
Test-Driving Static Analysis Tools in Search of
C Code Vulnerabilities II (Extended Abstract)

George Chatzieleftheriou, Apostolos Chatzopoulos, and
Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{gchatzie,aachatzop,katsaros}@csd.auth.gr

Keywords: static analysis, software security, benchmark tests

A large number of tools that automate the process of finding errors in pro-
grams has recently emerged in the software development community. Many of
them use static analysis as the main method for analyzing and capturing faults
in the source code. Static analysis is deployed as an approximation of the pro-
grams’ runtime behavior with inherent limitations regarding its ability to detect
actual code errors. It belongs to the class of computational problems which are
undecidable [2]. For any such analysis, the major issues are: (1) the programming
language of the source code where the analysis is applied (2) the type of errors
to be detected (3) the effectiveness of the analysis and (4) the efficiency of the
analysis.

In order to incorporate a static analysis tool for detecting potential code
defects in the software development cycle, significant costs are required. Thus, it
is important to know if such a tool is effective in finding all types of errors and
especially the critical ones for ensuring product quality. It is also a matter of
major importance to know how efficient a tool is with respect to the size of the
code bases being analyzed. When two or more static analysis tools are compared
based on code bases from existing software projects the results are biased: they
actually refer to the tools’ capability to detect only the defects within the tested
code bases, which are characterized by a specific degree of program complexity
and size. We believe that empirical studies on open source programs should be
completed with evaluation results, which cover systematically the most frequent
code defects in a specific software context.

The main focus of our work [1] is on software security and reliability. We
have created a versatile test suite, which implements code defects for the C
programming language. Our test suite is based on those errors which are more
often reported in public catalogs. We have identified major defect categories,
such that all examined defects are classified in one of them. Category Gen-
eral includes three types of flaws, namely division by zero, use of uninitialized
variables and null pointer dereference. The second category, Integers, includes
integer overflows, sign and truncations errors. Direct overflows, off-by-one errors
and unbounded copies appear in categories Arrays and Strings along with the



format string vulnerabilities [8], string truncation and null termination errors.
Many frequent C code defects are presented in category Memory, such as double
free attempts, improperly allocated memory, initialization errors, memory leaks,
absence of failure checks and access in previously freed memory. Category File
operation contains the errors of redundant file closure, omission of file closure,
absence of failure check and access in a file that is either, previously closed,
not opened or opened with a different mode. Last but not least, category Con-
currency errors includes deadlocks and time-of-check-time-of-use (TOCTOU)
errors.

Our methodology aims to systematically vary analysis requirements in order
to detect the mentioned code defects, and assess the static analysis tool effective-
ness in a wide range of potential coding complexities. Our publicly available test
suite consists of 750 programs for 30 distinct code defects from the mentioned
categories. All programs include one line with the tested flaw and another line
of code used to check the tools’ capability to avoid reporting spurious errors.
The test suite was applied to four open-source [3] [4] [5] [6], and two commer-
cial tools [7], whose effectiveness was measured using metrics such as accuracy,
precision, recall, specificity and F-measure. Accuracy is the ratio of correct clas-
sifications over the total number of observations. Precision is the ratio of the
number of true positives over the number of reported errors. Recall is the ratio
of the number of true positives over the number of actual errors. Specificity is
the ratio of the number of true negatives over the sum of true negatives and false
positives. The F-measure provides an aggregate measure for precision and recall,
two metrics that are characterized by an intrinsic tradeoff. We also measured the
tools’ efficiency in terms of running time and peak memory usage.

We have evaluated the tools’ effectiveness based on a wide range of C con-
structs and different conditions of language semantics under which the defects
may arise. Each defect is reproduced in many different programs, which are used
to assess the default configuration of the static analysis tools with respect to their
path sensitivity, context sensitivity and alias analysis capabilities. The test pro-
grams for analyzing the tools’ efficiency were automatically generated such that
for each case of different program size between 1000 and 7000 lines of code, three
programs with different analysis sensitivity requirements are considered, namely
path sensitivity, context-sensitivity and alias analysis.

The main outcome from test driving the referenced static analysis tools
showed that only one open-source tool can compete and in fact was found supe-
rior over the commercial ones, in terms of precision. On the other hand, the tested
commercial tools had a higher recall compared to all tested open source tools.
This finding shows that their analyses are designed and configured, such that
they are able to detect as many defects as possible with slightly lower precision
than the tool described in [6]. However, the higher precision of the open-source
tool is accompanied by a significant cost in analysis efficiency: for test programs
with 7000 lines of code the average analysis running time was more than two
times the average running time of the commercial tools.

2



Our methodology can be easily extended towards diverse quality contexts
and software domains, and can be enriched for tool comparisons for other pro-
gramming languages. As an interesting scenario, we consider its application for
validating runtime safety of applications for a mobile computing platform. Such
a type of validation is often a formal requirement for the distribution of appli-
cations through internet-wide markets and the procedure usually requires certi-
fication based on platform-specific security needs.

The results show how the evaluated tools compete in terms of important
tradeoffs between analysis effectiveness and efficiency, as well as between pre-
cision and recall. The degree of extensibility and customization that each tool
offers to the user should also be taken into account. In the last few years, the the-
ory and the technology of static program analysis is rapidly developed and the
market’s driving forces call for new ways to balance the discussed tradeoffs be-
tween analysis effectiveness and efficiency. For this reason, we believe that there
is an undeniable need to regularly repeat and publish every few years systematic
studies such the one reported in [1].

Acknowledgment

This research has been co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program “Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thalis Athens University of Economics
and Business - SOFTWARE ENGINEERING RESEARCH PLATFORM.

References

1. George Chatzieleftheriou and Panagiotis Katsaros. 2011. Test-Driving Static Analy-
sis Tools in Search of C Code vulnerabilities. In Proc. Of the 2011 IEEE 35th Annual
Computer Software and Applications Conference Workshops (COMPSACW ’11).

2. William Landi. 1992. Undecidability of static analysis. ACM Lett. Program. Lang.
Syst. 1,4 (December 1992), 323-337.

3. David Evans and David Larochelle. 2002. Improving Security Using Extensible
Lightweight Static Analysis. IEEE Softw. 19, 1 (January 2002), 42-51.

4. Gerard J. Holzmann 2002. Static source code checking for user-defined properties.
Proc. IDPT. Vol. 2 2002.

5. Cppcheck A Tool for static C/C++ static code analysis. Available:
http://sourceforge.net/apps/mediawiki/cppcheck

6. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2012. Frama-C: a software analysis perspective. In Proceed-
ings of the 10th international conference on Software Engineering and Formal Meth-
ods (SEFM’12), George Eleftherakis, Mike Hinchey, and Mike Holcombe (Eds.).
Springer-Verlag, Berlin, Heidelberg, 233-247.

7. Parasoft C++ Test, Available: http://www.parasoft.com/
8. Aleph One. Smashing the stack for fun and profit. Phrack magazine 7.49 (1996):

14-16.

3


	Test-Driving Static Analysis Tools in Search of C Code Vulnerabilities II (Extended Abstract)

