
p. 1, 2014.

© Springer-Verlag Berlin Heidelberg 2014

Automated detection of logical errors in programs

George Stergiopoulos
1, Panagiotis Katsaros

2, Dimitris Gritzalis
1

1 Information Security and Critical Infrastructure Protection Laboratory

Dept. of Informatics, Athens University of Economics & Business (AUEB), Greece

{geostergiop,dgrit}@aueb.gr
2 Dept. of Informatics, Aristotle University of Thessaloniki, Greece

{katsaros}@csd.auth.gr

Abstract. Research and industrial experience reveal that code reviews as a part

of software inspection might be the most cost-effective technique a team can use

to reduce defects. Tools that automate code inspection mostly focus on the detec-

tion of a priori known defect patterns and security vulnerabilities. Automated de-

tection of logical errors, due to a faulty implementation of applications’ function-

ality is a relatively uncharted territory. Automation can be based on profiling the

intended behavior behind the source code. In this paper, we present a new code

profiling method that combines an information flow analysis, the crosschecking

of dynamic invariants with symbolic execution, and the use of fuzzy logic. Our

goal is to detect logical errors and exploitable vulnerabilities. The theoretical un-

derpinnings and the practical implementation of our approach are discussed. We

test the APP_LogGIC tool that implements the proposed analysis on two real-

world applications. The results show that profiling the intended program behav-

ior is feasible in diverse applications. We discuss the heuristics used to overcome

the problem of state space explosion and of the large data sets. Code metrics and

test results are provided to demonstrate the effectiveness of the approach.

Keywords: risk, logical errors, source code profiling, static analysis, dynamic

analysis, input vectors, fuzzy logic.

1 Introduction

Software development is the process of deriving an executable program description

from a set of given requirements that reflect the intended program behavior, i.e. what

the programmer wants his code to do and what not to do. It is an intellectual activity

that translates intended functionality - in the form of requirements - into source code.

Modern techniques for static and dynamic analysis of programs have been proven ef-

fective in detecting a priori known flaws, but they do not go far enough in the detection

of logical errors: erroneous translation of software requirements causing unintended

program behavior, due to execution flow deviations.

These errors are not a priori known like the flaws that can be detected by most static

analysis and software model checking techniques. As an example, we consider the fol-

lowing [5]: “a web store application allows, using coupons, to obtain a one-time-dis-

count-per-coupon on certain items; a faulty implementation can lead to using the same

coupon multiple times, thus eventually zeroing the price”. Automated detection of such

program behavior is a relatively uncharted territory.

We address this problem by extracting the programmed behavior of Applications

Under Test (AUTs) with code profiling techniques. Potential logical errors are then

detected and classified by applying heuristics on the gathered data. Our approach is

based on previous research [5-7]. In this paper, we augment and reconstruct the pre-

sented method in order to be able to make tests on complex, real-world applications.

We change the static analysis, from scripted execution of possible paths to symbolic

execution with various types of data listeners for the source code variables. Addition-

ally, we formally define logical errors and lay the foundations of the method. We de-

velop a new parser for Daikon’s invariants in order to present test results using diverse,

complex AUTs: a Jet Controller from NASA and an SSH framework; thus proving that

our method can be utilized to detect different kinds of errors. The method consists of

the following steps:

1. For an AUT, a representation of its programmed behavior is generated in the form

of dynamic invariants, i.e. source code rules in the form of assert statements. Invar-

iants are collected by dynamic analysis of the AUT with the MIT Daikon tool [12].

2. A preliminary analysis with the JPF tool from NASA and custom-made methods

gathers the following data: (i) a set of execution paths and program states along these

paths and (ii) input data vectors and a map of all program points, in which execution

can follow different paths (execution flow branching points).

3. Logical errors are then detected by crosschecking information gathered with the dy-

namic invariants collected, during the steps (1) and (2). Invariants are checked upon

multiple execution paths and their accessed program states.

4. Logical errors due to faulty input data manipulation are also detected by a tainted

object propagation analysis. “Tainted” input data are traced throughout the source

code and the applied sanitization checks are verified.

The main contributions of this paper are summarized as follows:

─ We elaborate on our approach that was first discussed in [6] and [7], to show how

the programmed behavior of an AUT can be validated efficiently and can be used as

a map for logical error detection.

─ We introduce fuzzy logic membership sets used to classify logical errors: (i) Sever-

ity, with values from a scale quantifying the impact of a logical error, with respect

to how it affects the AUT’s execution flow and (ii) Vulnerability: with values from

a scale quantifying the likelihood of a logical error and how dangerous it is. The

proposed fuzzy sets aim to automate reasoning based on the analysis findings, simi-

larly to a code audit process.

─ We analyze two real-world, open source applications with diverse characteristics:

the Reaction Jet Control (RJC) application from NASA's Apollo Lunar Lander and

an SSH framework called JSCH from the JCraft company [18. Tests involve the

injection of logically malformed data based on code metrics [15], which divert the

AUT’s execution paths to non-intended states.

In Section 2, we review previous work on the used techniques. Section 3 provides the

background terminology and some definitions needed to describe our approach. In Sec-

tion 4, we present the method implementation in the APP_LogGIC tool and we discuss

the problems faced and the found solutions. Section 5 focuses on the results of our

experiments with the two AUTs. Finally, we conclude with a review of the main aspects

of our approach and a discussion on possible future research directions.

2 Related Work

In [5], the authors describe how they used the Daikon tool [13] to infer a set of behav-

ioral specifications called likely invariants that represent the behavioral aspects during

the execution of web applets. They use NASA's Java Pathfinder (JPF) [8, 9] for model

checking the application behavior over symbolic input, in order to validate whether the

Daikon results are satisfied or violated. The analysis yields execution paths that, under

specific conditions, can indicate the presence of certain types of logic errors that are

encountered in web applications. The described method is applicable only to single-

execution web applets. Also, it is not shown that the approach can scale to larger, stand-

alone applications.

A variant of the same method is used in [6] and [7], where we presented a first imp-

lementation of the APP_LogGIC tool. In [6], we specifically targeted logical errors in

GUI applications. We presented a preliminary deployment of a Fuzzy Logic ranking

system to address the problem of false positives, problem relative to multiple areas of

code analysis. Authors in [31] deal with similar issues concerning false positives/neg-

atives in static analysis. We applied the method on lab test-beds. In [7], the Fuzzy Logic

ranking system was formally defined and developed.

The research presented in [10], focuses exclusively on specific flaws found in web

applications. In [11], the authors combine analysis techniques to identify multi-module

vulnerabilities in web applications, but they do not address the problem of profiling

source code behavior or logical errors per se.

In our current work, the method that we first proposed in [6-7] is evolved to a more

complete and effective approach with the capacity to be tested on real-world complex

applications, instead of test-beds and simple GUI AUT. Also, we move towards limit-

ing false positives through classification and heuristics.

3 Profiling the behavior behind the source code

Judging from experiments, requirements analysis [17] and previous research [5-7] on

profiling the logic behind an AUT, we need: (i) a set of parsable logical rules (dynamic

invariants) referring to the intended program functionality, (ii) a set of finite execution

paths and variable valuations with adequate coverage of the AUT functionality, (iii) the

boolean valuation of the logical rules over the set of execution paths to enable detection

of logical errors and (iv) a classification system for source code instructions to filter

variables in branch conditions and data input vectors.

3.1 Extracting intended program functionality as Rules (Dynamic Invariants)

The functionality of an AUT is captured in the form of dynamic invariants generated

by the Daikon tool from MIT. Invariants are logical rules for variables, such as

p!=null or var==“string” that hold true at certain point(s) of a program in all

monitored executions. Dynamic invariants represent the programmed behavior. If the

monitored executions are representative use-case scenarios of the AUT, then the gen-

erated dynamic invariants refer to the AUT’s intended functionality. Intuitively, if an

execution path is found that violates a (combination of) dynamic invariant(s), this

means that a possible logical error exists, which affects the variable(s) referred in the

invariant.

3.2 Program states and their variables

In order to verify Daikon invariants we need to crosscheck them with a set of finite

execution paths and variable valuations, with adequate coverage of the AUT function-

ality. In this section, we introduce formal definitions for the used data sets.

An imperative program P = (X, L, ℓ0, T) defines [27] a set X of typed variables, a

set L of control locations, an initial location ℓ0 ∈ L, and a set T of transitions. Each

transition τ ∈ T is a tuple (ℓ, ρ, ℓ΄), where ℓ, ℓ΄ ∈ L are control locations, and ρ is a

constraint over free variables from X ∪ X΄, where X denotes values at control location

ℓ and X΄ denotes the values of the variables in set X at control location ℓ΄. For verifi-

cation purposes, the set L of control locations comprises the source code points, which

control the execution flow of a program, i.e. conditional statements (such as branches

and loops).

State of a program P is a valuation of the variables in X. The set of all possible states

is denoted as u.X. We shall represent sets of states using constraints. For a constraint ρ

over X ∪ X΄ and a valuation (s, s΄) ∈ u.X × u.X΄, we write (s, s΄) |= ρ if the valuation

satisfies the constraint ρ. We focus on AUTs with an explicitly provided initial state

that assigns specific values to all variables in X. Finite computation of the program P is

any sequence (ℓ0, s0), (ℓ1, s1), ... , (ℓk, sk) ∈ (L × u.X), where ℓ0 is the initial location, s0

is an initial state, and for each i ∈ {0, ..., k −1}, there is a transition (ℓi, ρ, ℓi+1) ∈ T such

that (si, si+1) |= ρ. A location ℓ is reachable if there exists some state s such that (ℓ, s)

appears in some computation. An execution path or, simply, path of the program P is

any sequence π = (ℓ0, ρ0, ℓ1), (ℓ1, ρ1, ℓ2), ... , (ℓk-1, ρk-1, ℓk) of transitions, where ℓ0 is the

initial location.

3.3 Source code profiling for logical error detection

According to NIST [21], the impact that a source code point has in a program may be

captured by the program’s Input Vectors (entry points and variables with user data) and

Branch Conditions (e.g. conditional statements like if-statements). These characteris-

tics determine the program’s execution flow. Our approach studies how the AUT’s ex-

ecution is affected by crosschecking the truth values of the extracted dynamic invari-

ants. A logical error is defined as follows:

Definition 1. A logical error manifests if there are execution paths πi and πj with the

same prefix, such that for some k 0 the transition (ℓk, ρk, ℓk+1) results in states (ℓk+1,

si), (ℓk+1, sj) with si ≠ sj and for the dynamic invariant rk, (si-1, si) ⊨ rk in πi and (sj-1, sj)

⊭ rk in πj, i.e. rk is satisfied in πi and is violated in πj.

If a program error located in some transition does not cause unstable execution in

the analyzed paths, it does not manifest as a logical error according to Def. 1. For this

reason, our framework adopts a notion of risk for logical error detection. Risk is quan-

tified by means of a fuzzy logic classification system based on two measuring functions,

namely Severity and Vulnerability. These functions complement invariant verification

and act as source code filters for logical error detection.

Our fuzzy logic approach also aims to confront two inherent problems in automated

detection of code defects: the large data sets of the processed AUT execution paths and

the possible false positives. Regarding the first mentioned problem, APP_LogGIC

helps the code auditor to focus only to those transitions in the code that appear having

high ratings in our classification system. Regarding false positives, due to the absence

of predefined error patterns, APP_LogGIC’s ratings implement criteria that take into

account the possibility of a logical error in some transition.

Severity (critical source code points)

Depending on the logic realized by some transition (ℓk, ρk, ℓk+1), k0 a logical error

might be of high severity or not. We consider that all program transitions have a severity

measurement and we define the measuring function Severity for quantifying the relative

impact of a logical error in the execution of the AUT, if it were to manifest with the

transition (ℓk, ρk, ℓk+1). Severity(ℓk, ρk, ℓk+1) measures the membership degree of the

transition in a fuzzy logic set. Variables from states (ℓk, sk) and (ℓk+1, sk+1) that are used

in the transition are weighted based on how they affect the execution flow. Those vari-

ables that directly affect the control-flow (e.g. they are part of the AUT’s input vectors

and are used in branch conditions) are considered dangerous: if a logical error were to

manifest because of them, it causes an unintended behavior.

Definition 2. Given a transition τ ∈ T enabled at a source code point, we define Severity

as

Severity(τ) = v ∈ [0, 5]

measuring the severity of τ on a Likert-type scale [28] from 1 to 5. If a logical error

were to manifest at a source code point, the scale-range captures the intensity of its

impact in the AUT’s execution flow. A fuzzy logic method evaluates transitions as

being of high Severity (4 or 5), medium (3) or low (1 or 2). Technical details about the

criteria used in severity assignments are presented in section 4.5.

Vulnerability (logical error likelihood and danger based on its type)

Vulnerability is a measuring function quantifying the likelihood of a logical error in a

given transition and how dangerous it is, based on its type. Vulnerability memberships

are evaluated by taking into account: (i) the violations of dynamic invariants by the

reached program states and (ii) input from an information flow analysis revealing the

extent to which variable values are sanitized by conditional checks [21].

Definition 2: Given a tuple (τ, s, r), where r is a dynamic invariant, τ = (ℓ, ρ, ℓ΄) and

(ℓ΄, s) ∈ (L×u.X), we define Vulnerability as

Vulnerability (τ, s, r) = v ∈ [0, 5]

Ratings here also use a Likert scale [28] from 1 to 5. Same as with Severity(τ), our

fuzzy logic method evaluates transitions as being of “high” Vulnerability, “medium”

or “low”.

Tables 1 and 2 in Section 4.5 show the considered severity and vulnerability levels,

while a more detailed presentation of the fuzzy logic system is given in [7].

Quantifying the risk associated with program transitions.

According to OWASP, the standard risk formulation is an operation over the likelihood

and the impact of a finding [6]:

Risk = Likelihood * Impact

We adopt this notion of risk into our framework for logical error detection. In our ap-

proach, Severity(τ) reflects the relative Impact of the transition τ at some source code

point, whereas Vulnerability(τ, s, r) encompasses the Likelihood of a logical error in τ.

Given the dynamic invariant r for τ, an estimate of the risk associated with τ can be

computed by combining Severity(τ) and Vulnerability(τ, s, r) into a single value called

Risk. There may be many different options for combining the values of the two meas-

uring functions. We opt for an aggregation function that allows taking into account

membership degrees in a Fuzzy Logic system [16]:

Definition 3. Given an AUT and a set of paths with s ∈ u.X representing an accessed

state and τ ∈ T an executed transition associated with the dynamic invariants r, function

Risk(τ, s, r) is the aggregation

Risk(τ, s, r) = aggreg(Severity(τ), Vulnerability(τ, s, r))

with a fuzzy set valuation

Risk(τ, s, r) = {Severity(τ)} ∩ {Vulnerability(τ, s, r)}

Aggregation operations on fuzzy sets are operations by which several fuzzy sets are

combined in a desirable way to produce a single fuzzy set. APP_LogGIC applies de-

fuzzification [20] on the resulting set, using the Center of Gravity technique. Defuzzi-

fication is the computation of a single value from two given fuzzy sets and their corre-

sponding membership degrees, i.e. the involvedness of each fuzzy set presented in Lik-

ert values.

Risk ratings have the following interpretation: for two tuples vs1=(τ1, s1, r1) and

vs2=(τ2, s2, r2), if Risk(vs1) > Risk(vs2), then vs1 is more dangerous than vs2, in terms of

how τ1 and τ2 affect the execution of the AUT and if the analysis detects a manifested

logical error. In the next section, we provide technical details for the techniques used

to implement the discussed analysis.

4 Design and implementation of the APP_LogGIC tool

4.1 APP_LogGIC’s architecture

APP_LogGIC flags possible logical errors based on information for their impact on the

program’s behavior and their location in code. The more suspicious a source code point

is, the higher it scores in the Fuzzy Logic system. Fig. 1 depicts the following methods:

Fig. 1. The APP_LogGIC architecture

1. The Invariant-Based Method extracts dynamic invariants and verifies them against

tuples (ℓ, s) of program states at specific code locations gathered from AUT execu-

tions. For every checked state s and dynamic invariant r a vulnerability rating is then

applied using the function Vulnerability(τ, s, r).

2. The Input Vector Analysis Method analyzes input vectors and applies a Vulnerability

rating on variables of program states that hold input data, as in (a).

3. The Information Extraction Method analyzes branches in the source code and rates

them using the function Severity(τ).

4. Fuzzy Logic ranking system: APP_LogGIC combines all information gathered from

(a), (b) and (c), and assesses the Risk of source code points and states based on their

position and the analysis findings.

4.2 Invariant-Based Method

To automate verification of dynamic invariants for logical error detection we need: (i)

a set of parsable rules representing the programmed behavior for the AUT, (ii) a set of

execution paths and information for the contents of the state variables and (iii) a

complete analysis of the AUT’s source code to gather input vectors and map all possible

points, in which execution flow can be diverted.

Extracting the programmed behavior – Dynamic Invariants

Daikon performs dynamic analysis and produces dynamic invariants which describe

the AUT’s programmed behavior. If the tool is run for a sufficient set of use-cases that

covers the expected AUT’s functionality, then the extracted programmed behavior

matches the programmer’s intended behavior. An example dynamic invariant generated

from our tests is:

 rjc.Chart.Wait_for_stable_rate_100000203_exec():::ENTER

 this.TopLevel_Chart_count == 2.0

 [...]

Fig. 2. Dynamic invariants produced by Daikon Dynamic Analysis

Daikon runs the program, observes the values that the program computes, and then

reports, as in Fig. 2, assertions about source code variables that hold true throughout all

AUT executions (much like “laws of conduct” for correct execution [12] [13]). The

dynamic invariant of Fig. 2 shows that, upon invocation of method Wait_for_sta-

ble_rate_exec(), the value of the variable TopLevel_Chart_count is equal

to ‘2’.

Invariant rules are filtered and only those that refer to control flow points and input

vector points of the source code are kept. APP_LogGIC has a built-in Daikon parser

that creates method objects with invariant objects based on the tokens of the parsed

invariants. Thus, we have a fast way to parse invariants by method type, variable or

class type.

Gathering execution paths and program states

Execution paths and program states are gathered using the Java Pathfinder tool (JPF)

from NASA Ames Research Center [9]. The JPF core is a Virtual Machine (VM) for

Java bytecode [9]. The default instruction set makes use of execution choices. JPF iden-

tifies points in programs from where execution flow can follow different paths and then

systematically explores all of them [9].

Compared to our previous work in [6] [7], we have changed the static analysis from

scripted execution of possible paths to symbolic execution (as in [5]). Symbolic Path-

Finder (SPF) [8] combines symbolic execution with model checking and constraint

solving for test case generation. This provides us a large number of execution paths

along with program states (Figure 3 depicts an example execution instruction record)

while, at the same time, helps to avoid the error-prone process of manually configuring

multiple application runs.

SPF's results are then used to check if Daikon's dynamic invariants hold true along

the executions paths or not. If APP_LogGIC detects two different versions of an exe-

cution path that (as in Def. 1) differ in some state, such that one path satisfies a Daikon

invariant while the other violates it, then a logical error is flagged and the membership

in the Vulnerability Fuzzy Logic set is increased.

[rjc/Chart.java:342] :

if (execute_at_initialization_464 == 1) {

VARIABLE: execute_at_initialization_464 -> 1

Fig. 3. SPF output: instruction executed and variable content

In order to gather the sets of execution paths and states for given inputs of the AUT

(store, access, update of data), we had to re-code SPF’s basic listener, namely the Java

class named: gov.nasa.jpf.symbc.SymbolicListener. Since SPF’s model checking is

based on listener objects, we extended the @override executeInstruction() and instruc-

tionExecuted() methods implemented to watch for and collect data during instruction

invocation.

Verifying dynamic invariants - logical error detection

Let us consider the invariant shown in Fig. 2: APP_LogGIC checks if there are

execution paths with the same prefix and some differing program state corresponding

to the shown dynamic invariant. In this case, APP_LogGIC tries to find a path/state

combination that violates that assertion upon entering the exec() method (variable’s

value is not ‘2.0’) and, simultaneously, a second combination that satisfies it. This con-

tradiction, if present, is a clear sign of a possible logical error inside exec() and var-

iable TopLevel_Chart_count.

APP_LogGIC uses Severity ranks and focuses on dynamic invariants that refer to

variables used in conditional statements (branch conditions), which are responsible for

execution path deviations; if there is a possibility for a logical error manifestation, then

this may happen in a branch condition since conditional branching is a decision-making

point in the control flow [5]. Information for the Vulnerability rating methods is pro-

vided in Section 4.5 below.

4.3 Information Extraction Method

In order to gather input vectors and all source code points where execution flow can

follow different paths we were based on the JavaC compiler and an appropriate abstract

syntax tree (AST) representation. The JavaC Treescanner methods (visitIf(),

visitMethodInvocation() etc.) were overridden, in order to detect and analyze

sanitization checks of input data. Sanitization checks are control flow points, in which

the data context of variables is checked.

4.4 Input Vector Analysis Method

A tainted object propagation analysis complements the dynamic invariant method for

logical error detection. All variables that hold input data (input vectors) and the checks

enforced upon them are analyzed for their role in conditional statements (as in section

3.3) and for the following correctness criterion: all input data should be sanitized before

their use [21]. This analysis shows: (i) whether a tainted variable (i.e. a variable that

contains potentially dangerous input data) is accessed in a conditional statement with-

out having previously checked its initial values, (ii) if data from a tainted variable is

passed along in methods and other variables and (iii) instances of user input that are

never checked or sanitized in any way.

APP_LogGIC checks tainted variables by analyzing the conditions enforced on their

content. For example, if an input vector variable is used only in the conditional state-

ment if(a != null) and then variable a is used in a command without further

sanitization of its contents, then this check is flagged as ineffective and APP_ LogGIC

gives a high rating on the Vulnerability scale for that variable. More information for

how rank values are assigned is provided in the tables of Section 4.5.

4.5 The Fuzzy Logic ranking system

As explained in Section 3, a Fuzzy Logic system add-on [19] is used in APP_LogGIC

and ranks possible logical errors. In order to aid the APP_LogGIC end-user, Severity

and Vulnerability values are grouped into 3 sets (Low, Medium, High), with an approx-

imate width of each group of (5/3) = 1,66~1,5 (final ranges: Low in [0…2], Medium in

(2…3,5] and High in (3,5…5]).

Severity (impact of a source code point on execution flow)

As a program transition we consider any instruction at a source code point that accesses

variable values of the program’s state. By measuring the Severity of a transition, we

also assign the given Severity rating to the accessed variables; e.g., the IF-statement if

(isAdmin == true){...} represents a check on isAdmin: This conditional

branch is a control flow point where unintended execution deviations may occur [5].

Thus, the involved transition is classified as important (rating 3-5 on the scale). The

variable isAdmin and its transition are rated as Medium (3). A variable is assigned only

one rating, depending on how the variable is used in transitions throughout the AUT.

Table 1 below depicts the Likert ratings for Severity. For example, if two transitions

exist, an if-statement and a data input transition, then a variable used in both transition

will get an overall Severity value of five (5) as it can be shown on the last line of Table

1. Due to lack of space, formal presentations on the ranking system and its conditions

can be found in [7].

Linguistic

Value
Condition

Severity

Level

Low Random variable Severity 1

Low Random variable Severity 2

Medium
Severity for variables used as data sinks (i.e. data originated

from user input)
3

Medium
Severity for variables used in a conditional branch once on

an “IF” branch
3

High
Severity for variables used in a conditional branch twice or

more on an “IF” branch and/or a “SWITCH” branch
4

High
Severity for variables used as a data sink and in a conditional

branch on an “IF” branch and/or a “SWITCH” branch
5

Table 1. App_LogGIC's Severity ranks in the Likert scale

Vulnerability

By measuring the Vulnerability of a tuple (τ, s, r) as seen in Section 3.3, we also assign

the given Vulnerability rating to the accessed variables used in transition τ and the cor-

responding program state. Similar to Severity, a variable is assigned only one overall

Vulnerability rating, depending on how the variable is used in transitions throughout

the AUT. Rating conditions are presented in Table 2 below.

Linguistic

value
Condition

Vulnerabil-

ity level

Low No invariant incoherencies / No improper checks of variables. 0

Medium
Multiple propagation of input data using only general, insufficient

checks on variable content. (Input Vector Method)
2

Medium

Sound checks in variable contents but multiple propagation to

method variables with relatively improper checks (Input Vector

Method)

3

High
Improper/insufficient checks on variables holding input data – Var-

iables also used in branch conditions (Input Vector Method)
4

High
Invariant enforcement AND invariant violation in alternate versions

of same execution path (Invariant-Based Method)
5

Table 2. APP_LogGIC Vulnerability levels in the Likert scale

Risk

Risk represents a calculated value assigned to each tuple (τ, s, r) and its corresponding

variables, by aggregating the aforementioned Severity and Vulnerability ratings. Our

tool produces a set of graphs where the combined risk factor is drawn. It is calculated

using Fuzzy Set Theory: Fuzzy Logic’s linguistic variables in the form of IF-THEN

rules (Figure 4). For clarity, all scales (Severity, Vulnerability and Risk) share the same

linguistic characterization: “Low”, “Medium” and “High”.

Fig. 4 shows how Risk is calculated. The complete analysis of how formal Fuzzy Logic

rules are calculated and defined is provided in [7]. Table 3 depicts the fuzzy logic output

for Risk, based on the aggregation of Severity and Vulnerability.

Fig. 4. Example of a Fuzzy Logic rule

 Severity

Vulnerability
Low Medium High

Low Low Low Medium

Medium Low Medium High

High Medium High High

Table 3. Risk for each variable = Severity x Vulnerability

5 Experiments and test results

To the best of our knowledge, there is no commercial test-bed or open-source revision

of an AUT with a reported set of existing logical errors. For this reason, our experiments

were based exclusively on formal fault injection into two different open-source appli-

cations: (i) The Apollo Lunar Lander Reaction Jet Controller (RJC) provided along

with SPF by the Java Pathfinder team in NASA Ames Research Center [9] and (ii) an

SSH framework called JSCH from the JCraft company [18].

To cope with the inherent analysis scalability problems, we switched to method in-

vocation paths instead of entire execution paths. This is consistent with the Daikon

analysis, since Daikon dynamic invariants only describe a program’s execution during

entry and exit of a method invocation. As a consequence, the size of the data set for the

RJC AUT was reduced from 155MB to 73MB and the execution of the APP_LogGIC

analysis was speed up by ~5 minutes, an improvement of up to 80%.

5.1 Invariant tests: RJC Application

To validate APP_LogGIC’s effectiveness, we injected two faults into NASA’s RJC

application. A malformed Java object was created that was initialized with an invalid

value. The result of injecting the object in the code was a change in the AUT execution

flow from its intended path to an erroneous one, thus causing a logical error.

Our approach was based on recent results from research on fault injection, which

show that the key issue when injecting software faults is fault representativeness [15]:

there is a strong relationship between fault representativeness and fault locations, rather

than between fault representativeness and the various types of faults injected. To pin-

point source code methods into RJC with relatively high representativeness we used

common software engineering metrics. According to [15], fault-load representativeness

can be achieved by looking at the following metrics: Lines of Code and Cyclomatic

Complexity which represent respectively the number of statements and the number of

IF Severity IS low AND Vulnerability IS low THEN Risk IS low

paths in a component [15] [23]. The Average methods per Class counts the number of

methods defined per type in all Class objects. If this metric scores high, it benefits these

experiments since method invocation paths will be more complex and, therefore, likely

more error-prone. This metric synergizes well with Cyclomatic Complexity in the RJC

experiments. With the above mentioned metrics, we detected methods in RJC that have

high representtativeness and then we injected logic errors in them. Our analysis was

based on the CodePro Analytix tool from Google. More specifically, we evaluated the

system behavior when one of its components is faulty and not the behavior of the faulty

component itself. We did not consider additional metrics, as metrics tend to correlate

with each other. On the other hand, the used metrics suffice in order to detect key points

in the source code for fault injection [15].

Lines of

Code

Cyclomatic

Complexity

Average methods

per Type

Rjc.Chart.java 10,48 3,31 29

Rjc.Chart_1.java 13,68 3,31 29

Rjc.Chart_2.java 13,68 3,31 29

Rjc.Reaction_Jet_Control0.java 99,50 7,50 2

Rjc.Reaction_Jet_Control1.java 85,50 7,50 2

Table 4. Highest metric scores for NASA’s RJC

As we can see in Table 4, these five classes have the highest ratings in RJC source code.

Reaction_Jet_Control classes have the highest Lines of Code and Complexity

values. Yet, their average methods per type are significantly low. Also, they have no

execution-defining branch statements inside their code able to diverge the execution of

RJC. To this end, we decided to inject the faulty values in the rjc.Chart.Wait_

for_stable_rate_100000203_exec() method within Chart.java. JPF provid-

ed the needed method invocation paths that were used by APP_LogGIC to check the

Daikon-generated dynamic invariants. 8063 method invocation paths were satisfying

the invariant “TopLevel_Chart_count == 2” and three injected paths were vi-

olating it. APP_LogGIC detected the dynamic invariant violation for both of the two

fault injections. Variable TopLevel_Chart_count held injected data and was also

used in an if-statement: APP_LogGIC’s Fuzzy Logic system classified the logical error

with the following ratings:

Medium

Severity for variables used in a CB ONCE on:

o An “IF” branch

o A‘SWITCH’ branch
3

Table 5. Severity rank for RJC injection by APP_LogGIC

High
Invariant enforcement AND invariant violation in alternate versions
of same execution path (Invariant-Based analysis)

5

Table 6. Vulnerability rank for RJC injection by APP_LogGIC

A total of 6,240 control flow locations (such as if-statements) were gathered and ana-

lyzed from symbolic execution. Also, 515,854 method invocations and variable Store

and Invoke instructions were processed. The injected paths had 8,064 comparisons.

Before injection, all 8,064 paths were found satisfying the rule. As mentioned earlier,

after injection, three paths were found having different states (variable Top-

Level_Chart_count had different values while entering and exiting method

exec()). Both injected faults were discovered and all possible deviated execution

paths were detected. Data sets can be downloaded via the link at the end of this work.

5.2 Tainted object propagation tests: JSCH framework

JSCH [18] is an SSH2 framework licensed under a BSD-style open-source license.

Here, we tested APP_LogGIC’s capability to detect logical errors manifesting from

input data. We didn't have to inject any logical errors in JSCH since, to some extent,

some were already present in examples provided along with the framework’s code.

JSCH uses SSH connections and built-in encryption for security. Yet, the examples

provided with its source code have improper sanitization of user input.

Using Tainted Object analysis, AST trees and the Java compiler, APP_LogGIC cre-

ated a map of the AUT (variable assignments, declarations, method invocations etc.).

The analysis followed the tainted input and gathered the variables were input data could

reside (a.k.a. sinks) to detect whether sanitization checks are been enforced or not.

APP_LogGIC detected variables without proper sanitization and ranked these input

vectors accordingly:

Medium Severity for variables used as data sinks (i.e. data originated from user input) 3

Table 7. Severity rank for JSCH input vectors by APP_LogGIC

High
No check or improper checks in variables depended on input data and used

in branch conditions.
4

Table 8. Vulnerability rank for JSCH input vectors by APP_LogGIC

APP_LogGIC found out that sanitization checks in JSCH were only comparing initial-

ization data to actual variable data. This is a common logical error [21], since such

checks can only show that variable data is updated compared to their initial value, but

lack further content checks.

The tool detected eleven (11) sinks where data was stored without proper sanitizati-

on. Its Fuzzy Logic system calculated which of these points are dangerous based on

their position and utilization inside the source code; it then detected and ranked four of

them as potentially dangerous. Indeed, out of the eleven aforementioned variables used

in sinks, the four variables that were detected by APP_LogGIC where the only ones

that did not have proper sanitization checks enforced on their data.

Method applicability issues

Even though APP_LogGIC’s result had a 100% success rate in flagging dangerous and

injected points for logical errors, yet, the sample upon which APP_LogGIC was tested

still remains very small to claim such a high average detection rate. The applicability

of the method presented depends on how thoroughly the input vectors and dynamic

invariants are analyzed. At the moment, APP_LogGIC can only analyze simple invar-

iants and two types of input vectors. Yet, judging from the parsable syntax of dynamic

invariants, one can safely deduct that, with the right parser, most dynamic invariants

can be verified. This program could evolve into a potentially valuable tool: program

tests created by developers using APP_LogGIC in various stages of the development

cycle, could help detect logical errors and reduce the costly process of backtracking to

fix them.

State explosion remains a major issue, since it is a problem inherited by the used

analysis techniques. Yet, state explosion is manageable using source code classificati-

on. Both Daikon and JPF can be configured to target specific source code methods of

interest rather than analyze the entire source code of an AUT. Severity ranking helps

this. The use of method invocation paths downsized the initial data set for RJC from

155MB to 73MB and speeded up execution almost 80% in comparison with experi-

ments using the entire execution paths, as shown in Table 9.

 Execution – Full paths

and states
Execution – Method

invocation paths and states

Size 155 MB 73MB

Time elapsed
~ 18 min (RJC)

~ 6 min (JSCH)

~ 4 min (RJC)

~ 6 min (JSCH)

Errors detected 2 out of 2 injections (RJC) 2 out of 2 (RJC)

Table 9. Execution times for APP_LogGIC experiments

Both of the analyzed applications are relatively small in comparison to other AUT

(on the order of many GB). The AUT size will be considered in future research.

APP_LogGIC ran on an Intel Core 2 Duo E6550 PC (2.33 GHz, 4GB RAM).

6 Conclusions

Preliminary results show that profiling the intended behavior of applications is feasible

(up to a certain complexity level) even in real-world applications. Logic profiling aside,

the use of Fuzzy Logic provides some advantages: (i) It reduces the data to be analyzed

by focusing on high impact (dangerous) source code points (Severity ranking) and (ii)

it is a way to treat false positives by assessing logical errors and ignoring irrelevant

dynamic invariants (Vulnerability ranking): Errors in non-critical points of the source

code which do not divert execution can be discarded; i.e. invariant violations referring

to source code points that do not somehow affect any conditional branches (such as if-

statements) during execution.

The method suffers by a number of limitations. Complex invariant rules generated

by Daikon need deep semantic analysis in order to be usable. Also, Daikon does not

support analysis of loops (“While” and “For”). On top of that, Daikon’s dynamic exe-

cution must cover as much AUT functionality as possible, if a logical error is to be

discovered. Otherwise, dynamic invariants generated will not correctly describe the

AUT behavior intended by its programmer. We plan to explore different approaches

using design artifacts provided by developers for a more efficient reasoning of the sour-

ce code [24] such as XBRL or OWL to describe programming logic.

Another venue is to test this method on control systems used in critical infrastructu-

res (CI) or manufacturing facilities. Widely used programmable logic controllers con-

trol functions in critical infrastructures such as water, power, gas pipelines, and nuclear

facilities [25-26]. Logic errors might lead to weaknesses that make it possible to execute

commands not intended by their programmer. The effect of this attack might lead to

cascading effects amongst numerous interconnected CI, or can have an impact on a

number of other infrastructures, including mobile systems, etc. [27-30].

Acknowledgment

This research has been co-financed by the European Union (European Social Fund

ESF) and Greek national funds through the Operational Program “Education and Life-

long Learning” of the National Strategic Reference Framework (NSRF) - Research

Funding Program: THALES AUEB - Software Engineering Research Platform.

References

1. Dobbins J. 1998. Inspections as an up-front quality technique. In Handbook of Software Quality

Assurance, Prentice Hall, 217-252.

2. McLaughlin, B. 2002. Building Java Enterprise Applications, Vol. 1: Architecture. O' Reilly.

3. Peng, W. and Wallace, D. 1993. Software Error Analysis. NIST Pub. 500-209, 7-10.

4. Kimura, M. 2006. Software vulnerability, Definition, modeling, and practical evaluation for e-

mail transfer software. In Int. Journal of Pressure Vessels & Piping. Vol. 83, No. 4, 256–261.

5. Felmetsger, V., Cavedon, L., Kruegel, C. and Vigna, J. 2010. Toward automated detection of

logic vulnerabilities in web applications. In Proc. of the 19th USENIX Symp. USA, 10-10.

6. Stergiopoulos, G., Tsoumas, B. and Gritzalis, D. 2012. Hunting application-level logical errors.

In Proc. of the Engineering Secure Software and Systems Conf. Springer, 135-142.

7. Stergiopoulos, G., Tsoumas, V. and Gritzalis, D. 2013. On Business Logic Vulnerabilities

Hunting: The APP_LogGIC Framework. In Proc. of the 7th International Conference on Net-

work and System Security. Springer, 236-249.

8. Pasareanu, C. and Visser, W. 2004. Verification of Java Programs Using Symbolic Execution

and Invariant Generation. In Proc. of SPIN. Springer, 164-181.

9. The Java PathFinder tool, NASA Ames RC, http://babelfish.arc.nasa.gov/trac/jpf/

10. Doupe, A., Boe, B. and Vigna, G. 2011. Fear the EAR: Discovering and Mitigating Execution

After Redirect Vulnerabilities. In Proc. of the 18th ACM Conference on Computer and Commu-

nications Security. ACM, 251-262.

11. Balzarotti, D., Cova, M., Felmetsger, V. and Vigna, G. 2007. Multi-module vulnerability anal-

ysis of web-based applications. In Proc. of the 14th ACM Conference on Computer and Com-

munications Security. ACM, 25-35.

12. Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C., Tschantz, M. and Xiao, C. 2007.

The Daikon system for dynamic detection of likely invariants. In Science of Computer Pro-

gramming, vol. 69, 35-45.

13. The Daikon Invariant Detector Manual, http://groups.csail.mit.edu/pag/daikon/

14. Brumley, D., Newsome, J., Song, D., Wang, H. and Jha S. 2006. Towards automatic generation

of vulnerability-based signatures. In IEEE Symposium on Security and Privacy.

15. Natella, R., Cotronneo, D., Duraes, J. and Madeira, H. 2013. On Fault Representativeness of

Software Fault Injection. In IEEE Trans. on Software Engineering. Vol. 39, no. 1, 80-96.

16. Foundations of Fuzzy Logic, Fuzzy Operators, Mathworks

 http://www.mathworks.com/help/toolbox/fuzzy/bp78l6_-1.html

17. Systems Engineering Fundamentals. 2001. Supplementary text prepared by the Defense Acqui-

sition University Press, Defense Acquisition University, USA.

18. JSCH SSH framework, JCraft, http://www.jcraft.com/jsch/

19. Cingolani, P. and Alcala-Fdez J. 2012. jFuzzyLogic: a robust and flexible Fuzzy-Logic infer-

ence system language implementation. In Proc. of the IEEE International Conference on Fuzzy

Systems. IEEE, 1-8.

20. Leekwijck, W. and Kerre, E. 1999. Defuzzification: Criteria and classification. In Fuzzy Sets

and Systems. Vol. 108, no. 2, 159-178.

21. Stoneburner G. and Goguen A. 2002. SP 800-30. Risk Management Guide for Information

Technology Systems. Technical Report. NIST, USA.

22. Burns, A. and Burns, R. 2008. Basic Marketing Research. Pearson Education, 245.

23. Fenton, N., Pfleeger S. 1998. Software Metrics: A Rigorous and Practical Approach, PWS.

24. Giannakopoulou, D., Pasareanu, C. and Cobleigh, J. 2004. Assume-guarantee verification of

source code with design-level assumptions. In Proc. of the 26th International Conference on

Software Engineering. IEEE, 211-220.

25. Kotzanikolaou P., Theoharidou M., Gritzalis D. 2013. Accessing n-order dependencies between

critical infrastructures. In Int. Journal of Critical Infrastructures. Vol. 9 (1-2), 93-110.

26. Theoharidou M., Kotzanikolaou P. and Gritzalis D. 2011. Risk assessment methodology for

interdependent critical infrastructures. In Int. Journal of Risk Assessment and Management.

Vol. 15 (2/3), 128-148.

27. Kandias M., Mitrou L., Stavrou V., Gritzalis D. 2013. Which side are you on? A new Panopti-

con vs. privacy. In Proc. of 10th International Conference on Security and Cryptography. SciTe-

Press, 98-110.

28. Theoharidou M., Kandias M., and Gritzalis D. 2012. Securing Transportation-Critical Infra-

structures: Trends and Perspectives. In Proc. of the 7th IEEE International Conference in Global

Security, Safety and Sustainability. Springer, 171-178.

29. Mylonas A., Dritsas S, Tsoumas V., and Gritzalis D. 2011, Smartphone Security Evaluation -

The Malware Attack Case. In Proc. of the 8th International Conference on Security and Cryp-

tography, SciTepress, 25-36.

30. Theoharidou M., Mylonas A., Gritzalis D. 2012. A risk assessment method for smartphones. In

Proc. of the 27th IFIP Int. Information Security and Privacy Conference, Springer, 428-440.

31. Chatzieleftheriou, G., Katsaros, P. 2011, Test driving static analysis tools in search of C code

vulnerabilities. In Proc. of the 35th IEEE Computer Software and Applications Conference

Workshops, IEEE, 96-103.

