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Abstract. We present a Colored Petri Net approach to model check three atom-
icity properties for the NetBill electronic cash system. We verify that the proto-
col satisfies money atomicity, goods atomicity and certified delivery in the 
presence of potential site or communication failures and all possible unilateral 
transaction abort cases. Model checking is performed in CPN Tools, a graphical 
ML-based tool for editing and analyzing Colored Petri Nets (CP-nets). In case 
of property violation, protocol failure analysis aims in exploring all property 
violation scenarios, in order to correct the protocol’s design. Model checking 
exploits the provided state space exploration functions and the supported Com-
putation Tree like temporal logic (CTL). On the other hand, protocol failure 
analysis is performed by inspection of appropriately selected markings and if 
necessary, by interactively simulating certain property violation scenarios. In e-
commerce, Colored Petri Net model checking has been used in verifying ab-
sence of deadlocks, absence of livelocks and absence of unexpected dead transi-
tions, as well as in verifying a protocol against its service. To the best of our 
knowledge, our work is the first attempt to employ CP-nets for model checking 
atomicity properties. We believe that the described approach can also be ap-
plied in model checking other functional properties that are not directly related 
to the structural properties of the generated state space graph.  

1   Introduction 

E-commerce systems offer considerable potential, but they are accompanied by a 
broad range of often unprecedented risks. A lack of system security or reliability can 
cause the system to behave differently than its stakeholders expect and can lead to loss 
of physical assets, digital assets, money, and consumer confidence. Model checking 
refers to a set of mechanized techniques, which are used to automatically discover any 
scenarios, in which the actual system behavior and the behavior of the stakeholders’ 
model diverge from one another. These scenarios identify potential failures and pin-
point areas where design changes or revisions should be considered.  
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In e-commerce, most published model checking approaches ([10], [16], [23], [24]) 
use a Communicating Sequential Processes (CSP) system description (SYSTEM) and 
verification is performed by the Failure Divergence Refinement (FDR) model checker. 
The properties to be checked are also expressed as CSP processes (SPEC) and FDR 
checks if the set of behaviors generated by SYSTEM is a subset of those generated by 
SPEC. 

In the field of e-commerce, CP-nets ([12]) and CPN Tools ([7]) have been used to 
model check the absence of deadlocks and livelocks and the absence of unexpected 
dead transitions and inconsistent terminal states, for the Internet Open Trading Proto-
col ([18], [20], [21]). Also, CP-nets have been used in verifying a protocol against its 
service ([19]). The correctness properties considered in [21] depend on certain struc-
tural properties of the state space graph, like for example the absence of self-loops. 

However, in e-commerce we are also interested to model check functional proper-
ties that are not directly related to the structural properties of the state space graph. 
CSP-based model checking is broadly used due to its success in verifying security 
properties, like confidentiality ([22], [26]), message authentication ([26]), anonymity 
([26]), integrity ([22], [26]) and information flow security ([14]). CSP-based model 
checking can also be applied in verifying validated receipt ([23], [24]), accountability 
([13]), personalization potentiality ([9]) and atomicity properties, like withdrawal 
atomicity, payment atomicity and deposit atomicity ([15], [27], [29]), in the presence 
of site or communication failures and all possible unilateral transaction abort cases. 

In this work, we use CPN Tools to model check payment atomicity for the NetBill 
([6]) electronic cash system. We show how to exploit the provided state space explo-
ration functions and the supported Computation Tree like temporal logic (CTL), in 
order to verify ([4], [5]) three different levels of payment atomicity (money atomicity, 
goods atomicity and certified delivery). In case of property violation, we propose 
protocol failure analysis to be based on inspection of appropriately selected markings 
and if necessary, to exploit the CPN Tools advanced graphical environment to interac-
tively simulate the actions performed in one or more property violation scenarios. 

Although it was already known that NetBill possesses the three levels of payment 
atomicity ([10]), we are not aware of published results that model check certified 
delivery. Moreover, the applied CP-net approach is characterized by the comparative 
advantage of interactively simulating the developed model and makes CPN Tools an 
attractive alternative (over CSP-based model checking), for model checking the fore-
named security and reliability properties. Finally, the proposed protocol failure analy-
sis is possible to be applied to other electronic cash systems, like for example Digi-
cash ([2], [3]), Payword ([25]), MicroMint ([25]) and MiniPay ([11]), which fail to 
provide a certified delivery mechanism, for selling and delivering digital goods and 
services. 

Section 2 provides a compact description of the NetBill electronic cash system and 
the three levels of payment atomicity. Section 3 introduces the adopted modeling 
assumptions and the proposed CP-net. Section 4 focuses on model checking the three 
levels of payment atomicity (money atomicity, goods atomicity and certified delivery). 
Section 5 introduces the proposed protocol failure analysis and the paper concludes 
with a summary of our CP-net model checking experience and its potential impact. 
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2   The NetBill electronic cash system 

The NetBill transaction model involves three participants: the consumer (C), the mer-
chant (M) and the bank server (B). A transaction involves three phases: price negotia-
tion, goods delivery and payment. We consider the selling of information goods, in 
which case the NetBill protocol links goods delivery and payment into a single atomic 
transaction. We use the notation “X ⇒ Y message” to indicate that X sends the speci-
fied message to Y. The basic protocol consists of the following messages:  
 1. C ⇒ M Price request 
 2. M ⇒ C Price quote 
 3. C ⇒ M Goods request 
 4. M ⇒ C Goods, encrypted with a key K 
 5. C ⇒ M Signed Electronic Payment Order (epo) 
 6. M ⇒ B Endorsed Electronic Payment Order (including the key K) 
 7. B ⇒ M Signed result (including K in case of successful payment) 
 8. M ⇒ C Signed result (including K in case of successful payment) 

C and M interact with each other in the following way:  
• C issues a price request for a particular product (1) and M replies with the 

requested price (2), 
• C either aborts the transaction or issues a goods request to the merchant (3), 
• in the second case, M delivers the requested goods encrypted with a key K 

(4). 
The goods are cryptographically checksummed in order to be able to confirm that 

received goods are not affected by a potential transmission error and that they are not 
subsequently altered. The bank (B) is not involved until the payment phase: 

• C sends to M a signed electronic payment order (5) including all necessary 
payment details and the received product checksum, 

• M validates the received electronic payment order (epo) and checksum in-
formation and either aborts the transaction or endorses it by sending the re-
ceived payment order and the associated decryption key K to B (6), 

• B responds to M (7) with the payment result and the decryption key K (in 
case of successful payment), which are finally forwarded to C (8) to termi-
nate the transaction. 

NetBill provides protection for C against fraud by M in the following ways: 
• the key K, which is needed to decrypt the goods is registered with B and if 

M does not respond in a valid payment as expected, the consumer asks the 
key from B, that in fact acts as a trusted third party, 

• if there is a discrepancy between what C ordered and what M delivered, C 
can easily demonstrate this discrepancy to the trusted third party, since the 
payment order received by B includes all details about what exactly was or-
dered, the amount charged, the key K reported by M and the checksum of 
the delivered encrypted goods. Thus, if the goods are faulty it is easy to 
demonstrate that the problem lies with the goods as sent and not with any 
subsequent alteration (that would produce different checksum information). 
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NetBill is one of the first electronic cash systems that provides the three levels of 
payment atomicity, in the presence of potential site or communication failures and all 
possible unilateral transaction abort cases. 

Money atomicity is the basic level that should be ensured by all transactions ex-
changing electronic cash. It means that the payment transaction ensures that there is no 
possibility of creation or destruction of money, while electronic cash is being trans-
ferred. 

Goods atomicity ensures money atomicity and also ensures that there is no possibil-
ity of paying without receiving goods or vice versa. 

Most electronic payment systems ensure money and goods atomicity, but fail to en-
sure certified delivery, which is the highest level of atomicity. Certified delivery in-
cludes both money and goods atomicity and also allows both participants to prove the 
details of the transaction. In the related bibliography, certified delivery is also men-
tioned as non-repudiation of transactions ([28]) or strongly fair exchange ([1]). 

3   A Colored Petri Net model for NetBill 

In this section, we introduce a CP-net for the NetBill electronic cash system. The 
adopted modeling assumptions take into account consumer and merchant site failures 
and non-reliable communication between the protocol’s participants, including poten-
tial message losses. We assume that both, consumer’s account debit and merchant’s 
account credit take place at the same site (bank server) that provides trivial transaction 
atomicity guarantees. Thus, we omit modeling bank site failures, since this would 
burden the CP-net with details that are not part of the NetBill protocol, but concern 
the provided transaction processing mechanism. This implies the property of money 
atomicity, but we show how to express it by exploiting the provided state space explo-
ration functions and the supported Computation Tree like temporal logic (CTL). 

Compared to the CP-net proposed for the Internet Open Trading Protocol ([17]) our 
model differs in how the protocol’s participants are represented. In our model, the 
participant processes correspond to substitution transitions that include potential site 
and communication failures and all possible unilateral transaction abort cases. In [17], 
the participants are represented by places, whose color sets include token colors that 
correspond to all possible participant states. Also, we do not use places that implement 
reliable FIFO communication channels between the protocol participants. In our case, 
a protocol message loss terminates the corresponding protocol session. We aim in 
model checking the forenamed payment atomicity properties that are not directly re-
lated to the structural properties of the generated state space graph. On the other hand, 
the CP-net of [17] has been used in verifying the protocol against its service and in 
model checking correctness properties that depend on certain structural properties of 
the model’s state space graph. 

The proposed CP-net consists of a number of hierarchically related pages (Figure 
1), which model the protocol’s behavior in different levels of abstraction.  
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Protocol
ConsumerProcess
MerchantProcess
BankProcess  

Fig. 1. The hierarchy page of the NetBill CP-net 
 

In the highest level of abstraction (Figure 2), we model the protocol’s participants 
and message exchanges. We omit the protocol steps 1 and 2, since they are not sig-
nificant for checking payment atomicity. Figure 3 summarizes the color and variable 
declarations used for the transition and arc inscriptions of the described CP-net. Our 
model is important to reflect all possible protocol execution scenarios. We adopt a 
compact representation of all distinct transaction abort cases by specifying them as 
request typed tokens that encode the following execution scenarios: 
   1. C sends to M a valid goods request (gReq=v) 
 2. C sends to M an invalid goods request (gReq=i) 
 3. the encrypted goods received by C are the requested ones  
  (enGoods=v) 
 4. the encrypted goods received by C are affected by an occurred data 
  transmission error (enGoods=i) 
 5. C sends to M a valid electronic payment order (epoReq=v) 
 6. C sends to M an invalid electronic payment order (epoReq=i) 
 

q

1`STARTq^^[reqRec(aRequest)]

ConsumerProcess
ConsumerProcess

MerchantProcess
MerchantProcess

BankProcess
BankProcess

newRequest prmtrs
pPrmtrs

1`START1 1`START

goodsRequest
request

encrGoods
validORnot

ePaymentOrder
validORnot

endorsedPaymentOrder
INT

stop
STRING

bankOut
INT

endTransaction
INT

queryBank
result

reqQueue

lReqQ

[]1 1`[]

epoInput
validORnot  

Fig. 2. Top-level structure of the NetBill CP-net 
 
     colset pPrmtrs  =with START; 
      colset validORnot =with v | i; 
 colset request  =record  gReq:validORnot* 
       enGoods:validORnot* 
      epoReq:validORnot; 
      colset sRequest =union reqRec:request; 
      colset lReqQ  =list sRequest; 
      colset result   =with noFunds | paymentReceipt | noRecord; 
      var aRequest  :request; 
      var q   :lReqQ; 
      var valCode  :validORnot; 
      var intVar  :INT; 
      var res   :result; 
  

Fig. 3. Color sets and variables used in the NetBill CP-net 
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reqRec(aRequest)::q

aRequest

"aborted by C"

1`i

1`v"err: invalid encrypted goods"

"aborted by C"

"aborted by C"

reqRec(aRequest)::q

valCode

valCode
valCode

valCode

#epoReq aRequest

valCode

valCode

intVar

intVar

"No Funds"

"Success"

1`noRecord
aRequest

"comm err: CtoM"

valCode

"comm err: CtoM"

1`noRecord

q
q

valCode

gRequest

abort2

errorEnGoods

epoRequest

abort3

abort1

succeeded
intVar=1

NoPayment
intVar=0

commErrCtoM1

commErrCtoM2

reqQueue
lReqQI/O

stop

STRING
Out

goodsRequest
requestOut

encrGoods
validORnotIn

epoInput
validORnotI/O

ePaymentOrder
validORnotOut

endTransaction
INTIn

queryBank
result

Out

 

Fig. 4. The Consumer (C) process page of the NetBill CP-net 
 

An electronic payment order (epo) is not valid, when it is not signed or includes in-
valid payment details, like for example a product checksum that does not coincide to 
the one assigned to the encrypted goods sent to C. 

Figure 4 introduces the consumer process page that corresponds to the Consumer-
Process substitution transition of Figure 2. Input and output places were assigned to 
the synonyms shown in the top-level CP-net. Firing of transition gRequest places 
the result typed token noRecord at the place queryBank. This models the 
possibility of C querying B (trusted third party) for the result of the ongoing transac-
tion. The request typed token aRequest is passed to the place goodsRequest 
and it is then used non-deterministically to fire either the commErrCtoM1 transition 
(communication error: C to M) or the one corresponding to its reception by the mer-
chant process (merchant process page). 

We note that C can abort the executed transaction any time up to the submission of 
epo. Potential unilateral abort decisions and consumer site failures are modeled by 
transitions named as abort# and terminate the protocol by placing an appropriate 
diagnostic string at the output place stop. Unilateral transaction aborts are also rep-
resented by transitions like the one called errorEnGoods, which correspond to the 
validation actions performed by the protocol participants. Dispatch of the signed epo 
by C signifies the commitment of C to the executed transaction request.  

The diagnostic strings placed at the place stop indicate protocol termination, but 
only “No Funds” and “Success” are reported to the end user. In case of site or 
communication failure, C is informed for the transaction result by querying B.  

Figure 5 introduces the merchant process page that corresponds to the Merchant-
Process substitution transition of Figure 2. On reception of a request typed to-
ken at the place goodsRequest the merchant process either aborts the transaction 
(site failure), terminates the protocol (because of an invalid goods request) or pro-
ceeds to the processing of the received request (transition receiveGoodsReq).  
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aRequest

aRequest

"aborted by M"

"err: invalid goods request"

aRequest

aRequest
aRequest

#enGoods aRequest

1`v

1

1`i

1`v"aborted by M"

"err: invalid EPO"

aRequest

"aborted by M"

"aborted by M" 1

intVar"comm err: BtoM OR M site failure"
intVar

intVar

intVar"comm err: MtoC"

1
"comm err: MtoB"

valCode

valCode

valCode

receiveGoodsReq
[#gReq aRequest=v]

abort1

errorGoodsReq
[#gReq aRequest=i]

sendEncrGoods

receiveEpoabort3

errorEpo

abort2

abort4

fail1

finishTrans

commErrMtoC1

commErrMtoB1

endorsedPaymentOrder
INTOut

goodsRequest
requestIn

bankOut
INTIn

epo validORnot
In

encrGoods
validORnotOut

stop
STRINGOut

goodsReqRcvd
request

endTransaction
INTOut

epoInput
validORnotIn

 
Fig. 5. The Merchant (M) process page of the NetBill CP-net 

 
The merchant process responds to the consumer process by dispatching an en-

crypted version of the ordered goods (transition sendEncrGoods). On reception of 
the signed epo at the place epo, the merchant process either terminates the transaction 
in case of invalid epo, aborts the transaction due to a site failure (transition abort3) 
or endorses the received epo (attaches the required decryption key) and forwards it to 
the bank server process through the place endorsedPaymentOrder. 
 

1
0

1 1 1
1

10

0 0

1`noFunds 1`paymentReceipt
res

1 0

res

1`noRecord

1`noRecord

OK_Trans

No_Trans

pay

receipt

finished

updateDB

noFunds

endorsedPaymentOrder
INTIn

debitC
INT

creditM
INT

bankOut
INTOut

No_Transaction
INT

queryBank
resultI/O

paymentResult
result

 

Fig. 6. The Bank (B) process page of the NetBill CP-net 
 

Figure 6 introduces the bank process page that corresponds to the BankProcess 
substitution transition of Figure 2. On reception of an endorsed payment order at the 
place endorsedPaymentOrder the bank server either proceeds to the debit of the 
consumer’s account or discovers a low balance account (because of the transition 
noFunds) and does not charge C. Both transaction cases are (assumed to be) exe-
cuted atomically and this is modeled, by initially removing the result typed token 
found in place queryBank and finally placing an appropriate token value in it. Al-
though this makes money atomicity self-proved, we are still interested to demonstrate 
the potentiality of the Computation Tree like temporal logic (CTL) supported in CPN 
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Tools to express and prove all payment atomicity properties, including money atomic-
ity. 

4   State space analysis and model checking 

Figure 7 shows the standard report generated for the state space analysis of the de-
scribed NetBill CP-net.  
 
 Statistics 
------------------------------------------------------------------------ 
  State Space   
    Nodes:  59 
    Arcs:   103 
    Secs:   0 
    Status: Full 
 
  Scc Graph  
    Nodes:  59 
    Arcs:   103 
    Secs:   0 
 
Boundedness Properties 
------------------------------------------------------------------------ 
  Best Integers Bounds      Upper       Lower 
  BankProcess'No_Transaction 1 1           0 
  BankProcess'creditM 1     1           0 
  BankProcess'debitC 1      1           0 
  BankProcess'paymentResult 1  1           0 
  ConsumerProcess'epoInput 1  1           0 
  MerchantProcess'goodsReqRcvd 1 1           0 
  Protocol'bankOut 1        1           0 
  Protocol'ePaymentOrder 1  1           0 
  Protocol'encrGoods 1      1           0 
  Protocol'endTransaction 1  1           0 
  Protocol'endorsedPaymentOrder 1 1           0 
  Protocol'goodsRequest 1   1           0 
  Protocol'prmtrs 1         1           0 
  Protocol'queryBank 1      1           0 
  Protocol'reqQueue 1       1           1 
  Protocol'stop 1           1           0 
 
Home Properties 
------------------------------------------------------------------------ 
  Home Markings:  None 
 
Liveness Properties 
------------------------------------------------------------------------ 
  Dead Markings:  13 [59,658,57,56,55,...] 
  Dead Transitions Instances: None 
  Live Transitions Instances: None 
 
Fairness Properties 
------------------------------------------------------------------------ 
  No infinite occurrence sequences. 
 

Fig. 7. The standard report generated for the state space analysis of the NetBill CP-net 
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The results for the standard properties checked in the shown report constitute a nec-
essary input source, for correctly expressing the CTL formulae of the required cor-
rectness properties. We observe the absence of home markings and the absence of 
dead and live transitions instances. There are no infinite occurrence sequences and the 
protocol terminates in one of the 13 dead markings, with node numbers that are easily 
found by the provided state space exploration functions. 

The ML-functions used in model checking payment atomicity are summarized in 
Table 1: 

Table 1. State space querying functions 

function description use 
Mark.<PageName>’<PlaceName> N M Returns the set of tokens positioned in place <PlaceName> of the 

Nth instance of page <PageName> in the marking M 
SearchNodes ( 
        <search area>, 
        <predicate function>,
        <search limit>, 
        <evaluation function>, 
        <start value>, 
        <combination function>) 

Traverses the nodes of the part of the occurrence graph specified in 
<search area>. At each node the calculation specified by <evaluation 
function> is performed and the results of these calculations are 
combined as specified by <combination function> to form the final 
result. The <predicate function> maps each node into a boolean value 
and selects only those nodes, which evaluate to true. We use the 
value EntireGraph for <search area> to denote the set of all nodes in 
the occurrence graph and the value NoLimit for <search limit> to 
continue searching for all nodes, for which the predicate function 
evaluates to true. 

List.nth(l,n) Returns the nth element in list l, where 0 <= n < length l. 

 
Function SearchNodes is used to detect the marking(s) right after the occurrence 

of a particular event, like for example a money transfer from C’s account to M’s ac-
count.  

Table 2. CTL state formulae operators and model checking functions 

state formulae syntax meaning 
NOT(A) Boolean value that corresponds to the negation of A, where A is a CTL 

formula. 
AND(A1,A2) This formula is true if both A1 and A2 are true. 
NF(<message>,<node function>) A function that is typically used for identifying single states or a subset 

of the state space. Its arguments are a string and a function, which takes 
a state space node and returns a boolean. The string is used when a 
CTL formula evaluates to false in the model checker. 

EV(A)≡FORALL_UNTIL(TT,A) This formula is true if the argument A becomes true eventually (within a 
finite number of steps) starting from the state we are now. TT denotes 
the true constant value. 

ALONG(A)≡NOT(EV(NOT(A))) This formula is true if there exists a path for which the argument A 
holds for every state. The path is either infinite or ends in a dead state. 

POS(A)≡EXIST_UNTIL(TT,A) This formula is true if possible from the state we are now, to reach a 
state where the argument A is true.  

EXIST_NEXT(A) This formula is true iff there exists an immediate successor state, from 
where we are now, in which the argument A is true. 

FORALL_NEXT(A) This formula is true iff for all immediate successor states from where we 
are now the argument A is true. 

eval_node <formula> <node> The standard model checking function that takes two arguments: the 
CTL formula to be checked and a state from where the model checking 
should start. 

 
Table 2 summarizes the CTL formulae used to express the required properties in 

terms of paths over the generated state space graph. A CTL expression that corre-
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sponds to the required property is model checked by the eval_node function, start-
ing from the node number that is passed as second argument. The ML statements need 
to activate the provided Computation Tree like temporal logic (CTL) are shown in 
Figure 8. 
 
  use (ogpath^"ASKCTL/BitArray.sml"); 
  use (ogpath^"ASKCTL/ASKCTL.sml"); 
  open ASKCTL; 

Fig. 8. ML statements used to activate the provided CTL support  

4.1 Model checking money atomicity 

Figure 9 shows the model checking of the money atomicity property. We are inter-
ested to verify that money transfer takes place atomically that is, for all paths starting 
from the occurrence of the consumer’s debit the protocol performs the corresponding 
credit to the merchant’s account irrespective of the considered failure possibilities.  

Value firstdebitState corresponds to the marking that signifies consumer’s 
debit. This is the marking from where the model checking starts. Value noDebit is 
used to detect redundant debits before the occurrence of the expected credit. Value 
moneyAtomicity (true) ensures that for all immediate successors, noDebit is 
true for each state along the path, until the last state on the path, where credit-
State becomes true.  
 

 
  

Fig. 9. Model checking money atomicity: true 

4.2 Model checking goods atomicity 

Figure 10 shows the model checking of non-atomic goods delivery. We are interested 
to verify that irrespective of the considered failures and unilateral abort decisions (i) 
when C signs a valid epo it is not possible to eventually perform C’s debit, without a 
subsequent protocol termination with a registered payment receipt (including the re-
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quired decryption key) and (ii) when C sends a not necessarily valid epo it is not pos-
sible to eventually register a payment receipt, without having previously debited C’s 
account. The first mentioned guarantee ensures goods atomicity from the consumer’s 
perspective and the second mentioned guarantee ensures goods atomicity from the 
merchant perspective. 

Value dispatchedEPOState corresponds to the marking that signifies the dis-
patch of a valid signed epo. This is the marking from where the model checking of (i) 
starts. Value debitState is used to detect C’s debit. Value notRegisteredDe-
crKey is used to check the absence of a payment receipt. Value noGoodsAtomic-
ityA (false) ensures that there is no path, for which it is possible to eventually 
occur C’s debit and at the same time in every state, to not register the expected pay-
ment receipt. Note that because of the absence of infinite paths (state space report), all 
paths quantified by ALONG end in a dead marking (protocol termination). 

Value dispatchedEPOState1 corresponds to the marking that signifies the 
dispatch of a valid signed epo. On the other hand, value dispatchedEPOState2 
corresponds to the marking that signifies the dispatch of an invalid epo. These are the 
markings from where the model checking of (ii) starts. Value noDebitFound is 
used to check the absence of C’s debit. Value registeredDecrKey is used to 
detect registration of an unexpected payment receipt. Value noGoodsAtomicityB 
(false in both model checking cases) ensures that there is no path, for which it is 
possible to eventually register a payment receipt and at the same time in every state, to 
not have performed C’s debit. 
 

   

Fig. 10. Model checking the two parts of the non-atomic goods delivery: false 
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4.3 Model checking certified delivery 

Figure 11 shows the model checking of a non-certified delivery. We are interested to 
verify that irrespective of the considered failures and unilateral abort decisions, the 
protocol does not fall in a state, where it is possible to end with a payment receipt, 
without C having previously obtained an encrypted version of the requested goods and 
the corresponding checksum number. The obtained checksum number can be used to 
prove potential discrepancy between what C ordered and what M delivered (if the 
number coincides with the checksum number written on the registered payment re-
ceipt). 

Value registerKey is used to detect registration of the expected payment re-
ceipt. Value noGoods is used to check the absence of an encrypted goods delivery. 
Value nonCertiefiedDelivery (false), when it is model checked starting 
from the initial node, ensures that there is no path for which it is possible to not have 
delivered the assumed encrypted goods and the protocol to terminate with having 
registered a payment receipt. 

Model checking certified delivery from the merchant perspective is performed in a 
similar way. 
 

 
  

Fig. 11. Model checking non-certified delivery: false 

5   Protocol failure analysis 

In general, protocol failure analysis aims in exploring all property violation scenarios 
(if any) and pinpoints areas where design changes or revisions should be considered. 
Having shown that CP-net based model checking of payment atomicity is feasible, we 
can then exploit the CPN Tools advanced graphical environment, to interactively 
simulating the actions performed in possible property violation scenarios. 
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Fig. 12. NetBill’s CP-net state space graph 
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 Protocol failure analysis is based on inspection of the terminal markings (dead 
markings) in all property violation paths. The diagnostic strings positioned at places, 
like the place stop and the place queryBank in the top-level CP-net of NetBill 
(Figure 2), provide details for interactively simulating the corresponding protocol 
execution scenario. The simulation control functionality found in the latest version of 
CPN Tools allows firing transitions with an interactively chosen binding. Thus, the 
actions included in the scenario of interest are easily reproduced and the analyst ex-
plores all possible protocol revision prospects to repair the detected property viola-
tion. A necessary prerequisite is the selection of informative diagnostic strings in the 
phase of model development. 

In what is concerned with NetBill, protocol failure analysis is not applicable, since 
we did not detect atomicity violation cases. However, we proceed to the inspection of 
the CP-net’s terminal markings and the visualization of the generated state space 
graph. 

CPN Tools exports the model’s state space graph in a DOT language based text file 
that is then automatically visualized by an appropriate program, which implements 
well-tuned layout algorithms ([8]), for placing graph nodes and arcs. Figure 12 shows 
the generated state space graph for the described NetBill CP-net. Leaf nodes corre-
spond to the dead markings to be inspected (Figure 13). 
 
 ListDeadMarkigs() -> val it =[59,58,57,56,55, 
     51,35,33,30,21, 
     20,19,10]:Node list 
   

Fig. 13. Dead markings for the described NetBill CP-net 
 

Finally, Table 3 provides a concise view of the performed protocol termination in-
spection. 

Table 3. Protocol termination inspection 

marking 
(N) 

Mark.Protocol' 
stop 1 N 

Mark.Protocol' 
queryBank 1 N 

interpretation 

59 [“No Funds”] [noFunds] No failures. 
58 [“comm err: MtoC”] [noFunds] Communication failure: M fails to report the transac-

tion result to C. C is informed for the result of the 
submitted transaction by querying B. 

57 [“Success”] [paymentReceipt] No failures. 
56 [“comm err: MtoC”] [paymentReceipt] Communication failure: M fails to report the transac-

tion result to C. C obtains the product decryption key 
by querying B. 

55 [“comm err: BtoM or 
M site failure”] 

[noFunds] M is not informed for the result of the submitted 
transaction due to a potential site or communication 
failure. C is informed for the result of the submitted 
transaction by querying B. 

51 [“comm err: BtoM or
M site failure”] 

[paymentReceipt] M is not informed for the result of the submitted 
transaction due to a potential site or communication 
failure. C obtains the product decryption key by 
querying B. 

35 [“comm err: MtoB”] [noRecord] Communication failure: the signed payment order is not 
transmitted to B. C is informed that there is no 
transaction by querying B. 

33 [“err: invalid 
EPO”] 

[noRecord] M aborts the transaction due to an invalid epo. C is 
informed that there is no transaction by querying B. 
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marking 
(N) 

Mark.Protocol' 
stop 1 N 

Mark.Protocol' 
queryBank 1 N 

interpretation 

30 [“err: invalid 
encrypted goods”] 

[noRecord] C aborts the transaction due to reception of encrypted 
goods that are possibly affected by an occurred 
transmission error.  

21 [“comm err: CtoM”] [noRecord] Communication failure: the goods request or the signed 
payment order is not transmitted to M. C is informed 
that there is no transaction by querying B. 

20 [“err: invalid 
goods request”] 

[noRecord] M aborts the transaction due to an invalid goods 
request. 

19 [“aborted by M”] [noRecord] M aborts the transaction due to a potential site failure 
or due to a unilateral abort decision. C is informed that 
there is no transaction by querying B. 

10 [“aborted by C”] [noRecord] C aborts the transaction due to a potential site failure or 
due to a unilateral abort decision before being commit-
ted to it, by the dispatch of a signed payment order.  

 

5   Conclusion 

This paper introduces the use of CP-nets and CPN Tools to model check the three 
levels of payment atomicity, for an electronic cash system. The combined use of ap-
propriate state space exploration functions and CTL formulae allowed us to express 
and model check money atomicity, goods atomicity and certified delivery. 

Although it was already known that NetBill possesses these three properties, we are 
not aware of published works in e-commerce, where CP-nets are used to model check 
correctness properties that are not directly related to the structural properties of the 
generated state space graph. We believe that the described approach is also applicable 
in more complex system models and is also possible to be extended for model check-
ing other reliability and security properties. 

We also proposed the performance of protocol failure analysis, in order to explore 
potential property violation scenarios and pinpoint areas, where design changes or 
revisions should be considered. In protocol failure analysis, it is possible to exploit the 
advanced graphical environment of CPN Tools to interactively simulate the actions 
included in a protocol execution scenario. 

Our model checking experience suggests that CPN Tools is an attractive alternative 
over CSP-based model checking in e-commerce problems.  
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