a program error located in some transition does not cause unstable execution in 

the analyzed paths, it does not manifest as a logical error according to Def. 1. For this 

reason, our framework adopts a notion of risk for logical error detection. Risk is quan-

tified by means of a fuzzy logic classification system based on two measuring functions, 

namely Severity and Vulnerability. These functions complement invariant verification 

and act as source code filters for logical error detection.   

Our fuzzy logic approach also aims to confront two inherent problems in automated 

detection of code defects: the large data sets of the processed AUT execution paths and 

the possible false positives. Regarding the first mentioned problem, APP_LogGIC 

helps the code auditor to focus only to those transitions in the code that appear having 

high ratings in our classification system. Regarding false positives, due to the absence 

of predefined error patterns, APP_LogGIC’s ratings implement criteria that take into 

account the possibility of a logical error in some transition.  

Severity (critical source code points) 

Depending on the logic realized by some transition (ℓk, ρk, ℓk+1), k0 a logical error 

might be of high severity or not. We consider that all program transitions have a severity 

measurement and we define the measuring function Severity for quantifying the relative 

impact of a logical error in the execution of the AUT, if it were to manifest with the 

transition (ℓk, ρk, ℓk+1). Severity(ℓk, ρk, ℓk+1) measures the membership degree of the 

transition in a fuzzy logic set. Variables from states (ℓk, sk) and (ℓk+1, sk+1) that are used 

in the transition are weighted based on how they affect the execution flow. Those vari-

ables that directly affect the control-flow (e.g. they are part of the AUT’s input vectors 

and are used in branch conditions) are considered dangerous: if a logical error were to 

manifest because of them, it causes an unintended behavior.  

Definition 2. Given a transition τ ∈ T enabled at a source code point, we define Severity 

as 

Severity(τ) = v ∈ [0, 5] 

measuring the severity of τ on a Likert-type scale [28] from 1 to 5. If a logical error 

were to manifest at a source code point, the scale-range captures the intensity of its 

impact in the AUT’s execution flow. A fuzzy logic method evaluates transitions as 

being of high Severity (4 or 5), medium (3) or low (1 or 2). Technical details about the 

criteria used in severity assignments are presented in section 4.5. 

Vulnerability (logical error likelihood and danger based on its type) 

Vulnerability is a measuring function quantifying the likelihood of a logical error in a 

given transition and how dangerous it is, based on its type. Vulnerability memberships 

are evaluated by taking into account: (i) the violations of dynamic invariants by the 

reached program states and (ii) input from an information flow analysis revealing the 

extent to which variable values are sanitized by conditional checks [21]. 



Definition 2: Given a tuple (τ, s, r), where r is a dynamic invariant, τ = (ℓ, ρ, ℓ΄) and 

(ℓ΄, s) ∈ (L×u.X), we define Vulnerability as 

Vulnerability (τ, s, r) = v ∈ [0, 5] 

Ratings here also use a Likert scale [28] from 1 to 5. Same as with Severity(τ), our 

fuzzy logic method evaluates transitions as being of “high” Vulnerability, “medium” 

or “low”. 

Tables 1 and 2 in Section 4.5 show the considered severity and vulnerability levels, 

while a more detailed presentation of the fuzzy logic system is given in [7]. 

Quantifying the risk associated with program transitions.  

According to OWASP, the standard risk formulation is an operation over the likelihood 

and the impact of a finding [6]: 

Risk = Likelihood * Impact 

We adopt this notion of risk into our framework for logical error detection. In our ap-

proach, Severity(τ) reflects the relative Impact of the transition τ at some source code 

point, whereas Vulnerability(τ, s, r) encompasses the Likelihood of a logical error in τ. 

Given the dynamic invariant r for τ, an estimate of the risk associated with τ can be 

computed by combining Severity(τ) and Vulnerability(τ, s, r) into a single value called 

Risk. There may be many different options for combining the values of the two meas-

uring functions. We opt for an aggregation function that allows taking into account 

membership degrees in a Fuzzy Logic system [16]: 

Definition 3. Given an AUT and a set of paths with s ∈ u.X representing an accessed 

state and τ ∈ T an executed transition associated with the dynamic invariants r, function 

Risk(τ, s, r) is the aggregation 

Risk(τ, s, r) = aggreg(Severity(τ), Vulnerability(τ, s, r)) 

with a fuzzy set valuation 

Risk(τ, s, r) = {Severity(τ)} ∩ {Vulnerability(τ, s, r)} 

Aggregation operations on fuzzy sets are operations by which several fuzzy sets are 

combined in a desirable way to produce a single fuzzy set. APP_LogGIC applies de-

fuzzification [20] on the resulting set, using the Center of Gravity technique. Defuzzi-

fication is the computation of a single value from two given fuzzy sets and their corre-

sponding membership degrees, i.e. the involvedness of each fuzzy set presented in Lik-

ert values. 

Risk ratings have the following interpretation: for two tuples vs1=(τ1, s1, r1) and 

vs2=(τ2, s2, r2), if Risk(vs1) > Risk(vs2), then vs1 is more dangerous than vs2, in terms of 

how τ1 and τ2 affect the execution of the AUT and if the analysis detects a manifested 

logical error. In the next section, we provide technical details for the techniques used 

to implement the discussed analysis. 



4 Design and implementation of the APP_LogGIC tool 

4.1 APP_LogGIC’s architecture 

APP_LogGIC flags possible logical errors based on information for their impact on the 

program’s behavior and their location in code. The more suspicious a source code point 

is, the higher it scores in the Fuzzy Logic system. Fig. 1 depicts the following methods: 

Fig. 1. The APP_LogGIC architecture 

 

1. The Invariant-Based Method extracts dynamic invariants and verifies them against 

tuples (ℓ, s) of program states at specific code locations gathered from AUT execu-

tions. For every checked state s and dynamic invariant r a vulnerability rating is then 

applied using the function Vulnerability(τ, s, r). 

2. The Input Vector Analysis Method analyzes input vectors and applies a Vulnerability 

rating on variables of program states that hold input data, as in (a). 



3. The Information Extraction Method analyzes branches in the source code and rates 

them using the function Severity(τ). 

4. Fuzzy Logic ranking system: APP_LogGIC combines all information gathered from 

(a), (b) and (c), and assesses the Risk of source code points and states based on their 

position and the analysis findings. 

4.2 Invariant-Based Method 

To automate verification of dynamic invariants for logical error detection we need: (i) 

a set of parsable rules representing the programmed behavior for the AUT, (ii) a set of 

execution paths and information for the contents of the state variables and (iii) a 

complete analysis of the AUT’s source code to gather input vectors and map all possible 

points, in which execution flow can be diverted. 

Extracting the programmed behavior – Dynamic Invariants 

Daikon performs dynamic analysis and produces dynamic invariants which describe 

the AUT’s programmed behavior. If the tool is run for a sufficient set of use-cases that 

covers the expected AUT’s functionality, then the extracted programmed behavior 

matches the programmer’s intended behavior. An example dynamic invariant generated 

from our tests is:  

 rjc.Chart.Wait_for_stable_rate_100000203_exec():::ENTER 

 this.TopLevel_Chart_count == 2.0 

 [...] 

Fig. 2. Dynamic invariants produced by Daikon Dynamic Analysis 

Daikon runs the program, observes the values that the program computes, and then 

reports, as in Fig. 2, assertions about source code variables that hold true throughout all 

AUT executions (much like “laws of conduct” for correct execution [12] [13]). The 

dynamic invariant of Fig. 2 shows that, upon invocation of method Wait_for_sta-

ble_rate_exec(), the value of the variable TopLevel_Chart_count is equal 

to ‘2’. 

Invariant rules are filtered and only those that refer to control flow points and input 

vector points of the source code are kept. APP_LogGIC has a built-in Daikon parser 

that creates method objects with invariant objects based on the tokens of the parsed 

invariants. Thus, we have a fast way to parse invariants by method type, variable or 

class type. 

Gathering execution paths and program states 

Execution paths and program states are gathered using the Java Pathfinder tool (JPF) 

from NASA Ames Research Center [9]. The JPF core is a Virtual Machine (VM) for 

Java bytecode [9]. The default instruction set makes use of execution choices. JPF iden-

tifies points in programs from where execution flow can follow different paths and then 

systematically explores all of them [9].  

Compared to our previous work in [6] [7], we have changed the static analysis from 

scripted execution of possible paths to symbolic execution (as in [5]). Symbolic Path-



Finder (SPF) [8] combines symbolic execution with model checking and constraint 

solving for test case generation. This provides us a large number of execution paths 

along with program states (Figure 3 depicts an example execution instruction record) 

while, at the same time, helps to avoid the error-prone process of manually configuring 

multiple application runs. 

SPF's results are then used to check if Daikon's dynamic invariants hold true along 

the executions paths or not. If APP_LogGIC detects two different versions of an exe-

cution path that (as in Def. 1) differ in some state, such that one path satisfies a Daikon 

invariant while the other violates it, then a logical error is flagged and the membership 

in the Vulnerability Fuzzy Logic set is increased. 

[rjc/Chart.java:342] :  

if (execute_at_initialization_464 == 1) { 

VARIABLE: execute_at_initialization_464 -> 1 

Fig. 3. SPF output: instruction executed and variable content 

In order to gather the sets of execution paths and states for given inputs of the AUT 

(store, access, update of data), we had to re-code SPF’s basic listener, namely the Java 

class named: gov.nasa.jpf.symbc.SymbolicListener. Since SPF’s model checking is 

based on listener objects, we extended the @override executeInstruction() and instruc-

tionExecuted() methods implemented to watch for and collect data during instruction 

invocation. 

Verifying dynamic invariants - logical error detection 

Let us consider the invariant shown in Fig. 2: APP_LogGIC checks if there are 

execution paths with the same prefix and some differing program state corresponding 

to the shown dynamic invariant. In this case, APP_LogGIC tries to find a path/state 

combination that violates that assertion upon entering the exec() method (variable’s 

value is not ‘2.0’) and, simultaneously, a second combination that satisfies it. This con-

tradiction, if present, is a clear sign of a possible logical error inside exec() and var-

iable TopLevel_Chart_count. 

APP_LogGIC uses Severity ranks and focuses on dynamic invariants that refer to 

variables used in conditional statements (branch conditions), which are responsible for 

execution path deviations; if there is a possibility for a logical error manifestation, then 

this may happen in a branch condition since conditional branching is a decision-making 

point in the control flow [5]. Information for the Vulnerability rating methods is pro-

vided in Section 4.5 below. 

4.3 Information Extraction Method 

In order to gather input vectors and all source code points where execution flow can 

follow different paths we were based on the JavaC compiler and an appropriate abstract 

syntax tree (AST) representation. The JavaC Treescanner methods (visitIf(), 

visitMethodInvocation() etc.) were overridden, in order to detect and analyze 

sanitization checks of input data. Sanitization checks are control flow points, in which 

the data context of variables is checked.  



4.4 Input Vector Analysis Method 

A tainted object propagation analysis complements the dynamic invariant method for 

logical error detection. All variables that hold input data (input vectors) and the checks 

enforced upon them are analyzed for their role in conditional statements (as in section 

3.3) and for the following correctness criterion: all input data should be sanitized before 

their use [21]. This analysis shows: (i) whether a tainted variable (i.e. a variable that 

contains potentially dangerous input data) is accessed in a conditional statement with-

out having previously checked its initial values, (ii) if data from a tainted variable is 

passed along in methods and other variables and (iii) instances of user input that are 

never checked or sanitized in any way. 

APP_LogGIC checks tainted variables by analyzing the conditions enforced on their 

content. For example, if an input vector variable is used only in the conditional state-

ment if(a != null) and then variable a is used in a command without further 

sanitization of its contents, then this check is flagged as ineffective and APP_ LogGIC 

gives a high rating on the Vulnerability scale for that variable. More information for 

how rank values are assigned is provided in the tables of Section 4.5.  

4.5 The Fuzzy Logic ranking system 

As explained in Section 3, a Fuzzy Logic system add-on [19] is used in APP_LogGIC 

and ranks possible logical errors. In order to aid the APP_LogGIC end-user, Severity 

and Vulnerability values are grouped into 3 sets (Low, Medium, High), with an approx-

imate width of each group of (5/3) = 1,66~1,5 (final ranges: Low in [0…2], Medium in 

(2…3,5] and High in (3,5…5]). 

Severity (impact of a source code point on execution flow) 

As a program transition we consider any instruction at a source code point that accesses 

variable values of the program’s state. By measuring the Severity of a transition, we 

also assign the given Severity rating to the accessed variables; e.g., the IF-statement if 

(isAdmin == true){...} represents a check on isAdmin: This conditional 

branch is a control flow point where unintended execution deviations may occur [5]. 

Thus, the involved transition is classified as important (rating 3-5 on the scale). The 

variable isAdmin and its transition are rated as Medium (3). A variable is assigned only 

one rating, depending on how the variable is used in transitions throughout the AUT. 

Table 1 below depicts the Likert ratings for Severity. For example, if two transitions 

exist, an if-statement and a data input transition, then a variable used in both transition 

will get an overall Severity value of five (5) as it can be shown on the last line of Table 

1. Due to lack of space, formal presentations on the ranking system and its conditions 

can be found in [7]. 

  



Linguistic 

Value 
Condition 

Severity 

Level 

Low Random variable Severity 1 

Low Random variable Severity 2 

Medium 
Severity for variables used as data sinks (i.e. data originated 

from user input) 
3 

Medium 
Severity for variables used in a conditional branch once on 

an “IF” branch 
3 

High 
Severity for variables used in a conditional branch twice or 

more on an “IF” branch and/or a “SWITCH” branch 
4 

High 
Severity for variables used as a data sink and in a conditional 

branch on an “IF” branch and/or a “SWITCH” branch 
5 

Table 1. App_LogGIC's Severity ranks in the Likert scale 

Vulnerability 

By measuring the Vulnerability of a tuple (τ, s, r) as seen in Section 3.3, we also assign 

the given Vulnerability rating to the accessed variables used in transition τ and the cor-

responding program state. Similar to Severity, a variable is assigned only one overall 

Vulnerability rating, depending on how the variable is used in transitions throughout 

the AUT. Rating conditions are presented in Table 2 below. 

 

Linguistic 

value 
Condition 

Vulnerabil-

ity level 

Low No invariant incoherencies / No improper checks of variables. 0 

Medium 
Multiple propagation of input data using only general, insufficient 

checks on variable content. (Input Vector Method) 
2 

Medium 

Sound checks in variable contents but multiple propagation to 

method variables with relatively improper checks (Input Vector 

Method) 

3 

High 
Improper/insufficient checks on variables holding input data – Var-

iables also used in branch conditions (Input Vector Method) 
4 

High 
Invariant enforcement AND invariant violation in alternate versions 

of same execution path  (Invariant-Based Method) 
5 

Table 2. APP_LogGIC Vulnerability levels in the Likert scale 

Risk 

Risk represents a calculated value assigned to each tuple (τ, s, r) and its corresponding 

variables, by aggregating the aforementioned Severity and Vulnerability ratings. Our 

tool produces a set of graphs where the combined risk factor is drawn. It is calculated 

using Fuzzy Set Theory: Fuzzy Logic’s linguistic variables in the form of IF-THEN 

rules (Figure 4). For clarity, all scales (Severity, Vulnerability and Risk) share the same 

linguistic characterization: “Low”, “Medium” and “High”. 



Fig. 4 shows how Risk is calculated. The complete analysis of how formal Fuzzy Logic 

rules are calculated and defined is provided in [7]. Table 3 depicts the fuzzy logic output 

for Risk, based on the aggregation of Severity and Vulnerability. 

 

 

Fig. 4. Example of a Fuzzy Logic rule 

                                    Severity 

Vulnerability 
Low Medium High 

Low Low Low Medium 

Medium Low Medium High 

High Medium High High 

Table 3. Risk for each variable = Severity x Vulnerability 

5 Experiments and test results 

To the best of our knowledge, there is no commercial test-bed or open-source revision 

of an AUT with a reported set of existing logical errors. For this reason, our experiments 

were based exclusively on formal fault injection into two different open-source appli-

cations: (i) The Apollo Lunar Lander Reaction Jet Controller (RJC) provided along 

with SPF by the Java Pathfinder team in NASA Ames Research Center [9] and (ii) an 

SSH framework called JSCH from the JCraft company [18].  

To cope with the inherent analysis scalability problems, we switched to method in-

vocation paths instead of entire execution paths. This is consistent with the Daikon 

analysis, since Daikon dynamic invariants only describe a program’s execution during 

entry and exit of a method invocation. As a consequence, the size of the data set for the 

RJC AUT was reduced from 155MB to 73MB and the execution of the APP_LogGIC 

analysis was speed up by ~5 minutes, an improvement of up to 80%. 

5.1 Invariant tests: RJC Application 

To validate APP_LogGIC’s effectiveness, we injected two faults into NASA’s RJC 

application. A malformed Java object was created that was initialized with an invalid 

value. The result of injecting the object in the code was a change in the AUT execution 

flow from its intended path to an erroneous one, thus causing a logical error.  

Our approach was based on recent results from research on fault injection, which 

show that the key issue when injecting software faults is fault representativeness [15]: 

there is a strong relationship between fault representativeness and fault locations, rather 

than between fault representativeness and the various types of faults injected. To pin-

point source code methods into RJC with relatively high representativeness we used 

common software engineering metrics. According to [15], fault-load representativeness 

can be achieved by looking at the following metrics: Lines of Code and Cyclomatic 

Complexity which represent respectively the number of statements and the number of 

IF Severity IS low AND Vulnerability IS low THEN Risk IS low 



paths in a component [15] [23]. The Average methods per Class counts the number of 

methods defined per type in all Class objects. If this metric scores high, it benefits these 

experiments since method invocation paths will be more complex and, therefore, likely 

more error-prone. This metric synergizes well with Cyclomatic Complexity in the RJC 

experiments. With the above mentioned metrics, we detected methods in RJC that have 

high representtativeness and then we injected logic errors in them. Our analysis was 

based on the CodePro Analytix tool from Google. More specifically, we evaluated the 

system behavior when one of its components is faulty and not the behavior of the faulty 

component itself. We did not consider additional metrics, as metrics tend to correlate 

with each other. On the other hand, the used metrics suffice in order to detect key points 

in the source code for fault injection [15]. 
 

 
Lines of 

Code 

Cyclomatic 

Complexity 

Average methods 

per Type 

Rjc.Chart.java 10,48 3,31 29 

Rjc.Chart_1.java 13,68 3,31 29 

Rjc.Chart_2.java 13,68 3,31 29 

Rjc.Reaction_Jet_Control0.java 99,50 7,50 2 

Rjc.Reaction_Jet_Control1.java 85,50 7,50 2 

Table 4. Highest metric scores for NASA’s RJC 

As we can see in Table 4, these five classes have the highest ratings in RJC source code. 

Reaction_Jet_Control classes have the highest Lines of Code and Complexity 

values. Yet, their average methods per type are significantly low. Also, they have no 

execution-defining branch statements inside their code able to diverge the execution of 

RJC. To this end, we decided to inject the faulty values in the rjc.Chart.Wait_ 

for_stable_rate_100000203_exec() method within Chart.java. JPF provid-

ed the needed method invocation paths that were used by APP_LogGIC to check the 

Daikon-generated dynamic invariants. 8063 method invocation paths were satisfying 

the invariant “TopLevel_Chart_count == 2” and three injected paths were vi-

olating it. APP_LogGIC detected the dynamic invariant violation for both of the two 

fault injections. Variable TopLevel_Chart_count held injected data and was also 

used in an if-statement: APP_LogGIC’s Fuzzy Logic system classified the logical error 

with the following ratings: 
 

Medium 

Severity for variables used in a CB ONCE on: 

o An “IF” branch 

o A‘SWITCH’ branch 
3 

Table 5. Severity rank for RJC injection by APP_LogGIC 

 

High 
Invariant enforcement AND invariant violation in alternate versions 
of same execution path  (Invariant-Based analysis) 

5 

Table 6. Vulnerability rank for RJC injection by APP_LogGIC 



A total of 6,240 control flow locations (such as if-statements) were gathered and ana-

lyzed from symbolic execution. Also, 515,854 method invocations and variable Store 

and Invoke instructions were processed. The injected paths had 8,064 comparisons. 

Before injection, all 8,064 paths were found satisfying the rule. As mentioned earlier, 

after injection, three paths were found having different states (variable Top-

Level_Chart_count had different values while entering and exiting method 

exec()). Both injected faults were discovered and all possible deviated execution 

paths were detected. Data sets can be downloaded via the link at the end of this work. 

5.2 Tainted object propagation tests: JSCH framework 

JSCH [18] is an SSH2 framework licensed under a BSD-style open-source license. 

Here, we tested APP_LogGIC’s capability to detect logical errors manifesting from 

input data. We didn't have to inject any logical errors in JSCH since, to some extent, 

some were already present in examples provided along with the framework’s code. 

JSCH uses SSH connections and built-in encryption for security. Yet, the examples 

provided with its source code have improper sanitization of user input. 

Using Tainted Object analysis, AST trees and the Java compiler, APP_LogGIC cre-

ated a map of the AUT (variable assignments, declarations, method invocations etc.). 

The analysis followed the tainted input and gathered the variables were input data could 

reside (a.k.a. sinks) to detect whether sanitization checks are been enforced or not. 

APP_LogGIC detected variables without proper sanitization and ranked these input 

vectors accordingly: 

 

Medium Severity for variables used as data sinks (i.e. data originated from user input) 3 

Table 7. Severity rank for JSCH input vectors by APP_LogGIC 

High 
No check or improper checks in variables depended on input data and used 

in branch conditions. 
4 

Table 8. Vulnerability rank for JSCH input vectors by APP_LogGIC 

APP_LogGIC found out that sanitization checks in JSCH were only comparing initial-

ization data to actual variable data. This is a common logical error [21], since such 

checks can only show that variable data is updated compared to their initial value, but 

lack further content checks.  

The tool detected eleven (11) sinks where data was stored without proper sanitizati-

on. Its Fuzzy Logic system calculated which of these points are dangerous based on 

their position and utilization inside the source code; it then detected and ranked four of 

them as potentially dangerous. Indeed, out of the eleven aforementioned variables used 

in sinks, the four variables that were detected by APP_LogGIC where the only ones 

that did not have proper sanitization checks enforced on their data.  

  



Method applicability issues 

Even though APP_LogGIC’s result had a 100% success rate in flagging dangerous and 

injected points for logical errors, yet, the sample upon which APP_LogGIC was tested 

still remains very small to claim such a high average detection rate. The applicability 

of the method presented depends on how thoroughly the input vectors and dynamic 

invariants are analyzed. At the moment, APP_LogGIC can only analyze simple invar-

iants and two types of input vectors. Yet, judging from the parsable syntax of dynamic 

invariants, one can safely deduct that, with the right parser, most dynamic invariants 

can be verified. This program could evolve into a potentially valuable tool: program 

tests created by developers using APP_LogGIC in various stages of the development 

cycle, could help detect logical errors and reduce the costly process of backtracking to 

fix them.  

State explosion remains a major issue, since it is a problem inherited by the used 

analysis techniques. Yet, state explosion is manageable using source code classificati-

on. Both Daikon and JPF can be configured to target specific source code methods of 

interest rather than analyze the entire source code of an AUT. Severity ranking helps 

this. The use of method invocation paths downsized the initial data set for RJC from 

155MB to 73MB and speeded up execution almost 80% in comparison with experi-

ments using the entire execution paths, as shown in Table 9.  

 

 Execution – Full paths 

and states 
Execution – Method 

invocation paths and states 

Size 155 MB 73MB 

Time elapsed 
~ 18 min (RJC) 

~ 6 min (JSCH) 

~ 4 min (RJC) 

~ 6 min (JSCH) 

Errors detected 2 out of 2 injections (RJC) 2 out of 2 (RJC) 

Table 9. Execution times for APP_LogGIC experiments 

Both of the analyzed applications are relatively small in comparison to other AUT 

(on the order of many GB). The AUT size will be considered in future research. 

APP_LogGIC ran on an Intel Core 2 Duo E6550 PC (2.33 GHz, 4GB RAM). 

6 Conclusions 

Preliminary results show that profiling the intended behavior of applications is feasible 

(up to a certain complexity level) even in real-world applications. Logic profiling aside, 

the use of Fuzzy Logic provides some advantages: (i) It reduces the data to be analyzed 

by focusing on high impact (dangerous) source code points (Severity ranking) and (ii) 

it is a way to treat false positives by assessing logical errors and ignoring irrelevant 

dynamic invariants (Vulnerability ranking): Errors in non-critical points of the source 

code which do not divert execution can be discarded; i.e. invariant violations referring 

to source code points that do not somehow affect any conditional branches (such as if-

statements) during execution.  



The method suffers by a number of limitations. Complex invariant rules generated 

by Daikon need deep semantic analysis in order to be usable. Also, Daikon does not 

support analysis of loops (“While” and “For”). On top of that, Daikon’s dynamic exe-

cution must cover as much AUT functionality as possible, if a logical error is to be 

discovered. Otherwise, dynamic invariants generated will not correctly describe the 

AUT behavior intended by its programmer. We plan to explore different approaches 

using design artifacts provided by developers for a more efficient reasoning of the sour-

ce code [24] such as XBRL or OWL to describe programming logic.  

Another venue is to test this method on control systems used in critical infrastructu-

res (CI) or manufacturing facilities. Widely used programmable logic controllers con-

trol functions in critical infrastructures such as water, power, gas pipelines, and nuclear 

facilities [25-26]. Logic errors might lead to weaknesses that make it possible to execute 

commands not intended by their programmer. The effect of this attack might lead to 

cascading effects amongst numerous interconnected CI, or can have an impact on a 

number of other infrastructures, including mobile systems, etc. [27-30].  
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