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Abstract 
 
Java Card provides a framework of classes and interfaces that hides the 
details of the underlying smart card interface and makes it possible to load 
and run on the same card several applets, from different application 
providers with complex trust relationships. This fact opens prospects for new 
business applications, but the card issuer has to secure absence of malicious 
or faulty card applets. He has to be able to check that (i) applets do not cause 
illicit method invocations that violate temporal restrictions of inter-applet 
communication, (ii) applets protect themselves from unwanted information 
flow to third parties and (iii) it is not possible for an unhandled Java Card API 
exception to leave an applet in an unpredictable state that is potentially 
dangerous for the application’s security. We explore recent advances in 
theory and tool support of static program analysis and we present an 
approach for automatic verification of smart card applications that by 
definition are security critical. 
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Introduction 
In current work, we propose program analysis techniques that have been 
implemented in the FindBugs open source framework (Hovemeyer & Pugh, 
2004; The FindBugs project site, 2009), for statically verifying important 
security properties of interacting Java Card applets.  
Static program analysis has the potential to become a credible means for 
automatic verification of smart card applications that by definition are 
security critical. There is an extended base of well established analysis 
techniques and recent research developments, as well as versatile analysis 
frameworks like FindBugs that open excellent prospects to exploit the 
provided analysis support and the already implemented error detectors. 
Current article introduces error detectors adapted to the security 
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requirements of the Java Card multi-applet environment, in order to highlight 
the perspectives and the limitations of the described alternative.  
The most significant virtue is the use of a single verification technique, in 
place of diverse verification approaches that require highly specialized formal 
analysis skills, for the different Java Card security verification tasks. In our 
case, analysis assumes only basic Java programming skills, but with precision 
levels that are restricted by existing limitations of the analysis support in 
FindBugs. We highlight these limitations and we discuss recent research 
works that aim in higher precision, based on requirements that may be 
fulfilled in future versions of FindBugs. 
Our analyses address the security concerns caused by the fact that Java Card 
allows loading and running on the same card several applets, from different 
application providers with complex trust relationships and partnerships. The 
Java Card platform controls cooperation of interacting applets through a 
firewall mechanism that enforces applet isolation and allows communication 
only through explicitly declared shareable interfaces including the explicitly 
permitted method invocations. This sort of checks is static in nature, i.e. one 
method call is either allowed in all cases or it is never allowed. Thus, the 
provided protection cannot impose temporal restrictions on inter-applet 
communications.  
In a scenario, where several independent application providers have applets 
on a single card, the aforementioned weakness incurs a serious security risk 
for illicit method invocations between the interacting applets. Let us consider 
the typical case of a multi-applet smart card with one purse applet and two 
loyalty applets that are notified when card transactions occur, in order to 
award bonus points. Loyalty applets are communicated by calls to methods 
declared in shareable interfaces. Temporal restrictions for secure applet 
interaction include the requirement of recursion freeness for the methods of 
the shareable interfaces and the absence of transitive communications that 
span the contexts of the two loyalty applets. In the more complex case, where 
a loyalty applet shares bonus points through some agreed loyalty applet to 
loyalty applet communication, secure interaction requires additional temporal 
restrictions besides those mentioned.  
Apart from temporal safety, it is also important to assure that the allowed 
communication between the three applets does not imply unwanted 
information flow from one loyalty applet to the other. This is the only way to 
guarantee that secret and potentially commercial data produced in one applet 
cannot be leaked to another applet, while at the same time applets of one 
application cannot be crashed by other applet’s corrupt data.  
Another source of security risk are the potentially misused Java Card API 
calls, the multiple-entry-point program structure and the possibility a 
potentially unhandled exception to reach the invoked entry point. This 
contingency opens a possibility to leave a Java Card applet in an 
unpredictable state that may be dangerous for the application’s security. 
Next section presents the current state of the art in security verification of Java 
Card multi-applet applications. We highlight the problems faced and we 
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examine the available alternatives for static program analyses that focus on 
the described Java Card security problems. In the subsequent section, we 
introduce basic concepts of static program analysis with the FindBugs 
framework. The provided analysis support is exploited in the developed 
FindBugs security violation detectors that are presented in the following 
section. The developed bug detectors belong to a category of static program 
analyses, which are commonly referred to as typestate tracking. These 
techniques are appropriate for the first and the third mentioned security 
problems. In separate sections, we discuss state of the art program analysis 
techniques that improve analysis precision, as well as techniques for the 
second mentioned security problem. Finally, we conclude with a critical view 
of the shown security verification approach and we discuss its anticipated 
impact. 

 
 

Background 
 
Static Analysis 
Static analysis can be effective in verifying the behavior of a program against 
a partial specification that represents the absence of a security error. By the 
term static analysis we refer to any approach for assessing code without 
executing it. This broad definition includes fully-automated model checking 
techniques, semi-automated formal analyses that involve logical inference 
and program analyses that are based on abstract interpretation or 
alternatively on dataflow facts over the control-flow graph of the source 
program. 
In the Java Card multi-applet environment, security errors may be attributed 
to illegal applet interactions that are not caught by the Java Card firewall or to 
misused and therefore dangerous calls of Java Card API methods. The static 
analyses found in the related bibliography are based on established formal 
techniques that aim in precise program verification (Burdy et. al., 2003; 
Beckert & Mostowski, 2003; Marché et. al., 2004; Meyer & Poetzsch-Heffter, 
2000; Jacobs et. al., 2004; Van den Berg & Jacobs, 2001; Breunesse et. al., 2005), 
but they are not fully automated. It is important to note that there is no single 
technique that can cope with all kinds of security errors in Java Card 
applications. 
For detecting unwanted information flows to third parties we refer to the 
following alternatives: 

• The type inference approach proposed in (Akdemir, 1998), which 
essentially introduces changes in the original type inference algorithm 
of the Java Card platform. 

• The assume-guarantee model checking approach of (Bieber et. al., 
2002), which is based on abstracting the byte codes of the methods of a 
Java Card application to interconnected SMV modules. 

In overall, complete static verification may have to be based on a combination 
of techniques that will cover all sources of security violations in the Java Card 
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multi-applet environment. Efficient use of these techniques requires highly 
specialized formal analysis skills that cannot be found in most software 
engineers. 
The mentioned limitations make evident the need for easier to apply fully 
automated static analysis techniques, perhaps at the cost of affordable lower 
precision in the provided verification results. Static program analyses are 
neither sound nor complete verification approaches meaning that in the 
general case there is no guarantee that they will detect all security violations, 
if any (yielding false negatives). Moreover, there is also no guarantee for the 
absence of false positives. In most cases, we can usually afford a relatively 
small number of false positives, but we require the analysis to exclude all 
possibilities of false negatives. 
 
Program analysis 
Abstract interpretation is one of the proposed static program analyses for Java 
Card applets (The Java Verifier project, 2009). It lies on a semantics-based 
description of all possible executions by the use of abstract values in place of 
the actual computed values. Unfortunately, there are no published works 
with qualitative results on abstract interpretation of Java Card applets and 
there is no evidence that this technique is appropriate for analyzing security 
guarantees in multi-applet applications.  
A well known static program analysis for Java Card applications (Catano & 
Huisman, 2002), introduces the use of ESC/Java (2), a static analysis tool for 
proving specifications, without requiring the analyst to interact with the back-
end theorem prover (called Simplify). The provided analysis is neither sound 
nor complete, but has been found effective in proving absence of runtime 
exceptions and in verifying relatively simple correctness properties. 
In (Almaliotis et. al., 2008) we introduced a static program analysis for 
temporal safety of Java Card API calls, which is based on computing dataflow 
facts over the control-flow graph of a Java Card applet. Our approach is 
implemented in bug detector plugins for the FindBugs tool (Hovemeyer & 
Pugh, 2004; The FindBugs project site, 2009) and in contrast to (Catano & 
Huisman, 2002) it does not require annotations in the applet source code. This 
reduces the verification cost to the applet developers, since they do not have 
to make explicit all implicit assumptions needed for correctness (e.g. the non-
nullness of buf in many Java Card API calls). FindBugs bug detector plugins 
may be distributed together with the Java Card Development kit or by an 
independent third party. Applet developers use the bug detectors as they are, 
but they can also extend their open source code in order to develop bug 
detectors for custom properties. In ESC/Java (2), user-specified properties 
assume familiarization, (i) with the Java Modeling Language (JML), (ii) with 
the specificities of the “design by contract” specification technique and (iii) 
with the corresponding JML based Java Card API specification (Meijer & Poll, 
2001). On the other hand, development of new FindBugs bug detectors 
assumes only Java programming skills that most software engineers already 
have. 
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We aim in a holistic fully-automatic verification approach with the only 
requirement of basic Java programming skills, perhaps at the cost of a few 
false positives in the provided results. The most important consequence is the 
use of a single verification technique, for the three types of security errors that 
we mentioned. 
Recent developments in the theory of static program analysis open promising 
perspectives towards minimizing the number of false positives in the 
obtained results. However, as we will see in next sections the current version 
of FindBugs does not offer the necessary support for implementing the most 
advanced analyses published in the related work. 
 
Static program analysis basics 
Static program analyses, in general, explore the different execution paths that 
can take place, when the program is executed. In fact, they are based on a 
control flow graph (CFG) representation of the analyzed program, where the 
nodes of the graph are basic blocks, i.e. sequences of instructions that will 
always be executed without the possibility that any instruction(s) will be 
skipped. Edges in the control flow graph are directed and represent potential 
control flow paths between basic blocks. Back edges in a control flow graph 
represent potential loops.  
A call graph represents potential control flow between methods. Nodes in the 
graph represent methods and directed edges represent the potential for one 
method to invoke another. 
Dataflow analyses examine the way data move through a program by 
traversing a method’s control flow graph, in order to estimate conservative 
approximations about facts that are true in each location of it. Facts are 
mutable, but they have to form a lattice. 
An advanced static program analysis consists of at least two major pieces: an 
intraprocedural analysis component for analyzing an individual method and 
an interprocedural analysis component that operates across an entire 
program, flowing information from the caller to its callees and vice versa. 
FindBugs does not offer direct support for interprocedural analyses, which is 
a basic requirement for analyzing multi-applet applications. However, as we 
will see it was eventually possible to overcome this problem. 
Interprocedural analysis in the FindBugs framework is still a challenging 
problem, if we want to reduce the number of false positives we currently get. 
The reason is that the behavior of each method is dependent upon the context 
in which it is called and the current version of FindBugs does not provide 
support for determining the circumstances and conditions under which a 
method runs. Another aspect related to context sensitivity is the fact that the 
number of paths through the code grows exponentially with the number of 
conditionals and for this reason when explicitly gathering facts along each 
path this may result in an unacceptably slow analysis. Advanced static 
program analyses try to alleviate this problem by allowing paths to share 
information about common subpaths, as well as by techniques that allow for 
implicit enumeration of paths.  
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Typestate tracking & tainted object propagation  
The analyses presented here focus on the use of FindBugs for the three types 
of security errors that are needed to check in a Java Card multi-applet 
application. Also, we discuss recent developments towards advanced context-
sensitive analyses with high precision, which can be potentially implemented 
in future versions of FindBugs that will potentially provide appropriate 
support. Static program analyses for security errors with a particular interest 
for the Java Card environment lie into two broad categories, namely:  

• typestate tracking (Strom & Yemini, 1986), for illicit method 
invocations spanning the contexts of different applets, as well as for 
violations of temporal safety in Java Card API calls and  

• taint propagation (Livshits & Lam, 2005; Sabelfeld & Myers, 2003; 
Haldar et. al. 2005) for unwanted information flows to third parties. 

Temporal safety of API calls and applet interactions concern rules about their 
ordering that are possibly associated with constraints on the data values 
visible at the boundary of the interacting parties. Temporal safety violations 
are typically detected by typestate tracking. The typestate is a refinement of 
the concept of type: whereas the type of a data object determines the set of 
operations ever permitted on the object, typestate determines the subset of 
these operations, which are performed in a particular context. Typestate 
tracking aims to statically detect syntactically legal, but semantically 
undefined execution sequences.  
On the other hand, a tainted object propagation problem consists of a set of 
source descriptors and sink descriptors. To represent the fact that data can be 
trusted for some purposes but not for others, different varieties of tainted data 
can be modeled as carriers of different taint flags. Source descriptors define 
program locations, where tainted data enter the applet and the different 
source descriptors introduce data with different taint flags. Sink descriptors 
define program locations that should not receive tainted data or data carrying 
a certain type of taint. Taint propagation analyses aim in detecting 
information flows, such that a variation of “confidential” or “high” input to 
some applet causes a variation of “public” or “low” output. This occurs when 
the flow of taint terminates in a sink point, as a consequence of not having 
stopped the propagation between objects by some sanitization method. 
Typically, sanitization may be performed by creating a new fresh sanitized 
object.    

 
 

Static analysis with the FindBugs framework 
FindBugs is a tool and framework that applies static analyses on the Java 
(Java Card) bytecode in order to detect bug patterns, i.e. to detect “places 
where code does not follow correct practice in the use of a language feature or 
library API” (Hovemeyer & Pugh, 2004). In general, FindBugs bug detectors 
behave according to the Visitor design pattern: each detector visits each class 
and each method in the application under analysis. The framework comes 
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with many analyses built-in and classes and interfaces that can be extended to 
build new analyses. In our work, we exploit the already provided intra-
procedural control flow analysis that transforms the analyzed bytecode into 
control flow graphs (CFGs), in order to support the property analyses that we 
present in next sections. 
The bug pattern detectors are implemented using the Byte Code Engineering 
Library - BCEL (Dahm, 2001), which provides infrastructure for analyzing 
and manipulating Java class files. In essence, BCEL offers to the framework 
data types for inspection of binary Java (Java Card) classes. One can obtain 
methods, fields, etc. from the main data types, JavaClass and Method. The 
project source directories are used to map the reported warnings back to the 
Java source code. 
Bug pattern detectors are packaged into FindBugs plugins that can use any of 
the built-in FindBugs analyses and in effect extend the provided FindBugs 
functionality without any changes to its code. A plugin is a jar file that 
contains detector classes, analysis classes and the following meta-information: 
(i) the plugin descriptor (findbugs.xml) declaring the bug patterns, the 
detector classes, the detector ordering constraints and the analysis engine 
registrar, (ii) the human-readable messages (in messages.xml), which are 
the localized messages generated by the detector. Plugins are easily activated 
in the analyst’s FindBugs installation by copying the jar file into the proper 
location of the user’s file system. 
FindBugs applies the loaded detectors in a series of AnalysisPasses. Each 
pass executes a set of detectors selected according to declared detector 
ordering constraints. In this way, FindBugs distributes the detectors into 
AnalysisPasses and forms a complete ExecutionPlan, i.e., a list of 
AnalysisPasses specifying how to apply the loaded detectors to the 
analyzed application classes. When a project is analyzed, FindBugs runs 
through the following steps: 

1. Reads the project 
2. Finds all application classes in the project 
3. Loads the available plugins containing the detectors 
4. Creates an execution plan 
5. Runs the FindBugs algorithm to apply detectors to all application 

classes 
The basic FindBugs algorithm in pseudo-code is: 
 
 for each analysis pass in the execution plan do 
  for each application class do 
   for each detector in the analysis pass do 
    apply the detector to the class 
   end for 
  end for 
 end for 
 
All detectors use a global cache of analysis objects and databases. An analysis 
object (accessed by using a ClassDescriptor or a MethodDescriptor) 



8 

stores facts about a class or method, for example the results of a null-pointer 
dataflow analysis on a method. On the other hand, a database stores facts 
about the entire program, e.g. which methods unconditionally dereference 
parameters. All detectors implement the Detector interface, which includes 
the visitClassContext() method that is invoked on each application 
class. Detector classes (i) request one or more analysis objects from the global 
cache for the analyzed class and its methods, (ii) inspect the gathered analysis 
objects and (iii) report warnings for suspicious situations in code. When a 
Detector is instantiated its constructor gets a reference to a BugReporter. 
The Detector object uses the associated BugReporter, in order to emit 
warnings for the potential bugs and to save the detected bug instances in 
BugCollection objects for further processing. 

 
 

Static verification of Java Card applications by typestate tracking 
Static verification of interacting applets is illustrated with an example 
application that includes a purse applet and two loyalty applets that award 
bonus points. The purse applet keeps a balance that is updated upon 
requests from the environment that allow the card owner to purchase goods.    
 

 
Figure 1. A purse applet and two loyalty applets that award bonus points 

 
The interface method foreignDebit() is invoked by the loyalty applets 
that reside in separate packages, in order to transfer according to some fixed 
rate part of the bonus points back to the purse. We consider two loyalty 
applets, namely the AirTicketBonus and the RentACarBonus that 
basically implement the same interfaces. The interface method addBonus() 
is invoked by the purse applet, whenever there is a need to notify a loyalty 
applet for an occurred balance update. Finally, we consider the possibility for 
a loyalty applet to have an agreement with other loyalty applets, in order to 
share bonus points. This is achieved by a direct loyalty applet to loyalty 
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applet communication using the interface method grantBonusAmount(). 
Figure 2 introduces the class diagram for the discussed application case. 
   

 
Figure 2. Class diagram for the application of the purse applet and the two 

loyalty applets  
 
Typestate tracking for verifying temporal restrictions of inter-applet communication  
Temporal restrictions of inter-applet communication concern rules about the 
ordering of method invocations, which span the contexts of different applets. 
Typestate tracking makes it possible to detect such illicit method calls that – 
as we already noted - cannot be caught by the Java Card firewall.    
Bug detectors for verifying inter-applet communication track the state of the 
property of interest and at the same time track the so called execution state, 
i.e. the values of all program variables. In the considered application, example 
properties are the following: 

• Methods declared in shareable interfaces are neither transitive nor 
recursive. Thus, the method addBonus() is not allowed to cause a 
direct or indirect call to addBonus() for the same or for a different 
loyalty applet.   

• Method foreignDebit() is called at most once within a transaction. 
• The method grantBonusAmount() is invoked only through a call to 

addBonus() for some loyalty applet and it is never called directly 
from the purse applet. 

Correctness properties of inter-applet communication are captured in 
appropriate state machines that recognize finite execution traces with 
improper use of the methods declared in shareable interfaces. Figure 3 
introduces the state machine for the first mentioned property. Accurate 
tracking of the execution state can be very expensive, because this implies 
tracking every branch in the control-flow, in which the values of the 
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examined variables differ along the branch paths. The resulted search space 
may grow exponentially or even become infinite. 
 

 
Figure 3. Transitive or recursive invocation of a loyalty applet method 

 
Bug detectors have to take into account two distinct cases of property 
violations: 

1. Intraprocedural property violations that may be detected by simple 
bytecode scanning or CFG-based analyses that basically follow the 
states of the property state machine. 

2. Interprocedural property violations, which are detected by extending 
the CFG-based and call graph analysis functions provided in FindBugs. 

As we saw in previous section, FindBugs static analyses are applied by 
default to individual class contexts. The following pseudo-code reflects the 
functionality of the visitClassContext() method of a typical CFG-based 
detector.  
 
 for each method in the class do 
 request a CFG for the method from the ClassContext 
 request one or more analysis objects on the method from the ClassContext   
  for each location in the method do 
   get the dataflow facts at the location 
   inspect the dataflow facts 
   if a dataflow fact indicates an error then 
    report a warning 
   end if 
  end for 
 end for 
 
The basic idea is to visit each method of the analyzed class in turn, requesting 
some number of analysis objects. After getting the required analyses, the 
detector iterates through each location in the CFG. A location is the point in 
execution just before a particular instruction is executed (or after the 
instruction, for backwards analyses). At each location, the detector checks the 
dataflow facts to see if anything suspicious is going on. If suspicious facts are 
detected at a location the detector issues a warning. 
For interprocedural typestate tracking, we have to bypass the restriction that 
FindBugs analyses are normally applied to individual class contexts. We 
developed the class InterCallGraph, which implements a single call 
graph structure for the whole set of application classes and thus allows 
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detecting property violations that may be caused by nested method 
invocations. 
For the property of Figure 3 we introduce the path-insensitive bug detector 
shown in the following pseudocode. 
 
 //populate black list 
 request all implemented interfaces for the current class 
 for each implemented interface do 
  request all extended interfaces (parent interfaces) 
  for each parent interface do 
   if parent interface is "Shareable" then 
    add all methods of implemented interface in the blacklist 
   end if   
  end for 
 end for 
 //costruction of the call graph 
 request all methods of all classes 
 make nodes for these methods 
 for each class in the program do 
  for each method in class do 
   scan for calls and make a link for each call between methods-nodes 
  end for 
 end for 
 
 for each method in the blacklist do 
  for each method in the class do 
   start a Depth First Search from the corresponding graph node: 
    if method of the node is in the current node from blacklist then 
      if the same method is visited again then 
        report the detected bug 
      end if 
    end if 
  end for 
 end for 
 
The bug detector first creates a black list, which is used to record all methods 
declared in implemented interfaces that inherit from “ShareableInterface”. 
This allows to statically verifying the property of Figure 3, for all methods 
declared in shareable interfaces. The bug detector discovers both 
intraprocedural and interprocedural property violations. Repeated calls of 
methods that bypass the application firewall may also occur as a method 
invocation enclosed in a basic block of a for/while or a do . . . while loop. 
Method CFGs are inspected for this particular CFG pattern and when 
detected, this causes a transition to the final state of the property violation 
automaton. For an occurred state transition from the initial state, the bug 
detector starts a depth first search from the current node of the instantiated 
InterCallGraph, in order to detect potential recursive or transitive calls to 
the black listed method. Figure 4 shows the FindBugs response for a transitive 
call to the method addBonus(). 
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Figure 4. A method declared in a shareable interface triggers an indirect call 
to itself 

 
Typestate tracking for verifying temporal safety of Java Card API calls 
Contrary to ordinary Java programs that have a single main() entry point, 
Java Card applets have several entry points, which are called when the card 
receives various application (APDU) commands. These entry points roughly 
match the different phases that an applet can be in: (i) loading, (ii) installation, 
(iii) personalization, (iv) selectable, (v) blocked and (vi) dead. 
In a Java Card, any exception can reach the top level, i.e. the applet entry 
point invoked by the Java Card Runtime Environment (JCRE). In this case, the 
currently executing command is aborted and the command, which in general 
is not completed yet, is terminated by an appropriate status word: if the 
exception is an ISOException, the status word is assigned the value of the 
reason code for the raised exception, whereas in all other cases the reason 
code is 0x6f00 corresponding to “no precise diagnosis”. 
An exception in an applet’s entry point can reveal information about the 
behavior of the application and in principle it should be forbidden. In 
practice, whereas an ISOException is usually explicitly thrown by the 
applet code using throw, a potentially unhandled exception is implicitly 
raised when executing an API method call that causes an unexpected error. 
This may result in leaving the applet in an unpredicted and ill state that can 
possibly violate the application’s security properties. 
Unhandled exceptions are detected by looking for an exception thrower block 
preceding the instruction by which typestate tracking reaches the final state 
(Figure 5). Access to an exception handler block (if any) is possible through a 
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handled exception edge. In FindBugs, method isExceptionThrower() 
detects an exception thrower block and method isExceptionEdge() 
determines whether a CFG edge is a handled exception edge. 
 

 
Figure 5. CFG pattern to find unhandled exception edges 

 
Potentially unhandled exceptions are usually caused by violations of 
temporal restrictions in the use of Java Card API calls. Temporal safety 
violations are captured by typestate tracking based on an appropriate state 
machine, which recognizes finite execution traces with improper calls. In 
(Almaliotis et. al., 2008) we introduced a FindBugs bug detector that detects 
unhandled instances of APDUException, for improper use of the 
setOutgoing() call. 
 
Constraints on data values visible at the boundary of the interacting parties  
Dataflow analysis is the basic means to statically verifying the correctness of 
the called methods’ arguments and it is necessary, when temporal safety 
involves constraints on the data values accessed at the boundary of the 
interacting parties (communicating applets or an applet interacting with the 
Java Card API). In this case, the described static program analyses are 
combined with dataflow analyses like the one shown here. 
A dataflow analysis estimates conservative approximations about facts that 
are true in each location of a CFG. Facts are mutable, but they have to form a 
lattice. In FindBugs, the DataflowAnalysis interface, which is shown in 
Figure 6 is the super-type of all concrete dataflow analysis classes. It defines 
methods for creating, copying, merging and transferring dataflow facts. 
Transfer functions take dataflow facts and model the effects of either a basic 
block or a single instruction depending on the implemented dataflow 
analysis. Merge functions combine dataflow facts when control paths merge. 
The Dataflow class and its subclasses implement: (i) a dataflow analysis 
algorithm based on a CFG and an instance of DataflowAnalysis, (ii) 
methods providing access to the analysis results. 
We are particularly interested for the FrameDataflowAnalysis class that 
forms the base for analyses, which model values in local variables and the 
operand stack. Dataflow facts for derived analyses are subclasses of the class 
Frame, whose instances represent the Java stack frame at a single CFG 
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location. In a Java stack frame, both stack operands and local variables are 
considered to be “slots” that contain a single symbolic value. 

 

 
 

Figure 6. FindBugs base classes for dataflow analyses 
 
The built-in frame dataflow analyses used in static verification of the called 
methods arguments are: 

• The TypeAnalysis that performs type inference for all local variables 
and stack operands. 

• The ConstantAnalysis that computes constant values in CFG 
locations. 

• The IsNullValueAnalysis that determines which frame slots 
contain definitely-null values, definitely non-null values and various 
kinds of conditionally-null or uncertain values.  

• The ValueNumberAnalysis that tracks the production and flow of 
values in the Java stack frame. 

The class hierarchy of Figure 6 and the mentioned built-in dataflow analyses 
form a generic dataflow analysis framework, since it is possible to create new 
kinds of dataflow analyses that will use as dataflow facts objects of user-
defined classes. 
A bug detector exploits the results of a particular dataflow analysis on a 
method by getting a reference to the Dataflow object that was used to 
execute the analysis. There is no direct support for interprocedural analysis, 
but there are ways to overcome this restriction. More precisely, analysis may 
be performed in multiple passes. A first pass detector will compute method 
summaries (e.g. method parameters that are unconditionally dereferenced, 
return values that are always non-null and so on), without reporting any 
warnings and a second pass detector will use the computed method 
summaries as needed. However, this approach is not convenient for 
implementing context-sensitive interprocedural dataflow analyses. 
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In the following paragraphs, we present a bug detector for unhandled API 
exceptions concerned with the correctness of arguments in method calls. 
Consider the following method: 
 
short arrayCopy( byte[] src, short srcOff,   
   byte[] dest, short destOff, short length) 
 
A NullPointerException is raised when either src or dest is null. 
Also, when the copy operation accesses data outside the array bounds the 
ArrayIndexOutOfBoundsException is raised. This happens either when 
one of the parameters srcOff, destOff and length has a negative value or 
when srcOff+length is greater than src.length or when destOff+ 
length is greater than dest.length. We provide the pseudo-code of the  
visitClassContext() method for the detector of unhandled exceptions 
raised by invalid arrayCopy arguments:   
 
 for each method in the class do 
  request a CFG for the method 
  get the method’s ConstantDataflow from ClassContext 
  get the method’s ValueNumberDataflow from ClassContext 
  get the method’s IsNullValueDataflow from ClassContext 
  for each location in the method do 
   get instruction handle from location 
   get instruction from instruction handle 
   if instruction is not instance of invoke static then 
    continue 
   end if 
   get the invoked method's name from instruction 
   get the invoked method’s signature from instruction 
   if invoked method is arrayCopy then 
    get ConstantFrame (fact) at current location 
    get ValueNumberFrame (fact) at current location 
    get IsNullValueFrame (fact) at current location 
    get the method's number of arguments 
    for each argument do 
                get argument as Constant, ValueNumber, IsNullValue 
     if argument is constant then 
      if argument is negative then 
       report a bug 
      end if 
     else  
                   if argument is not method return value  
         nor constant then 
      if argument is not definitely not null then 
       report a bug 
      end if 
     end if 
    end for 
   end if 
  end for 
 end for 
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Figure 7 demonstrates how the detector responds in two different property 
violation cases. In the first case, PurseApplet calls arrayCopy with null 
value for the parameter accountNumber. It is important to note that it is not 
possible to determine by static analysis the correctness of the method call for 
all of the mentioned criteria, because buffer gets its value at run time by the 
JCRE. However, a complete FindBugs bug detector could generate a warning 
for the absence of an appropriate exception handler. In the second test case, 
parameter offset is assigned an unacceptable value. 
 

 

(a) 

 

(b) 
 

Figure 7. Illegal use of arrayCopy detected with (a) null value parameter 
and (b) unacceptable constant value parameter 

 
 

Tainted object propagation 
In multi-applet Java Card applications, the leakage of “confidential” data to 
third parties is an information flow analysis problem. The basic idea behind 
using tainted object propagation for detecting information flow is to statically 
check that flow of information between variables is consistent with the trust 
relationships of the application providers. Although the accurate detection of 
information flow is undecidable, static analysis can over-approximate 
information flows, in order to ensure absence of “confidential” data leakage. 
Tainted object propagation can be formulated as a dataflow analysis problem 
and can be solved efficiently using an iterative algorithm. We consider only 
two possible lattice values, namely TAINTED and NOT TAINTED. On the 
lattice, the greatest lower bound of the two elements is defined such as 
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anything that meets a tainted value becomes tainted. An appropriate static 
analysis will include the following steps: 

1. Consider all variables as NOT TAINTED. 
2. Annotate applet “confidential” source points as TAINTED. 
3. Propagate the tainted values through the applet code. If a tainted 

value is used in an expression, mark the result of the expression as 
TAINTED. 

4. Repeat step 3 until a fixed point is reached. 
5. Find all TAINTED sink descriptors and report them. 

It is important to note that the aforementioned static analysis approach 
detects only the explicit information flows. For any two variables, say x and y, 
an explicit information flow from x to y occurs, if the value of x is assigned to 
y, as in y = x. On the other hand, there is an implicit flow from x to y, if the 
value of x is used to evaluate the outcome of a conditional, which then 
controls an assignment to y, i.e. 
  
 if (x > 0) then 
  y = 1 
 else 
  y = 0;    
     
For statically verifying explicit information flows towards sink descriptors, it 
is necessary to know what runtime objects these descriptors may refer to. Let 
us consider the following program fragment: 
 
1 byte[] buffer = apdu.getBuffer(); 
2 byte[] amount = new byte[2]; 
 
3 Util.arrayCopy( buffer,(short)ISO7816.OFFSET_CDATA, 
   amount,(short)0,(short)2); 
4 byte[] credit; 
  . . . . . . . 
5 short creditS = (short)(credit[1] & 0x0F); 
6 creditS += (short)(credit[1] & 0xF0); 
7 creditS += (short)(credit[0]<<8); 
8 BonusInterface  
   sio=(BonusInterface)JCSystem.getAppletShareableInterfaceObject( bonusAID, 
             (byte)0x00); 
9 sio.addBonus((short)creditS); 
    
In the shown example, apdu.getBuffer() returns the reference buffer to 
some tainted data, i.e. the data contained in the binary array buffer with the 
APDU command. Also, amount becomes tainted, because it is derived from 
buffer by a call to arrayCopy (line 3). Finally, creditS is derived from 
credit and is subsequently passed to the sink method addBonus (line 9). 
Unless we know that variables amount and credit may never refer to the 
same object, we would have to conservatively assume that they may. Since 
amount is tainted, variable credit may also refer to a tainted object.  
The general problem of determining what objects a given program variable 
may refer to is addressed by an appropriate pointer or points-to analysis. An 
unbounded number of objects may be allocated by the program at runtime 
and in order to compute a finite result points-to analysis statically 
approximates dynamic program objects with a finite set of values that in 
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FindBugs are instances of the class ValueNumber. Thus, points-to analyses 
are based on ValueNumberAnalysis (Hansen & Wahlgreen, 2007), which 
tracks the production and flow of values in the Java stack frame. 

 
 

Future Research Directions 
 
Static program analyses based on JSR-305 type qualifiers 
Annotations play an important role in software defect detection especially in 
problems, where there is a need to state (implicit) design decisions about 
what the code is supposed to do. Java Specification Request 305 (Hovemeyer 
& Pugh, 2007) defines standard annotations that allow designers/developers 
to describe design intents in a way that will make them amenable to program 
analysis by FindBugs and other tools. JSR-305 annotations are being proposed 
for inclusion as standard in Java 7 (Harold, 2008).    
A well known implicit design intent that cannot be documented without an 
annotation language like JSR-305 is the requirement, some method parameter 
to always be non null. FindBugs provides the annotation type @NonNull that 
may be applied into some field, method, parameter or local variable. 
One of the most interesting aspects of JSR-305 is that it provides meta-
annotations, which allow developers to define type qualifiers (Foster et. al., 
1999). The added type qualifiers extend the language type rules, in order to 
model the flow of qualifiers through the program, where each qualifier or set 
of qualifiers comes with additional type constraints that capture its semantics. 
The latest version of FindBugs includes support for type qualifier dataflow 
analyses in the form of an abstract class. The functionality of abstract class 
TypeQualifierDataflowAnalysis is based on points-to information 
provided by a ValueNumberAnalysis, as well as on an appropriate 
structure that stores facts for source-to-sink mappings. There is also a CFG-
based bug detector that exploits the provided support for checking user-
defined type qualifiers.   
For security properties that are formulated as information flow problems, 
JSR-305 introduces the following annotations: 

• @Tainted 
• @Untainted 
• @Detainted   

In a Java Card multi-applet application, data from outside of an applet will be 
marked as @Tainted, as opposed to data from inside the applet that will be 
marked @Untainted. Tainted data that has been sanitized e.g. by passing it to 
some sort of escaping function can be annotated as @Detainted. These 
annotations are sufficient for an appropriate tainted object propagation 
analysis to follow the path of data through the applet, in order to ensure that 
tainted data never reaches a method invoked into another applet through a 
shareable interface: 
 
  private void function(@Tainted APDU apdu){ 
  . . . . . . . 
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  BonusInterface  
   sio=(BonusInterface)JCSystem.getAppletShareableInterfaceObject( bonusAID, 
             (byte)0x00); 
  sio.addBonus(@Untainted (short)creditS); 
  } 
    
Precise and scalable static program analyses 
Static program analysis has the potential to provide automated verification 
solutions for the whole range of security properties that arise in Java Card 
multi-applet applications. When using FindBugs, the real challenge towards 
efficient use of the described program analysis techniques is to exploit the 
benefits and the extensibility prospects of the FindBugs open source analysis 
support and at the same time to look for ways for implementing sophisticated 
and precise analyses that reduce false positives and at the same time scale to 
real Java Card programs. 
For typestate tracking, an interesting source of inspiration is the SAFE project 
(The SAFE project, 2009) at the IBM Research Labs. The heuristics applied in 
SAFE are reported in (Fink et. al., 2006). In that work the authors propose a 
composite verifier built out of several composable verifiers of increasing 
precision and cost. In this setting, the composite verifier stages analyses, in 
order to improve efficiency without compromising precision. The early stages 
use the faster verifiers to reduce the workload for later, more precise, stages. 
Prior to any path-sensitive analysis, the first stage prunes the verification 
scope using an extremely efficient path-insensitive error path feasibility 
check.   
As we already noted, in FindBugs, interprocedural dataflow analyses may be 
implemented by multiple-pass bug detectors, where the first pass computes 
method summaries. Since the precision of interprocedural analyses is 
improved by eliminating paths that are invalid, because of the method call 
and return structure, we believe that the possibility to implement truly 
context-sensitive analyses is a major concern for FindBugs program analyses.   

 
 

Conclusion 
We explored static program analyses with FindBugs, which can provide a 
credible automatic verification approach for the security concerns raised in 
Java Card multi-applet applications. When compared with existing security 
verification alternatives, our approach does not require specialized formal 
analysis skills to the application developer, but basic Java programming skills 
that most software engineers already have. Moreover, it provides a single 
fully-automatic verification prospect for all the three types of security 
problems discussed, in place of diverse costly approaches, for the different 
verification tasks. 
FindBugs provides an open source analysis support that may be exploited in 
the development of new pluggable bug detectors, which can be easily 
installed in the static analysis tool suite. The presented bug detectors are 
available online in (The S-OMA SMART CARDS Project, 2009). Bug detector 
plugins may be distributed together with the Java Card Development kit or 
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by an independent third party. Applet developers are still capable to extend 
the bug detectors open source code, in order to develop bug detectors for 
custom properties. 
All these attractive features open a new perspective for verifying Java Card 
multi-applet applications that by definition are security critical. We 
highlighted current restrictions in the proposed verification approach, but we 
believe that due to the high potential of an open source analysis support these 
restrictions will be eliminated in the foreseeable future.    
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