
1

Static program analysis of multi-applet
JavaCard applications

Alexandros Loizidis1 Vasilios Almaliotis1 Panagiotis Katsaros1

1 Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
{aloizidi, valmalio, katsaros}@csd.auth.gr

Abstract

Java Card provides a framework of classes and interfaces that hides the
details of the underlying smart card interface and makes it possible to load
and run on the same card several applets, from different application
providers with complex trust relationships. This fact opens prospects for new
business applications, but the card issuer has to secure absence of malicious
or faulty card applets. He has to be able to check that (i) applets do not cause
illicit method invocations that violate temporal restrictions of inter-applet
communication, (ii) applets protect themselves from unwanted information
flow to third parties and (iii) it is not possible for an unhandled Java Card API
exception to leave an applet in an unpredictable state that is potentially
dangerous for the application’s security. We explore recent advances in
theory and tool support of static program analysis and we present an
approach for automatic verification of smart card applications that by
definition are security critical.

Keywords
smart card, static program analysis, software security, Java Card, verification

Introduction
In current work, we propose program analysis techniques that have been
implemented in the FindBugs open source framework (Hovemeyer & Pugh,
2004; The FindBugs project site, 2009), for statically verifying important
security properties of interacting Java Card applets.
Static program analysis has the potential to become a credible means for
automatic verification of smart card applications that by definition are
security critical. There is an extended base of well established analysis
techniques and recent research developments, as well as versatile analysis
frameworks like FindBugs that open excellent prospects to exploit the
provided analysis support and the already implemented error detectors.
Current article introduces error detectors adapted to the security

2

requirements of the Java Card multi-applet environment, in order to highlight
the perspectives and the limitations of the described alternative.
The most significant virtue is the use of a single verification technique, in
place of diverse verification approaches that require highly specialized formal
analysis skills, for the different Java Card security verification tasks. In our
case, analysis assumes only basic Java programming skills, but with precision
levels that are restricted by existing limitations of the analysis support in
FindBugs. We highlight these limitations and we discuss recent research
works that aim in higher precision, based on requirements that may be
fulfilled in future versions of FindBugs.
Our analyses address the security concerns caused by the fact that Java Card
allows loading and running on the same card several applets, from different
application providers with complex trust relationships and partnerships. The
Java Card platform controls cooperation of interacting applets through a
firewall mechanism that enforces applet isolation and allows communication
only through explicitly declared shareable interfaces including the explicitly
permitted method invocations. This sort of checks is static in nature, i.e. one
method call is either allowed in all cases or it is never allowed. Thus, the
provided protection cannot impose temporal restrictions on inter-applet
communications.
In a scenario, where several independent application providers have applets
on a single card, the aforementioned weakness incurs a serious security risk
for illicit method invocations between the interacting applets. Let us consider
the typical case of a multi-applet smart card with one purse applet and two
loyalty applets that are notified when card transactions occur, in order to
award bonus points. Loyalty applets are communicated by calls to methods
declared in shareable interfaces. Temporal restrictions for secure applet
interaction include the requirement of recursion freeness for the methods of
the shareable interfaces and the absence of transitive communications that
span the contexts of the two loyalty applets. In the more complex case, where
a loyalty applet shares bonus points through some agreed loyalty applet to
loyalty applet communication, secure interaction requires additional temporal
restrictions besides those mentioned.
Apart from temporal safety, it is also important to assure that the allowed
communication between the three applets does not imply unwanted
information flow from one loyalty applet to the other. This is the only way to
guarantee that secret and potentially commercial data produced in one applet
cannot be leaked to another applet, while at the same time applets of one
application cannot be crashed by other applet’s corrupt data.
Another source of security risk are the potentially misused Java Card API
calls, the multiple-entry-point program structure and the possibility a
potentially unhandled exception to reach the invoked entry point. This
contingency opens a possibility to leave a Java Card applet in an
unpredictable state that may be dangerous for the application’s security.
Next section presents the current state of the art in security verification of Java
Card multi-applet applications. We highlight the problems faced and we

3

examine the available alternatives for static program analyses that focus on
the described Java Card security problems. In the subsequent section, we
introduce basic concepts of static program analysis with the FindBugs
framework. The provided analysis support is exploited in the developed
FindBugs security violation detectors that are presented in the following
section. The developed bug detectors belong to a category of static program
analyses, which are commonly referred to as typestate tracking. These
techniques are appropriate for the first and the third mentioned security
problems. In separate sections, we discuss state of the art program analysis
techniques that improve analysis precision, as well as techniques for the
second mentioned security problem. Finally, we conclude with a critical view
of the shown security verification approach and we discuss its anticipated
impact.

Background

Static Analysis
Static analysis can be effective in verifying the behavior of a program against
a partial specification that represents the absence of a security error. By the
term static analysis we refer to any approach for assessing code without
executing it. This broad definition includes fully-automated model checking
techniques, semi-automated formal analyses that involve logical inference
and program analyses that are based on abstract interpretation or
alternatively on dataflow facts over the control-flow graph of the source
program.
In the Java Card multi-applet environment, security errors may be attributed
to illegal applet interactions that are not caught by the Java Card firewall or to
misused and therefore dangerous calls of Java Card API methods. The static
analyses found in the related bibliography are based on established formal
techniques that aim in precise program verification (Burdy et. al., 2003;
Beckert & Mostowski, 2003; Marché et. al., 2004; Meyer & Poetzsch-Heffter,
2000; Jacobs et. al., 2004; Van den Berg & Jacobs, 2001; Breunesse et. al., 2005),
but they are not fully automated. It is important to note that there is no single
technique that can cope with all kinds of security errors in Java Card
applications.
For detecting unwanted information flows to third parties we refer to the
following alternatives:

• The type inference approach proposed in (Akdemir, 1998), which
essentially introduces changes in the original type inference algorithm
of the Java Card platform.

• The assume-guarantee model checking approach of (Bieber et. al.,
2002), which is based on abstracting the byte codes of the methods of a
Java Card application to interconnected SMV modules.

In overall, complete static verification may have to be based on a combination
of techniques that will cover all sources of security violations in the Java Card

4

multi-applet environment. Efficient use of these techniques requires highly
specialized formal analysis skills that cannot be found in most software
engineers.
The mentioned limitations make evident the need for easier to apply fully
automated static analysis techniques, perhaps at the cost of affordable lower
precision in the provided verification results. Static program analyses are
neither sound nor complete verification approaches meaning that in the
general case there is no guarantee that they will detect all security violations,
if any (yielding false negatives). Moreover, there is also no guarantee for the
absence of false positives. In most cases, we can usually afford a relatively
small number of false positives, but we require the analysis to exclude all
possibilities of false negatives.

Program analysis
Abstract interpretation is one of the proposed static program analyses for Java
Card applets (The Java Verifier project, 2009). It lies on a semantics-based
description of all possible executions by the use of abstract values in place of
the actual computed values. Unfortunately, there are no published works
with qualitative results on abstract interpretation of Java Card applets and
there is no evidence that this technique is appropriate for analyzing security
guarantees in multi-applet applications.
A well known static program analysis for Java Card applications (Catano &
Huisman, 2002), introduces the use of ESC/Java (2), a static analysis tool for
proving specifications, without requiring the analyst to interact with the back-
end theorem prover (called Simplify). The provided analysis is neither sound
nor complete, but has been found effective in proving absence of runtime
exceptions and in verifying relatively simple correctness properties.
In (Almaliotis et. al., 2008) we introduced a static program analysis for
temporal safety of Java Card API calls, which is based on computing dataflow
facts over the control-flow graph of a Java Card applet. Our approach is
implemented in bug detector plugins for the FindBugs tool (Hovemeyer &
Pugh, 2004; The FindBugs project site, 2009) and in contrast to (Catano &
Huisman, 2002) it does not require annotations in the applet source code. This
reduces the verification cost to the applet developers, since they do not have
to make explicit all implicit assumptions needed for correctness (e.g. the non-
nullness of buf in many Java Card API calls). FindBugs bug detector plugins
may be distributed together with the Java Card Development kit or by an
independent third party. Applet developers use the bug detectors as they are,
but they can also extend their open source code in order to develop bug
detectors for custom properties. In ESC/Java (2), user-specified properties
assume familiarization, (i) with the Java Modeling Language (JML), (ii) with
the specificities of the “design by contract” specification technique and (iii)
with the corresponding JML based Java Card API specification (Meijer & Poll,
2001). On the other hand, development of new FindBugs bug detectors
assumes only Java programming skills that most software engineers already
have.

5

We aim in a holistic fully-automatic verification approach with the only
requirement of basic Java programming skills, perhaps at the cost of a few
false positives in the provided results. The most important consequence is the
use of a single verification technique, for the three types of security errors that
we mentioned.
Recent developments in the theory of static program analysis open promising
perspectives towards minimizing the number of false positives in the
obtained results. However, as we will see in next sections the current version
of FindBugs does not offer the necessary support for implementing the most
advanced analyses published in the related work.

Static program analysis basics
Static program analyses, in general, explore the different execution paths that
can take place, when the program is executed. In fact, they are based on a
control flow graph (CFG) representation of the analyzed program, where the
nodes of the graph are basic blocks, i.e. sequences of instructions that will
always be executed without the possibility that any instruction(s) will be
skipped. Edges in the control flow graph are directed and represent potential
control flow paths between basic blocks. Back edges in a control flow graph
represent potential loops.
A call graph represents potential control flow between methods. Nodes in the
graph represent methods and directed edges represent the potential for one
method to invoke another.
Dataflow analyses examine the way data move through a program by
traversing a method’s control flow graph, in order to estimate conservative
approximations about facts that are true in each location of it. Facts are
mutable, but they have to form a lattice.
An advanced static program analysis consists of at least two major pieces: an
intraprocedural analysis component for analyzing an individual method and
an interprocedural analysis component that operates across an entire
program, flowing information from the caller to its callees and vice versa.
FindBugs does not offer direct support for interprocedural analyses, which is
a basic requirement for analyzing multi-applet applications. However, as we
will see it was eventually possible to overcome this problem.
Interprocedural analysis in the FindBugs framework is still a challenging
problem, if we want to reduce the number of false positives we currently get.
The reason is that the behavior of each method is dependent upon the context
in which it is called and the current version of FindBugs does not provide
support for determining the circumstances and conditions under which a
method runs. Another aspect related to context sensitivity is the fact that the
number of paths through the code grows exponentially with the number of
conditionals and for this reason when explicitly gathering facts along each
path this may result in an unacceptably slow analysis. Advanced static
program analyses try to alleviate this problem by allowing paths to share
information about common subpaths, as well as by techniques that allow for
implicit enumeration of paths.

6

Typestate tracking & tainted object propagation
The analyses presented here focus on the use of FindBugs for the three types
of security errors that are needed to check in a Java Card multi-applet
application. Also, we discuss recent developments towards advanced context-
sensitive analyses with high precision, which can be potentially implemented
in future versions of FindBugs that will potentially provide appropriate
support. Static program analyses for security errors with a particular interest
for the Java Card environment lie into two broad categories, namely:

• typestate tracking (Strom & Yemini, 1986), for illicit method
invocations spanning the contexts of different applets, as well as for
violations of temporal safety in Java Card API calls and

• taint propagation (Livshits & Lam, 2005; Sabelfeld & Myers, 2003;
Haldar et. al. 2005) for unwanted information flows to third parties.

Temporal safety of API calls and applet interactions concern rules about their
ordering that are possibly associated with constraints on the data values
visible at the boundary of the interacting parties. Temporal safety violations
are typically detected by typestate tracking. The typestate is a refinement of
the concept of type: whereas the type of a data object determines the set of
operations ever permitted on the object, typestate determines the subset of
these operations, which are performed in a particular context. Typestate
tracking aims to statically detect syntactically legal, but semantically
undefined execution sequences.
On the other hand, a tainted object propagation problem consists of a set of
source descriptors and sink descriptors. To represent the fact that data can be
trusted for some purposes but not for others, different varieties of tainted data
can be modeled as carriers of different taint flags. Source descriptors define
program locations, where tainted data enter the applet and the different
source descriptors introduce data with different taint flags. Sink descriptors
define program locations that should not receive tainted data or data carrying
a certain type of taint. Taint propagation analyses aim in detecting
information flows, such that a variation of “confidential” or “high” input to
some applet causes a variation of “public” or “low” output. This occurs when
the flow of taint terminates in a sink point, as a consequence of not having
stopped the propagation between objects by some sanitization method.
Typically, sanitization may be performed by creating a new fresh sanitized
object.

Static analysis with the FindBugs framework
FindBugs is a tool and framework that applies static analyses on the Java
(Java Card) bytecode in order to detect bug patterns, i.e. to detect “places
where code does not follow correct practice in the use of a language feature or
library API” (Hovemeyer & Pugh, 2004). In general, FindBugs bug detectors
behave according to the Visitor design pattern: each detector visits each class
and each method in the application under analysis. The framework comes

7

with many analyses built-in and classes and interfaces that can be extended to
build new analyses. In our work, we exploit the already provided intra-
procedural control flow analysis that transforms the analyzed bytecode into
control flow graphs (CFGs), in order to support the property analyses that we
present in next sections.
The bug pattern detectors are implemented using the Byte Code Engineering
Library - BCEL (Dahm, 2001), which provides infrastructure for analyzing
and manipulating Java class files. In essence, BCEL offers to the framework
data types for inspection of binary Java (Java Card) classes. One can obtain
methods, fields, etc. from the main data types, JavaClass and Method. The
project source directories are used to map the reported warnings back to the
Java source code.
Bug pattern detectors are packaged into FindBugs plugins that can use any of
the built-in FindBugs analyses and in effect extend the provided FindBugs
functionality without any changes to its code. A plugin is a jar file that
contains detector classes, analysis classes and the following meta-information:
(i) the plugin descriptor (findbugs.xml) declaring the bug patterns, the
detector classes, the detector ordering constraints and the analysis engine
registrar, (ii) the human-readable messages (in messages.xml), which are
the localized messages generated by the detector. Plugins are easily activated
in the analyst’s FindBugs installation by copying the jar file into the proper
location of the user’s file system.
FindBugs applies the loaded detectors in a series of AnalysisPasses. Each
pass executes a set of detectors selected according to declared detector
ordering constraints. In this way, FindBugs distributes the detectors into
AnalysisPasses and forms a complete ExecutionPlan, i.e., a list of
AnalysisPasses specifying how to apply the loaded detectors to the
analyzed application classes. When a project is analyzed, FindBugs runs
through the following steps:

1. Reads the project
2. Finds all application classes in the project
3. Loads the available plugins containing the detectors
4. Creates an execution plan
5. Runs the FindBugs algorithm to apply detectors to all application

classes
The basic FindBugs algorithm in pseudo-code is:

 for each analysis pass in the execution plan do
 for each application class do
 for each detector in the analysis pass do
 apply the detector to the class
 end for
 end for
 end for

All detectors use a global cache of analysis objects and databases. An analysis
object (accessed by using a ClassDescriptor or a MethodDescriptor)

8

stores facts about a class or method, for example the results of a null-pointer
dataflow analysis on a method. On the other hand, a database stores facts
about the entire program, e.g. which methods unconditionally dereference
parameters. All detectors implement the Detector interface, which includes
the visitClassContext() method that is invoked on each application
class. Detector classes (i) request one or more analysis objects from the global
cache for the analyzed class and its methods, (ii) inspect the gathered analysis
objects and (iii) report warnings for suspicious situations in code. When a
Detector is instantiated its constructor gets a reference to a BugReporter.
The Detector object uses the associated BugReporter, in order to emit
warnings for the potential bugs and to save the detected bug instances in
BugCollection objects for further processing.

Static verification of Java Card applications by typestate tracking
Static verification of interacting applets is illustrated with an example
application that includes a purse applet and two loyalty applets that award
bonus points. The purse applet keeps a balance that is updated upon
requests from the environment that allow the card owner to purchase goods.

Figure 1. A purse applet and two loyalty applets that award bonus points

The interface method foreignDebit() is invoked by the loyalty applets
that reside in separate packages, in order to transfer according to some fixed
rate part of the bonus points back to the purse. We consider two loyalty
applets, namely the AirTicketBonus and the RentACarBonus that
basically implement the same interfaces. The interface method addBonus()
is invoked by the purse applet, whenever there is a need to notify a loyalty
applet for an occurred balance update. Finally, we consider the possibility for
a loyalty applet to have an agreement with other loyalty applets, in order to
share bonus points. This is achieved by a direct loyalty applet to loyalty

9

applet communication using the interface method grantBonusAmount().
Figure 2 introduces the class diagram for the discussed application case.

Figure 2. Class diagram for the application of the purse applet and the two

loyalty applets

Typestate tracking for verifying temporal restrictions of inter-applet communication
Temporal restrictions of inter-applet communication concern rules about the
ordering of method invocations, which span the contexts of different applets.
Typestate tracking makes it possible to detect such illicit method calls that –
as we already noted - cannot be caught by the Java Card firewall.
Bug detectors for verifying inter-applet communication track the state of the
property of interest and at the same time track the so called execution state,
i.e. the values of all program variables. In the considered application, example
properties are the following:

• Methods declared in shareable interfaces are neither transitive nor
recursive. Thus, the method addBonus() is not allowed to cause a
direct or indirect call to addBonus() for the same or for a different
loyalty applet.

• Method foreignDebit() is called at most once within a transaction.
• The method grantBonusAmount() is invoked only through a call to

addBonus() for some loyalty applet and it is never called directly
from the purse applet.

Correctness properties of inter-applet communication are captured in
appropriate state machines that recognize finite execution traces with
improper use of the methods declared in shareable interfaces. Figure 3
introduces the state machine for the first mentioned property. Accurate
tracking of the execution state can be very expensive, because this implies
tracking every branch in the control-flow, in which the values of the

10

examined variables differ along the branch paths. The resulted search space
may grow exponentially or even become infinite.

Figure 3. Transitive or recursive invocation of a loyalty applet method

Bug detectors have to take into account two distinct cases of property
violations:

1. Intraprocedural property violations that may be detected by simple
bytecode scanning or CFG-based analyses that basically follow the
states of the property state machine.

2. Interprocedural property violations, which are detected by extending
the CFG-based and call graph analysis functions provided in FindBugs.

As we saw in previous section, FindBugs static analyses are applied by
default to individual class contexts. The following pseudo-code reflects the
functionality of the visitClassContext() method of a typical CFG-based
detector.

 for each method in the class do
 request a CFG for the method from the ClassContext
 request one or more analysis objects on the method from the ClassContext
 for each location in the method do
 get the dataflow facts at the location
 inspect the dataflow facts
 if a dataflow fact indicates an error then
 report a warning
 end if
 end for
 end for

The basic idea is to visit each method of the analyzed class in turn, requesting
some number of analysis objects. After getting the required analyses, the
detector iterates through each location in the CFG. A location is the point in
execution just before a particular instruction is executed (or after the
instruction, for backwards analyses). At each location, the detector checks the
dataflow facts to see if anything suspicious is going on. If suspicious facts are
detected at a location the detector issues a warning.
For interprocedural typestate tracking, we have to bypass the restriction that
FindBugs analyses are normally applied to individual class contexts. We
developed the class InterCallGraph, which implements a single call
graph structure for the whole set of application classes and thus allows

11

detecting property violations that may be caused by nested method
invocations.
For the property of Figure 3 we introduce the path-insensitive bug detector
shown in the following pseudocode.

 //populate black list
 request all implemented interfaces for the current class
 for each implemented interface do
 request all extended interfaces (parent interfaces)
 for each parent interface do
 if parent interface is "Shareable" then
 add all methods of implemented interface in the blacklist
 end if
 end for
 end for
 //costruction of the call graph
 request all methods of all classes
 make nodes for these methods
 for each class in the program do
 for each method in class do
 scan for calls and make a link for each call between methods-nodes
 end for
 end for

 for each method in the blacklist do
 for each method in the class do
 start a Depth First Search from the corresponding graph node:
 if method of the node is in the current node from blacklist then
 if the same method is visited again then
 report the detected bug
 end if
 end if
 end for
 end for

The bug detector first creates a black list, which is used to record all methods
declared in implemented interfaces that inherit from “ShareableInterface”.
This allows to statically verifying the property of Figure 3, for all methods
declared in shareable interfaces. The bug detector discovers both
intraprocedural and interprocedural property violations. Repeated calls of
methods that bypass the application firewall may also occur as a method
invocation enclosed in a basic block of a for/while or a do . . . while loop.
Method CFGs are inspected for this particular CFG pattern and when
detected, this causes a transition to the final state of the property violation
automaton. For an occurred state transition from the initial state, the bug
detector starts a depth first search from the current node of the instantiated
InterCallGraph, in order to detect potential recursive or transitive calls to
the black listed method. Figure 4 shows the FindBugs response for a transitive
call to the method addBonus().

12

Figure 4. A method declared in a shareable interface triggers an indirect call
to itself

Typestate tracking for verifying temporal safety of Java Card API calls
Contrary to ordinary Java programs that have a single main() entry point,
Java Card applets have several entry points, which are called when the card
receives various application (APDU) commands. These entry points roughly
match the different phases that an applet can be in: (i) loading, (ii) installation,
(iii) personalization, (iv) selectable, (v) blocked and (vi) dead.
In a Java Card, any exception can reach the top level, i.e. the applet entry
point invoked by the Java Card Runtime Environment (JCRE). In this case, the
currently executing command is aborted and the command, which in general
is not completed yet, is terminated by an appropriate status word: if the
exception is an ISOException, the status word is assigned the value of the
reason code for the raised exception, whereas in all other cases the reason
code is 0x6f00 corresponding to “no precise diagnosis”.
An exception in an applet’s entry point can reveal information about the
behavior of the application and in principle it should be forbidden. In
practice, whereas an ISOException is usually explicitly thrown by the
applet code using throw, a potentially unhandled exception is implicitly
raised when executing an API method call that causes an unexpected error.
This may result in leaving the applet in an unpredicted and ill state that can
possibly violate the application’s security properties.
Unhandled exceptions are detected by looking for an exception thrower block
preceding the instruction by which typestate tracking reaches the final state
(Figure 5). Access to an exception handler block (if any) is possible through a

13

handled exception edge. In FindBugs, method isExceptionThrower()
detects an exception thrower block and method isExceptionEdge()
determines whether a CFG edge is a handled exception edge.

Figure 5. CFG pattern to find unhandled exception edges

Potentially unhandled exceptions are usually caused by violations of
temporal restrictions in the use of Java Card API calls. Temporal safety
violations are captured by typestate tracking based on an appropriate state
machine, which recognizes finite execution traces with improper calls. In
(Almaliotis et. al., 2008) we introduced a FindBugs bug detector that detects
unhandled instances of APDUException, for improper use of the
setOutgoing() call.

Constraints on data values visible at the boundary of the interacting parties
Dataflow analysis is the basic means to statically verifying the correctness of
the called methods’ arguments and it is necessary, when temporal safety
involves constraints on the data values accessed at the boundary of the
interacting parties (communicating applets or an applet interacting with the
Java Card API). In this case, the described static program analyses are
combined with dataflow analyses like the one shown here.
A dataflow analysis estimates conservative approximations about facts that
are true in each location of a CFG. Facts are mutable, but they have to form a
lattice. In FindBugs, the DataflowAnalysis interface, which is shown in
Figure 6 is the super-type of all concrete dataflow analysis classes. It defines
methods for creating, copying, merging and transferring dataflow facts.
Transfer functions take dataflow facts and model the effects of either a basic
block or a single instruction depending on the implemented dataflow
analysis. Merge functions combine dataflow facts when control paths merge.
The Dataflow class and its subclasses implement: (i) a dataflow analysis
algorithm based on a CFG and an instance of DataflowAnalysis, (ii)
methods providing access to the analysis results.
We are particularly interested for the FrameDataflowAnalysis class that
forms the base for analyses, which model values in local variables and the
operand stack. Dataflow facts for derived analyses are subclasses of the class
Frame, whose instances represent the Java stack frame at a single CFG

14

location. In a Java stack frame, both stack operands and local variables are
considered to be “slots” that contain a single symbolic value.

Figure 6. FindBugs base classes for dataflow analyses

The built-in frame dataflow analyses used in static verification of the called
methods arguments are:

• The TypeAnalysis that performs type inference for all local variables
and stack operands.

• The ConstantAnalysis that computes constant values in CFG
locations.

• The IsNullValueAnalysis that determines which frame slots
contain definitely-null values, definitely non-null values and various
kinds of conditionally-null or uncertain values.

• The ValueNumberAnalysis that tracks the production and flow of
values in the Java stack frame.

The class hierarchy of Figure 6 and the mentioned built-in dataflow analyses
form a generic dataflow analysis framework, since it is possible to create new
kinds of dataflow analyses that will use as dataflow facts objects of user-
defined classes.
A bug detector exploits the results of a particular dataflow analysis on a
method by getting a reference to the Dataflow object that was used to
execute the analysis. There is no direct support for interprocedural analysis,
but there are ways to overcome this restriction. More precisely, analysis may
be performed in multiple passes. A first pass detector will compute method
summaries (e.g. method parameters that are unconditionally dereferenced,
return values that are always non-null and so on), without reporting any
warnings and a second pass detector will use the computed method
summaries as needed. However, this approach is not convenient for
implementing context-sensitive interprocedural dataflow analyses.

15

In the following paragraphs, we present a bug detector for unhandled API
exceptions concerned with the correctness of arguments in method calls.
Consider the following method:

short arrayCopy(byte[] src, short srcOff,
 byte[] dest, short destOff, short length)

A NullPointerException is raised when either src or dest is null.
Also, when the copy operation accesses data outside the array bounds the
ArrayIndexOutOfBoundsException is raised. This happens either when
one of the parameters srcOff, destOff and length has a negative value or
when srcOff+length is greater than src.length or when destOff+
length is greater than dest.length. We provide the pseudo-code of the
visitClassContext() method for the detector of unhandled exceptions
raised by invalid arrayCopy arguments:

 for each method in the class do
 request a CFG for the method
 get the method’s ConstantDataflow from ClassContext
 get the method’s ValueNumberDataflow from ClassContext
 get the method’s IsNullValueDataflow from ClassContext
 for each location in the method do
 get instruction handle from location
 get instruction from instruction handle
 if instruction is not instance of invoke static then
 continue
 end if
 get the invoked method's name from instruction
 get the invoked method’s signature from instruction
 if invoked method is arrayCopy then
 get ConstantFrame (fact) at current location
 get ValueNumberFrame (fact) at current location
 get IsNullValueFrame (fact) at current location
 get the method's number of arguments
 for each argument do
 get argument as Constant, ValueNumber, IsNullValue
 if argument is constant then
 if argument is negative then
 report a bug
 end if
 else
 if argument is not method return value
 nor constant then
 if argument is not definitely not null then
 report a bug
 end if
 end if
 end for
 end if
 end for
 end for

16

Figure 7 demonstrates how the detector responds in two different property
violation cases. In the first case, PurseApplet calls arrayCopy with null
value for the parameter accountNumber. It is important to note that it is not
possible to determine by static analysis the correctness of the method call for
all of the mentioned criteria, because buffer gets its value at run time by the
JCRE. However, a complete FindBugs bug detector could generate a warning
for the absence of an appropriate exception handler. In the second test case,
parameter offset is assigned an unacceptable value.

(a)

(b)

Figure 7. Illegal use of arrayCopy detected with (a) null value parameter
and (b) unacceptable constant value parameter

Tainted object propagation
In multi-applet Java Card applications, the leakage of “confidential” data to
third parties is an information flow analysis problem. The basic idea behind
using tainted object propagation for detecting information flow is to statically
check that flow of information between variables is consistent with the trust
relationships of the application providers. Although the accurate detection of
information flow is undecidable, static analysis can over-approximate
information flows, in order to ensure absence of “confidential” data leakage.
Tainted object propagation can be formulated as a dataflow analysis problem
and can be solved efficiently using an iterative algorithm. We consider only
two possible lattice values, namely TAINTED and NOT TAINTED. On the
lattice, the greatest lower bound of the two elements is defined such as

17

anything that meets a tainted value becomes tainted. An appropriate static
analysis will include the following steps:

1. Consider all variables as NOT TAINTED.
2. Annotate applet “confidential” source points as TAINTED.
3. Propagate the tainted values through the applet code. If a tainted

value is used in an expression, mark the result of the expression as
TAINTED.

4. Repeat step 3 until a fixed point is reached.
5. Find all TAINTED sink descriptors and report them.

It is important to note that the aforementioned static analysis approach
detects only the explicit information flows. For any two variables, say x and y,
an explicit information flow from x to y occurs, if the value of x is assigned to
y, as in y = x. On the other hand, there is an implicit flow from x to y, if the
value of x is used to evaluate the outcome of a conditional, which then
controls an assignment to y, i.e.

 if (x > 0) then
 y = 1
 else
 y = 0;

For statically verifying explicit information flows towards sink descriptors, it
is necessary to know what runtime objects these descriptors may refer to. Let
us consider the following program fragment:

1 byte[] buffer = apdu.getBuffer();
2 byte[] amount = new byte[2];

3 Util.arrayCopy(buffer,(short)ISO7816.OFFSET_CDATA,
 amount,(short)0,(short)2);
4 byte[] credit;

5 short creditS = (short)(credit[1] & 0x0F);
6 creditS += (short)(credit[1] & 0xF0);
7 creditS += (short)(credit[0]<<8);
8 BonusInterface
 sio=(BonusInterface)JCSystem.getAppletShareableInterfaceObject(bonusAID,
 (byte)0x00);
9 sio.addBonus((short)creditS);

In the shown example, apdu.getBuffer() returns the reference buffer to
some tainted data, i.e. the data contained in the binary array buffer with the
APDU command. Also, amount becomes tainted, because it is derived from
buffer by a call to arrayCopy (line 3). Finally, creditS is derived from
credit and is subsequently passed to the sink method addBonus (line 9).
Unless we know that variables amount and credit may never refer to the
same object, we would have to conservatively assume that they may. Since
amount is tainted, variable credit may also refer to a tainted object.
The general problem of determining what objects a given program variable
may refer to is addressed by an appropriate pointer or points-to analysis. An
unbounded number of objects may be allocated by the program at runtime
and in order to compute a finite result points-to analysis statically
approximates dynamic program objects with a finite set of values that in

18

FindBugs are instances of the class ValueNumber. Thus, points-to analyses
are based on ValueNumberAnalysis (Hansen & Wahlgreen, 2007), which
tracks the production and flow of values in the Java stack frame.

Future Research Directions

Static program analyses based on JSR-305 type qualifiers
Annotations play an important role in software defect detection especially in
problems, where there is a need to state (implicit) design decisions about
what the code is supposed to do. Java Specification Request 305 (Hovemeyer
& Pugh, 2007) defines standard annotations that allow designers/developers
to describe design intents in a way that will make them amenable to program
analysis by FindBugs and other tools. JSR-305 annotations are being proposed
for inclusion as standard in Java 7 (Harold, 2008).
A well known implicit design intent that cannot be documented without an
annotation language like JSR-305 is the requirement, some method parameter
to always be non null. FindBugs provides the annotation type @NonNull that
may be applied into some field, method, parameter or local variable.
One of the most interesting aspects of JSR-305 is that it provides meta-
annotations, which allow developers to define type qualifiers (Foster et. al.,
1999). The added type qualifiers extend the language type rules, in order to
model the flow of qualifiers through the program, where each qualifier or set
of qualifiers comes with additional type constraints that capture its semantics.
The latest version of FindBugs includes support for type qualifier dataflow
analyses in the form of an abstract class. The functionality of abstract class
TypeQualifierDataflowAnalysis is based on points-to information
provided by a ValueNumberAnalysis, as well as on an appropriate
structure that stores facts for source-to-sink mappings. There is also a CFG-
based bug detector that exploits the provided support for checking user-
defined type qualifiers.
For security properties that are formulated as information flow problems,
JSR-305 introduces the following annotations:

• @Tainted
• @Untainted
• @Detainted

In a Java Card multi-applet application, data from outside of an applet will be
marked as @Tainted, as opposed to data from inside the applet that will be
marked @Untainted. Tainted data that has been sanitized e.g. by passing it to
some sort of escaping function can be annotated as @Detainted. These
annotations are sufficient for an appropriate tainted object propagation
analysis to follow the path of data through the applet, in order to ensure that
tainted data never reaches a method invoked into another applet through a
shareable interface:

 private void function(@Tainted APDU apdu){

19

 BonusInterface
 sio=(BonusInterface)JCSystem.getAppletShareableInterfaceObject(bonusAID,
 (byte)0x00);
 sio.addBonus(@Untainted (short)creditS);
 }

Precise and scalable static program analyses
Static program analysis has the potential to provide automated verification
solutions for the whole range of security properties that arise in Java Card
multi-applet applications. When using FindBugs, the real challenge towards
efficient use of the described program analysis techniques is to exploit the
benefits and the extensibility prospects of the FindBugs open source analysis
support and at the same time to look for ways for implementing sophisticated
and precise analyses that reduce false positives and at the same time scale to
real Java Card programs.
For typestate tracking, an interesting source of inspiration is the SAFE project
(The SAFE project, 2009) at the IBM Research Labs. The heuristics applied in
SAFE are reported in (Fink et. al., 2006). In that work the authors propose a
composite verifier built out of several composable verifiers of increasing
precision and cost. In this setting, the composite verifier stages analyses, in
order to improve efficiency without compromising precision. The early stages
use the faster verifiers to reduce the workload for later, more precise, stages.
Prior to any path-sensitive analysis, the first stage prunes the verification
scope using an extremely efficient path-insensitive error path feasibility
check.
As we already noted, in FindBugs, interprocedural dataflow analyses may be
implemented by multiple-pass bug detectors, where the first pass computes
method summaries. Since the precision of interprocedural analyses is
improved by eliminating paths that are invalid, because of the method call
and return structure, we believe that the possibility to implement truly
context-sensitive analyses is a major concern for FindBugs program analyses.

Conclusion
We explored static program analyses with FindBugs, which can provide a
credible automatic verification approach for the security concerns raised in
Java Card multi-applet applications. When compared with existing security
verification alternatives, our approach does not require specialized formal
analysis skills to the application developer, but basic Java programming skills
that most software engineers already have. Moreover, it provides a single
fully-automatic verification prospect for all the three types of security
problems discussed, in place of diverse costly approaches, for the different
verification tasks.
FindBugs provides an open source analysis support that may be exploited in
the development of new pluggable bug detectors, which can be easily
installed in the static analysis tool suite. The presented bug detectors are
available online in (The S-OMA SMART CARDS Project, 2009). Bug detector
plugins may be distributed together with the Java Card Development kit or

20

by an independent third party. Applet developers are still capable to extend
the bug detectors open source code, in order to develop bug detectors for
custom properties.
All these attractive features open a new perspective for verifying Java Card
multi-applet applications that by definition are security critical. We
highlighted current restrictions in the proposed verification approach, but we
believe that due to the high potential of an open source analysis support these
restrictions will be eliminated in the foreseeable future.

References

Akdemir, I. O. (1998). An implementation of secure flow type inference for a subset
of Java. Unpublished Master thesis, Naval Postgraduate School, Monterey,
California.

Almaliotis, V., Loizidis, A., Katsaros, P., Louridas, P. & Spinellis, D. (2008).
Static program analysis for Java Card applets. In G. Grimaud & F.-X.
Standaert (Ed.), Proc. of the 8th IFIP Smart Card Research and Advanced
Application Conference (CARDIS) (pp. 17-31), Springer LNCS 5189.

Beckert, B. & Mostowski, W. (2003). A program logic for handling Java Card’s
transaction mechanism. Proc. of 6th Int. Conference on Fundamental Approaches
to Software Engineering (FASE’03) (pp. 246-260), Springer LNCS 2621.

Bieber, P., Cazin, J., Girard, P., Lanet, J.-L., Wiels, V. & Zanon, G. (2002).
Checking secure interactions of smart card applets: extended version. Journal
of Computer Security, 10, 369-398.

Breunesse, C. B., Catano, N., Huisman, M. & Jacobs, B. (2005). Formal
methods for smart cards: an experience report. Science of Computer
Programming, 55, 53-80.

Burdy, L., Requet, A. & Lanet, J. L. (2003). Java applet correctness: a
developer-oriented approach. Proc. of Formal Methods Europe (FME), Springer
LNCS 2805.

Catano, N. & Huisman, M. (2002). Formal specification and static checking of
Gemplus’s electronic purse using ESC/Java. In G. Goos, J. Hartmanis & J. van
Leeuwen (Ed.), Proc. of Formal Methods Europe (FME’02) (pp. 272-289),
Springer LNCS 2391.

Dahm, M. (2001). Byte code engineering with the BCEL API (Tech. Rep. B-17-98).
Freie University of Berlin, Institute of Informatics, Germany.

21

The FindBugs project site, Accessed February 18, 2009, in http://findbugs.
sourceforge.net

Fink, S., Yahav, E., Dor, N., Ramalingam G., Geay, E. (2006). Effective
typestate verification in the presence of aliasing. Proc. of the Int. Symp. on
Software Testing and Analysis (ISSTA) (pp. 133-144), ACM Press.

Foster, J. S., Fähndrich, M., Aiken, A. (1999). A theory of type qualifiers, Proc.
of the ACM SIGPLAN Conference on Programming language design and
implementation (PLDI) (pp. 192-203), ACM Press.

Haldar, V., Chandra, D. & Franz, M. (2005). Dynamic taint propagation for
Java. In D. Thomsen (Ed.), Proc. of the 21st Annual Computer Security
Applications Conference (ACSAC) (pp. 303-311), IEEE Computer Society.

Hansen, T. J. & Wahlgreen, B. (2007). Static analysis of concurrent Java programs
(Tech. Rep. IMM-B.Sc-2007-11). Technical University of Denmark, Denmark.

Harold, E. R. (2008, September). The Open Road: javax.annotation. java.net: The
Source for Java Technology Collaboration, online: http://today.java.net/
pub/a/today/2008/09/11/jsr-305-annotations.html

Hovemeyer, D. & Pugh, W. (2004). Finding bugs is easy. SIGPLAN Notices, 39
(12), 92-106.

Hovemeyer, D. & Pugh, W. (2007). Status report on JSR-305: Annotations for
software defect detection. Proc. of Object Oriented Programming Systems
Languages and Applications (OOPSLA) (pp. 799-800), ACM Press.

Jacobs, B., Marche, C. & Rauch, N. (2004). Formal verification of a commercial
smart card applet with multiple tools. Proc. 10th Int. Conference on Algebraic
Methodology and Software Technology (AMAST 2004) (pp. 241-257), Springer
LNCS 3116.

The Java Verifier project, Accessed February 28, 2009, in http://www.inria.fr
/actualites/inedit/inedit36_partb.en.html

Livshits, V. B. & Lam, M. S. (2005). Finding security vulnerabilities in Java
applications with static analysis. Proc. of the 14th Conference on USENIX Security
Symposium (pp. 271-286).

Marché, C. Paulin-Mohring, C. & Urbain, X. (2004). The KRAKATOA tool for
certification of JAVA/JAVACARD programs annotated in JML. Journal of
Logic and Algebraic Programming, 58 (1-2), 89-106.

22

Meijer, H. & Poll, E. (2001). Towards a full formal specification of the
JavaCard API. In G. Goos, J. Hartmanis & J. van Leeuwen (Ed.), Proc. of the Int.
Conf. on Research in Smart Cards: Smart Card Programming and Security (E-smart)
(pp. 165-178), Springer LNCS 2140.

Meyer, J. & Poetzsch-Heffter, A. (2000). An architecture for interactive
program provers. Proc. of Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) (pp. 63-77), Springer LNCS 1785.

Sabelfeld, A. & Myers, A. C. (2003). Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1), 5-19.

The SAFE (Scalable And Flexible Error detection) project, Accessed February
28, 2009, http://www.research.ibm.com/safe/

The Security in Open Multi-Application Smart Cards (S-OMA SMART
CARDS) Project, Accessed February 28, 2009, http://mathind.csd.auth.gr/
smart/

Strom, R. E. & Yemini, S. (1986). Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engineering 12
(1), 157-171.

Van den Berg, J. & Jacobs, B. (2001). The LOOP compiler for Java and JML.
Proc. of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (pp. 299-312), Springer LNCS 2031.

