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Abstract—Internet of Things (IoT) systems process and respond
to multiple (external) events, while performing computations for a
Sense-Compute-Control (SCC) or a Sense-Only (SO) goal. Given
the limitations of the interconnected resource-constrained devices,
the execution environment can be based on an appropriate oper-
ating system for the IoT. The development effort can be reduced,
when applications are built on top of RESTful web services,
which can be shared and reused. However, the asynchronous com-
munication between remote nodes is prone to event scheduling
delays, which cannot be predicted and taken into account while
programming the application. Long delays in message processing
and communication, due to packet collisions, are avoided by
carefully choosing the data transmission frequencies between
the system’s nodes. But even when specialized simulators are
available, it is still a hard challenge to guarantee the functional
and non-functional requirements at the application and system
levels. In this article, we introduce a model-based rigorous
analysis approach using the BIP component framework. We
present a BIP model for IoT applications running on the Contiki
OS. At the application level, we verify qualitative properties
for service responsiveness requirements, whereas at the system
level we can validate qualitative and quantitative properties using
statistical model checking. We present results for an application
scenario running on a distributed system infrastructure.

I . INTRODUCTION

The main challenge in the design of systems for the Internet of
Things (IoT) is to implement a lightweight architecture with
abstractions for an appropriate execution environment, while
staying within the resource limitations of the interconnected
devices. Such an environment can be based on existing IoT
operating systems ([1], [2], [3]), which facilitate system inte-
gration by abstracting hardware and allowing control of the
system’s nodes.

In this context, applications are implemented as event-driven
systems with processes acting as event handlers that run to
completion. Due to the resource limitations and under the
condition that an event handler cannot block, all processes of
a node share the same stack. When an event is destined for a
process, the process is scheduled and the event - along with
accompanying data - is delivered to the process through the
activation of its event handler.

IoT operating systems decouple the applications’ design
from the low-level kernel functions, which provide CPU mul-
tiplexing and event scheduling. Thus, the development of IoT
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applications can proceed independently from their deployment,
which has the advantages of programming at a higher-level, but
opens a possibility for design errors at the overall system level.
Depending on the way that IoT applications are eventually
deployed in a distributed environment, they may have to handle
and route many different types of events [4]. In general, it
is hard to ensure seamless interactions between the system’s
components given their high heterogeneity (different device
types, measurement units and interaction modes).

Application development often relies on loosely coupled
web services based on REpresentational State Transfer (REST)
that may be shared and reused. The REST architecture allows
interconnected things to be represented as abstract resources
controlled by a server process and identified by a Universal
Resource Identifier (URI). We can thus access sensors over
the web in a request/reply or publish/subscribe manner with
ordinary web clients. The resources are decoupled from the
services and can be represented by various formats (e.g. XML
or JSON), while they are accessed and manipulated using the
methods of the HTTP or the CoAP protocol. However, the
use of web services is not straightforward, because many IoT
applications require a multicast and asynchronous communi-
cation compared to the unicast and synchronous approach of
typical Internet applications. Moreover, web services may have
to reside in battery operated devices and in case of increased
energy consumption their batteries cannot be easily changed
when devices are deployed in inaccessible or distant areas.

Special purpose tools for testing by simulation are needed
to aid the developers throughout the application design and de-
ployment on the IoT system ([5], [6]). However, the currently
available simulation techniques and tools are generally time
consuming and hard to use. It is therefore a hard challenge
to guarantee qualitative and quantitative correctness properties
at the application and system levels. To this end, we advo-
cate a model-based rigorous analysis approach using the BIP
component framework [7]. BIP is a formal language that has
been successful in building executable models of mixed soft-
ware/hardware systems. BIP models can be formally analyzed
for guaranteeing important functional correctness properties
and for evaluating the system’s performance. Validated models
then support the systematic generation of code for deploying
the modeled applications on a distributed system, thus preserv-
ing the verified properties in the actual implementation.

Our approach is based on the development of faithful
models for the IoT application and system levels. A RESTful
application is modeled and analyzed for deadlock freedom and
other safety and liveness properties, whereas at the system
level we validate important non-functional properties using



statistical model checking. To the best of our knowledge, these
analyses are not supported by the tools used in IoT application
development. Our concrete contributions are as follows:
• A BIP application level model is introduced for RESTful

IoT applications. The interconnected things are repre-
sented by abstract resources controlled by a server [8].
The resources are accessed and manipulated using the
CoAP protocol in client/server request/responses.

• At the system level, we present a BIP model for ap-
plications running on the Contiki OS. This model was
initially constructed according to the existing communi-
cation standards for the supported protocol stack and it
was later calibrated based on software-dependent runtime
constraints of the Contiki OS.

• A RESTful service-based application scenario is ana-
lyzed with state space exploration and statistical model
checking. We provide results for key functional and non-
functional requirements.

• We provide proof-of-concept results for studying error
behaviors in the IoT system.

The rest of the paper develops along the following lines.
Section II presents the current state of practice for the design
of IoT applications. We specifically focus on the widely used
Contiki OS, which is a typical case of the system architecture
principles implemented in most IoT operating systems. Sec-
tion III provides the necessary background on the BIP language
and the supported statistical model checking functionality. Sec-
tion IV describes in detail our BIP application and system level
models. Section V presents the case study scenarios and the
obtained state space exploration and statistical model checking
results, including those illustrating the study of various error
behaviors. Finally, the paper concludes with a critical view
of our work’s contributions and a discussion on the future
research and development prospects.

II . IOT APPLICATION DESIGN

We focus on the specific programming abstractions of the
Contiki OS, which in general adhere to the principles behind
the programming models of today’s IoT operating systems.
However, our rigorous analysis approach is still applicable for
other operating systems, if there are faithful models of their
implemented programming abstractions1.

The Contiki OS was initially introduced to support the devel-
opment of Wireless Sensor Network (WSN) applications [1],
but it was later extended, in order to be integrated into the
IoT. Two kinds of events are handled: (i) asynchronous events
which are enqueued by the kernel and are dispatched later to
the target process, and (ii) synchronous events that cause the
target process to be scheduled immediately; execution control
returns to the event posting process only when the target pro-
cess has finished the event processing. A polling mechanism is
also provided, which is usually used by processes that check
for status updates of hardware devices. Polling is realized
by scheduling high-priority events, which trigger calls of all
processes having a poll handler, in the order of their priority.

An event scheduler dispatches events to running processes
and periodically calls processes poll handlers. Once an event
has been scheduled, its event handler must run to completion
since it cannot be preempted by the kernel.

1The Contiki OS is an open source software and its design is transparent
to the development community.

1 PROCESS(client, ‘‘Client Example’’);
2 AUTOSTART_PROCESSES(&client);
3
4 static struct uip_udp_conn *conn;
5 static struct etimer et;
6 const int period = 160; /* in sec. */
7
8 PROCESS_THREAD(client, ev, data) {
9 PROCESS_EXITHANDLER(conn_close();)

10 PROCESS_POLLHANDLER(printf(‘‘Process polled\n’’);)
11 PROCESS_BEGIN();
12 SENSORS_ACTIVATE(button_sensor);
13 server1 = conn_new(); /* function call */
14 etimer_set(&et, period);
15 while(1) {
16 PROCESS_YIELD();
17 if (ev == sensors_event && data == &button_sensor)
18 { PROCESS_WAIT_EVENT_UNTIL
19 (ev == PROCESS_EVENT_TIMER);
20 . . . . .
21 /* function call for data request */
22 etimer_reset(&et);
23 } else if (ev == tcpip_event) {
24 . . . . .
25 /* function call to handle received data */
26 }
27 }
28 PROCESS_END();
29 }

Listing 1: Contiki client process

In typical Contiki applications, processes are implemented
as lightweight threads, called protothreads, that do not have
their own stack. A protothread consists of a C function and a
single local continuation, i.e. a low-level mechanism to save
and restore the context, when a blocking operation is invoked.
Thus, when an event handler does not run to completion, the
scheduling of other processes takes place. The protothread’s
local continuation is set before each conditional blocking wait.
If the wait is to be performed, an explicit return statement
is executed and the control returns to the caller. Upon the
next invocation of the protothread the local continuation that
was previously set is resumed, the program jumps to the
same blocking wait statement and re-evaluates the condition.
The protothread’s execution continues, once it is allowed by
the blocking condition. A local continuation is a snapshot
of the current process state and its main difference from
ordinary continuations is that the call history and values of
local variables are not preserved. If some variables need to
be saved across a blocking statement, this limitation can be
sidestepped by declaring them as static local variables.

A typical Contiki application consists of processes defined
in a C module. Listing 1 shows the code structure of a
client process. In the PROCESS macro, the reference variable
client and a string are assigned to the process, with the latter
used in debugging. The AUTOSTART PROCESSES macro
(line 2) requests the process to be automatically started when
the module is booted. The process code is enclosed in a
PROCESS THREAD macro, which defines the accessed vari-
ables, the handled event (ev) and its data. The process control
flow is included between the two macros PROCESS BEGIN
and PROCESS END, but handlers for the exit and poll events
will be enabled independently from the control flow and are
therefore placed before PROCESS BEGIN.

In the infinite loop (line 15), the process waits for and
processes events. First, it is blocked on line 16 until the receipt
of an event that triggers evaluation of conditions in lines 17
and 22. Depending on whether the event comes from the button
sensor or the network stack, the execution flow is diverted



accordingly. If both conditions are false, the process execution
returns to the PROCESS YIELD macro and it is blocked. The
process is also blocked on the macro of line 18, until a timer
fires an event. Then lines 20 and 21 are executed and the
process is blocked again on line 15. Finally, upon the arrival
of an exit event, the exit event handler is executed and the
process reaches the PROCESS END macro. Process execution
ends when the PROCESS END macro is reached.

In the Contiki OS, it is possible to develop applications
based on loosely coupled RESTful web services that can
be shared and reused. Listing 2 shows the code structure
of a REST Contiki server comprising resource definitions,
and a process for activating the REST resources and the
REST engine (a number mediators between the application and
communication layers are available for handling the dispatch
of incoming messages and the delivery of their responses).
1 /* Getter. Returns the reading from light sensor */
2 RESOURCE(light, METHOD_GET, ‘‘light’’);
3 void light_handler(REQUEST* request, RESPONSE* response)
4 { uint16_t light_solar;
5 read_light_sensor(&light_solar); /* function call */
6 sprintf(temp,‘‘%u;%u’’,light_photosynthetic,light_solar);
7 rest_set_header_content_type(response, TEXT_PLAIN);
8 rest_set_response_payload(response, temp, strlen(temp));
9 }

10 /* Actuator. Toggles the red led */
11 RESOURCE( leds_toggle,
12 METHOD_GET | METHOD_PUT | METHOD_POST,
13 ‘‘toggle’’);
14 void leds_toggle_handler(REQUEST* req, RESPONSE* resp)
15 { leds_toggle(LEDS_RED); /* function call */ }
16
17 PROCESS(server, ‘‘Rest Server Example’’);
18 AUTOSTART_PROCESSES(&server);
19 PROCESS_THREAD(server, ev, data)
20 {
21 PROCESS_BEGIN();
22 /* Start rest engine process: handles
23 invocation of resource handlers */
24 rest_init();
25
26 SENSORS_ACTIVATE(light_sensor);
27 rest_activate_resource(&resource_light);
28 rest_activate_resource(&resource_toggle);
29 PROCESS_END();
30 }

Listing 2: RESTful Contiki server

A resource definition includes a resource variable, the sup-
ported HTTP methods and a URL. Our example shows the
definitions of two resources, a light sensor (line 2) and a LED
toggle switch actuator (line 11). A function conventionally
named [resource name] handler is associated with
each resource. This function is invoked upon every single URL
request of the resource with one of the supported HTTP meth-
ods. The resource handlers enclose C code without protothread
macros, since they do not implement independent processes.
The light sensor resource handler of our example is a getter
that reads the solar light indication and adds it to the response.
On the other hand, the leds toggle handler switches the red
LEDs on and off. The server process in line 19 initializes the
REST engine process and activates the defined resources, in
order to render them accessible. The REST engine implements
the receipt of URL requests, the invocation of the appropriate
handlers and the delivery of responses. Only one request is
handled at a time and therefore the concurrent execution of
resource handlers is not possible. However, another process
implementation could be used instead of the REST engine.

The programming of Contiki applications can proceed inde-

pendently from their deployment over the IoT system nodes.
The asynchronous communication between remote nodes is
prone to event scheduling delays, due to the execution of other
processes on the same nodes. These delays cannot be predicted
and taken into account, while programming the application.
The problem is further complicated because all processes
in a Contiki node share a single buffer for communication
processing. The delays for the encoding and decoding of
messages are hard to be predicted, since they depend on the
node’s overall CPU load. Moreover, there is high probability
of a collision occurrence, if two or more nodes access the
communication medium simultaneously. In this case, all the
involved nodes will back off the transmission for a random
period of time and will retry once this period has elapsed. To
avoid long delays in message processing and communication,
the developers will have to carefully set the data transmission
frequencies between the system’s nodes.

Currently, the only way to cope with the discussed problems
is the analysis by simulation. For this purpose, the Contiki
developers have introduced Cooja [9], a flexible Java-based
simulation tool. Cooja is based on the lower level MPSim
platform emulator [6] that provides accurate information for a
system’s underlying hardware. It is thus possible to investigate
the system’s functional and non-functional behavior and to
inspect various performance aspects based on Contiki’s native
TimeLine module (e.g. message buffer utilization, energy
consumption etc.). In the Cooja simulator, the user can se-
lect parameters for the network environment. Then, the IoT
application’s processes are allocated on the system’s node
representations, as imposed by the distribution of the inter-
connected devices. The functional behavior of the simulated
IoT system can be tested through the simulation of simple
execution scenarios. By simulating more realistic workloads,
it is then possible to inspect the system’s performance.

However, a system simulation can only provide partial
assurance of the system’s behavior and it is not adequate
for guaranteeing correctness properties for and application’s
functional and non-functional requirements.

III . BACKGROUND

A. The BIP component framework
BIP is an expressive component framework that allows build-
ing complex, hierarchically structured models from atomic
components characterized by their behavior and their inter-
faces. We provide the formal semantics of the BIP framework,
as is defined in [7] and earlier articles.

BIP atomic components are transition systems extended with
a set of ports and a set of variables. An atomic component C
is defined as a tuple (Q,X,P, T ), where Q is a set of control
locations, X a set of variables, P a set of communication ports
and T a set of transitions. Each transition τ is of the form
(q, p, g, f, q′) where q, q′ ∈ Q are control locations, p ∈ P is
a port, g is a guard and f is the update function of τ . g is
a predicate defined over variables in X and f is a function
(BIP can invoke functions written in C/C++) that computes
new values for X according to their current values.

In order to compose a set of n atomic components {Ci =
(Qi, Xi, Pi, Ti)}ni=1, we assume that their respective sets of
ports and variables are pairwise disjoint. We define the global
set P

def
=

⋃n
i=1 Pi of ports. An interaction a is a triple

(Pa , Ga , Fa), where Pa ⊆ P is a set of ports, Ga is a guard
and Fa is a data transfer function. By definition, Pa contains at



most one port from each component. We denote Pa = {pi}i∈I

with I ⊆ {1 . . . n} and pi ∈ Pi. Ga and Fa are defined on the
variables of participating components, that is

⋃
i∈I Xi.

(ii) Flat Connectors

a b c

a b c

a b c

abc

a+ab+ac
+abc

a+b+ab+ac
+bc+abc

Rendezvous

Broadcast

(i) Port use

synchron

trigger

(iii) Hierarchical Connectors

b ca
Rendezvous

abc

b ca
Atomic broadcast

a+abc

Fig. 1: Flat and hierarchical BIP connectors

Given a set γ of interactions, a priority is defined as a strict
partial order π ⊆ γ × γ. We write aπb for (a, b) ∈ π, to
express the fact that interaction a has lower priority than b.

A composite component πγ(C1, . . . , Cn) is defined by a set
of components C1, . . . , Cn, a set of interactions γ and a prior-
ity π ⊆ γ × γ. If π is the empty relation, we may omit π and
simply write γ(C1, . . . , Cn). A global state of πγ(C1, . . . , Cn)
where Ci = (Qi, Xi, Pi, Ti) is defined by a pair (q, v), where
q = (q1, . . . , qn) is a tuple of control locations such that
qi ∈ Qi and v = (v1, . . . , vn) is a tuple of valuations of
variables such that vi ∈ Val(Xi) = {σ : Xi → D}, for all
i = 1, . . . , n and for D being some universal data domain.

The behavior of a composite component C =
γ(C1, . . . , Cn) is defined as a labelled transition system
over the set S of global states of C and the transition relation
with the following semantics: C can execute an interaction
a ∈ γ, iff (i) for each port pi ∈ Pa , the corresponding atomic
component Ci allows a transition labelled by pi (i.e. the
corresponding guard gi evaluates to true), and (ii) the guard
Ga of the interaction evaluates to true. If these conditions hold
true for an interaction a at state (q, v), then a is enabled at
that state. Execution of a modifies participating components’
variables by first applying the data transfer function Fa on
variables of all interacting components and then the update
function fi for each interacting component. Components that
do not participate in the interaction stay unchanged.

In BIP, interactions between components are specified by
connectors. A connector defines a set of interactions based on
the synchronization attributes of the connected ports (Fig. 1i),
which may be either trigger or synchron:
• if all connected ports are synchrons, then synchronization

is by rendezvous, i.e. the defined interaction may be
executed only if all the connected components allow the
transitions of those ports (Fig. 1ii),

• if a connector has one trigger, the synchronization is by
broadcast, i.e. the interactions are all non-empty subsets
of the connected ports with the trigger port (Fig. 1ii).

Connectors can export their ports for building hierarchies
of connectors (Fig. 1iii). and can use data variables, in order
to compute transfer functions associated with interactions.
Computations take place iteratively either upwards (up) or
downwards (down) through the connectors’ hierarchy levels,
but computed values are not stored between the execution of
two interactions (connectors are stateless).

SBIP [10] is a BIP extension that relies on a stochastic
semantics, for the verification of large-scale systems by using
Statistical Model Checking ([11] [12]). Existing tool support
allows verifying various forms of qualitative and quantitative
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Fig. 2: Two atomic BIP components and their interactions

properties connected to non-functional requirements.
Figure 2 shows two atomic components from our IoT

system model in BIP. On the left, we have the behavior of
the communication Channel component that interacts through
the ports beginT, busy, free and endT with the ProtStack
MsgSender component on the right. The latter exhibits a
stochastic behavior, due to the sampling from the uniform
distribution for assigning value to the variable distVal.

B. Statistical Model Checking (SMC)
SMC was recently proposed as a means to cope with the
scalability issues in numerical methods that are typically used
to check stochastic systems. Consider a system model M and a
set of non-functional requirements R1....Rn. Each requirement
is formalized by a stochastic temporal property φ written in the
Probabilistic Bounded Linear Temporal Logic (PBLTL) [10].
SMC is then used to apply a series of simulation-based
analyses in order to answer two questions: (1) qualitative: is
the probability PrM (φ) for M to satisfy φ greater or equal to
a threshold θ? and (2) quantitative: what is the probability for
M to satisfy φ? Both of these questions can serve to decide a
PBLTL property.

Quantitative analysis aims to compute the value of PrM (φ).
This depends on the existence of a counterexample to the
negation of φ (¬φ), for the threshold θ. It is of polynomial
complexity and, depending on the system model M and the
property φ, it may or may not terminate within a finite number
of steps. In [12], the authors propose an estimation procedure
to compute a value for p′, such that |p′−p| < δ with confidence
1−α, where δ denotes the precision. This procedure is based
on the Chernoff-Hoeffding bound [13].

Existing approaches for answering the qualitative question
are based on hypothesis testing [11]. If p = PrM (φ), to decide
if p ≥ θ, we can test H: p ≥ θ against K: p < θ. Such
a solution does not guarantee a correct result but it allows
to bound the error probability. The strength (α, β) of a test is
determined by parameters α and β, such that the probability of
accepting K (resp. H) when H (resp. K) holds is less or equal to
α (resp. β). However, it is not possible for the two hypotheses
to hold simultaneously and therefore the ideal performance of
a test is not guaranteed. A solution to this problem is to relax
the test by working with an indifference region (p1, p0) with
p0 ≥ p1 (p0 − p1 is the size of the region). In this context,
we test the hypothesis H0 : p ≥ p0 against H1 : p ≤ p1
instead of H against K. If the value of p is between p1 and p0



(the indifference region), then we say that the probability is
sufficiently close to θ, so that we are indifferent with respect
to which of the two hypotheses K or H is accepted.

IV . RESTFUL APPLICATION AND CONTIKI SYSTEM
MODELS

Our verification approach is based on a BIP model for the IoT
system architecture. We currently support Contiki nodes, which
are represented by BIP models at three levels (Fig. 3), namely,
the REST module allocated to the node, the Contiki OS and
the model for the protocol stack, which allows communication
through the network channel. The BIP components for the
REST modules comprise the IoT application level model, and
the IoT System Model integrates them with the OS and protocol
stack components. The interactions within and across Contiki
nodes are represented by hierarchical rendezvous connectors.

P1 P1

Shared Channel

Network

Contiki Kernel Model

Pk

H1 Hj

Rn

R1

Pk

H1 Hj

Rn

R1

RESTful Application Model

OS NOS 1

RESTModule 1 RESTModule N

ProtStack 1 ProtStack N

Fig. 3: BIP model for the Contiki IoT system architecture

In choosing the granularity of the BIP components behavior
we opted to faithfully model all possible interleavings of
events. Functional requirements verification takes place by
state space exploration and can be extended to large systems
with several client/server processes. The validation of non-
functional requirements in large-scale systems requires appro-
priate stochastic abstractions for the IoT system model [14].

The timing aspect of the model depends on the granularity
of a discrete time step, which has been defined based on the
transmission time per bit through the Contiki protocol stack.
This time is the inverse of the data rate of a Contiki network’s
access point. The smallest unit of data transmitted is one
symbol (4 bits) and the symbol transmission time is:

symbolPeriod =
4

dataRate
(1)

For an access point to a wireless communication medium that
operates in a frequency at the 2.4 GHz band, the data rate
is equal to 250 kbps, therefore from Equation 1 the symbol
period is equal to 16µs. Thus, our timing abstraction ignores
delays smaller than the inverse of this data rate, which is 4µs.

However, this abstraction allows a much more fine-grained
timing analysis compared to the one supported by the Cooja
simulator, which is in the ms scale.

In our SBIP model, we have integrated values of important
parameters, in order to model faithfully software-dependent
runtime constraints of the Contiki OS. These parameters are:
(i) the time needed for compression and decompression of
the packets IP headers according to the HC1/HC2 encoding
mechanisms [15], (ii) the pre and post buffering taking place
for each packet transmission. The values for these parameters
were obtained by measuring the duration from the beginning
till the end of the corresponding executable code block within
the Contiki OS. We note that the actual parameter values
differ from system to system, since they mainly depend on
the available computational resources.

A detailed definition of BIP model’s structure (Figure 3) is
given by the following grammar:
〈SystemModel〉 ::= 〈AppModel〉 〈ConKernel〉
〈AppModel〉 ::= 〈RestModule〉+
〈RestModule〉 ::= 〈Process〉+ ( 〈Resource〉〈ResHandler〉 )*
〈ConKernel〉 ::= 〈OS〉+ 〈Network〉
〈OS〉 ::= 〈Scheduler〉 〈Timer〉 〈CommHandler〉
〈Network〉 ::= 〈ProtStack〉+ 〈Channel〉
〈ProtStack〉 ::= 〈MsgSender〉 〈MsgReceiver〉

The BIP model comprises two layers, namely the REST-
ful Application Model (AppModel) and the Contiki Kernel
(ConKernel), which represent respectively, the application
logic and the Contiki platform. The AppModel consists of
several RestModule composite components that are deployed
in different Contiki nodes. Each RestModule includes a num-
ber of process components (P1 to Pk) and optionally a set of
resource components (R1 to Rn), representing REST resources,
and resource handler components (Hi to Hj), which manipulate
the resources. The ConKernel includes the composite compo-
nents for the OS of every node and the Network composite
component, with components for the protocol stack of each
node and the communication channel.
A. RESTful Application Model
Fig. 4 shows the structure of the RestModule composite
component and its interactions with the OS component. For
simplicity, we show only the interactions of the OS with
one process of the RESTModule component, but the same
interactions are applied for several processes. Every process is
represented by an atomic component, whose behavior depends
on the application’s logic.

Each component for a process interacts with the ConKernel
model through the ports shown in Fig. 4. The process is
called (called port) when an event destined for the process is
scheduled. After handling the event, it yields execution (yield
port). Synchronous or asynchronous events may be posted
that are handled by other processes using the postSyn and
postAsyn ports. If a synchronous event has been posted, the
process resumes execution (resume port) upon the end of event
handling. Each process may also request polling for itself or
other processes. It can set deadlines using timers (setTimer
port) or send a message (sndMsg port). ConKernel informs the
process about the completion of setting a timer or transferring
a message (timerSet, msgSnt ports). When a process finishes
its execution the end port is enabled.

Fig. 5 shows the structure of a RestModule component with
a server. The server process is represented by an atomic com-



call

resume

ends

yields

call

resume

ends

yields

postAsyn

postSyn

pollReqyields

ends
resume

call

handlerEnd

callHandler

handlerEnd

callHandler

postSyn

OS

postAsyn

postSyn

procPoll

postAsyn

procPoll

msgSnt

msgSnt dlvrMsg

tick

msgSntgetMsg getMsgsndMsg sndMsg

setTimer

setTimer request

setTimer

RESTModule

Process 1 Process N

sndPacket recvPacket

Fig. 4: The RestModule for a Client and its interactions with the OS

ponent with ports for calling a resource handler (callHandler)
and for getting the response (handlerEnd). Every resource
handler interacts with one resource, in order to submit a query
(sndQry port) and get its result (getRslt port). Multiple resource
handlers are allowed to interact with the same resource.
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B. Contiki Kernel Model
The ConKernel model consists of the OS and the Network
composite components. The former models the behavior of the
Contiki kernel [1] regarding the scheduling and the event-based
interprocess communication. The latter represents the Contiki
network module and therefore models the entire protocol stack.

As it is shown in Fig. 6, the OS composite component inter-
acts with (i) the RESTModule component, in order to receive
and handle incoming events and (ii) the Network component
for the data exchange events. It consists of the Scheduler,
the Timer and the CommHandler atomic components. The
Scheduler component manages the incoming events from the
processes of the RESTModule component. We distinguish four
types of events, namely: (1) initialization (INIT event); (2)
(a)synchronous event posting; (3) polling (POLL event); (4)
yielding (YIELD event); and (5) exiting (EXIT or EXITED
events). Events may be either synchronous and asynchronous,
and are stored respectively in a stack and in a FIFO queue. The
Scheduler checks periodically for the presence of incoming
events, in the event queues (period T=pscheduler). In sensor
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Fig. 6: Contiki Kernel Model interactions

applications, this period affects the the sensors’ battery life:
if the system operates in battery-saving mode, it wakes up to
check for new events, when the period expires. The presence
of an event, either triggers immediate handling - as for the
synchronous events (postSyn port) - or the event is deferred -
as for the asynchronous events (postAsyn port). The Timer
component models a timer management process within the
Contiki OS. It receives the incoming timer requests (setTimer
port) of each RESTModule process and stores them as well in
a stack. Each timer request includes a timer mode allowing
to set, reset, restart or stop a particular timer. Finally, the
CommHandler component models the TCP/IP process of the
Contiki OS. It interacts with the Network component to either
transmit the incoming packets or deliver the received packets
to the process components of the RESTModule component.
Thus, it uses one transmission and one reception buffer, called
TxBuffer and RxBuffer respectively.

The Network composite component is comprised by the
ProtStack and the Channel components. ProtStack consists
of the MsgSender and MsgReceiver atomic components. The
former models data transmission and the latter data reception.
Both components represent data exchange through application
layer messages of the CoAP or the HTTP protocol. Neverthe-
less, the transmission/reception mechanisms are handled by
the underlying 6LoWPAN protocol of the Contiki protocol
stack [16]. According to this protocol, the model uses the
unslotted CSMA/CA mode of the IEEE 802.15.4 standard [17]
(in the MAC layer) and applies an adaptation layer, in order
to transport IPv6 packets over a Wireless Personal Network
(WPAN). The Channel atomic component models the behavior
of a communication medium, in order to receive requests for
data transmission from network nodes, provide information
regarding pending network transmissions, as well as resolve
deterministically collisions that may arise from the simultane-



ous transmission attempt of multiple nodes. Fig. 2 illustrates
the behavior and interactions of an abstract model for the Prot-
Stack MsgSender and the Channel components. The Channel
receives requests for data transmission through the interaction
involving beginT ports of the two components. It approves one
request for data transmission at a time and accordingly moves
to the transmitting state L1 through the sending port. As long
as it remains in L1, any following data transmissions from the
other ProtStack MsgSender components will be halted through
an interaction involving their busy ports. When the ongoing
transmission ends, both components interact through the endT
port and subsequently the Channel notifies all the components
who requested access for data transmission that they can repeat
their request (free port).

Model parameter Value
aUnitBackoffPeriod 20 ∗ symbolPeriod

CCA duration 8 ∗ symbolPeriod
macMaxCSMABackoffs 0-5 (default 4)

macAckWaitDuration 54 ∗ symbolPeriod
macMinBE 3
macMaxBE 3-8 (default 5)

aMaxFrameRetries 3
tdata [152, 1064] ∗ symbolPeriod
tack 136 ∗ symbolPeriod

aTurnaroundTime 12 ∗ symbolPeriod
SIFS 12 ∗ symbolPeriod
LIFS 40 ∗ symbolPeriod

TABLE I: Parameters of the modeled protocol stack

ConKernel is parametrized through the Network component.
We distinguish two types of model parameters (Table I). Those
who are fixed and those which can be modified, in order to
analyze performance aspects of the protocol stack. In particu-
lar, the second type of parameters may concern the exponential
backoff mechanism of the IEEE 802.15.4 standard (used in the
MAC layer of the protocol stack) or the timeout for packet
reception. The network throughput, as well as the number
of collisions in the channel are strongly influenced by such
parameters depending on the deployed application. Example
parameters of the second type are the macMinBE, macMaxBE,
macMaxCSMABackoffs and the macMaxFrameRetries.
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Fig. 7: FaultHandler component
C. Fault Model
We experimented with a fault model for injecting extensive
bandwidth loss behavior. This allowed us to analyze the fault’s
impact on the tested application scenario of Section V. A high-
level view of the injected behavior is shown by the Fault-
Handler component in Fig. 7. We distinguish the NORMAL
and LOSS states, which represent respectively the successfully
transmitted and the delayed or lost packets. FaultHandler re-
ceives all transmitted packets through the recv port and decides
based on its state, if they will be delivered to their destination.
It remains in each state, as long as the number of consecutive
successful or delayed/lost packet transmissions is positive. This
number is chosen by two probabilistic distributions, λsuccess

and λloss, obtained from the analysis of debugging traces of
a deployment on dedicated hardware platforms [18].

V . CASE STUDY

We introduce a SO smart heating IoT application that in-
volves two subsystems, the home automation and the remote
management. Home automation consists of a zone controller
receiving temperature readings from sensor devices in the
different rooms. For remote management, the zone controller is
periodically accessed by a smartphone or tablet device through
a Wide Area Network (WAN); control of the indoor heating
and statistic records/profiles for the rooms are provided to the
residents. In this scenario, we focus on the home automation
subsystem that consists of one client, representing the zone
controller and multiple REST server nodes for the temperature
sensors, which communicate using the CoAP protocol. Let
us consider an apartment with two rooms with a temperature
sensor in each of them. The client periodically sends unicast
GET requests sequentially to the two servers, which process
them and reply. Responses are received within a certain time
frame, before the client resends the request. Each node also
transmits CoAP acknowledgments to signal a message receipt.

Fig. 8: Case-study client process

Fig. 8 shows the client process component for our appli-
cation scenario. The process initially sets a timer and yields.
The choice of this timer during application development is
a trade-off between the freshness of the data and a potential
overload of the network, leading to increased packet collisions.
Whenever the client process is called upon a TIMER event, it
sends a request, resets the timer and yields. When it gets called
upon a TCP/IP event, it receives the response and yields. If it
is called with an EXIT event its execution is ended.

The BIP model for the discussed application scenario con-
sists of 8 atomic components for the RESTful Application
Model and 16 atomic components for the Contiki Kernel
Model. The model includes in total 147 connectors and 428
transitions and consists of 4100 lines of BIP code. Neverthe-
less, if a larger number of client and server nodes is assumed,
the model can be easily scaled by properly adjusting the queue
sizes and the state representation.
A. Verification of functional requirements
As mentioned in Section II, the development of Contiki
applications is an error-prone procedure. Scheduling multiple
processes may cause unpredictable delays in their event con-
sumption. A client process can set a deadline for an expected
response, or else resends the request. The deadline will have
to be tuned such that it is feasible for the process to receive
the response, in order to avoid sending redundant requests.



The analyzed functional and non-functional requirements
are relevant for most IoT applications that involve a number of
client and server processes. The functional requirements are:
FR1 The client eventually runs to completion (reaches

PROCESS END).
FR2 The client never sends redundant request messages to a

server.
FR3 The node eventually transmits the requests sent by the

client process.
FR4 The client eventually receives responses for the requests

transmitted by its node.
FR5 All messages for a client transmitted in its node are

eventually received by the client process.
FR1 is a consequence of the fact that our system model

terminates, since all clients must terminate before the system
does. For FR2, we consider a client request as redundant, if it
causes the same response with the one for a previous request.
Every such response may or may not reach the client process
and this is monitored by the observer automaton in Fig. 9. FR3
requires that the client will transmit successfully all the sent
requests. FR4 requires that the client will eventually obtain a
response for each transmitted request. Finally, FR5 specifies
that if a response has been received by the client’s node, the
client process will obtain it. For each of the requirements FR3
to FR5 an observer automaton property was derived.

Fig. 9: Observer for property 2

The observer for the FR2 (Fig. 9) starts its execution when
the client process sends a message (sndMsg port). After having
received an ack (recvAck port), the observer waits in state s2.
If the transfer of the request or the response fails (endSnd
port), the observer returns to its initial state. Alternatively, if
the process sends a new message before having obtained a
response (getMsg port), which has arrived at the node (recv
port) or before the server has completed the response dispatch
(endSnd port), then state Err is reached respectively from s3
or s2, and the property is falsified.

We tested many different values for the client’s timer, and
we present the results for three: 14.5, 17.5 and 240 ms. The
14.5 timer was chosen randomly, and did not satisfy any of
the requirements. In order to find a more appropriate timer,
we used an observer automaton for each message transfer,
which measured the time elapsed between the sending and the
receiving of the response by the process. By choosing a timer
higher than this value, i.e. the 17.5 timer, we had FR2 and FR5
being satisfied. However, FR3 was still violated for this timer,
because a small period for sending client requests, incurs the
possibility that the node might not be able to transfer a request
due to a collision. From verifying FR5, we can only infer that
FR3 fails, because a server might fail to transfer the response,

due to a collision. For the same reason, FR4 is also violated for
the 17.5 ms timer. However, both FR3 and FR4 hold for the
highest timer value, which allows for a safe margin between
consecutive requests, in order to avoid collisions.
B. Analysis of non-functional requirements
The overall performance of an IoT application deployed in a
distributed and resource-constrained environment is connected
to key non-functional requirements, such as the following:
NFR1 Memory saving by properly sizing the message buffers

in each system node. Such buffers are used in Contiki for
the communication through the protocol stack.

NFR2 Avoidance of overflow in the asynchronous event queue
(FIFO) of each node.

NFR3 Relatively low collision rate in the communication
medium, in order to avoid large communication latencies,
which have a strong impact to the network performance
and may increase the probability of packet losses.

C. Experiments
We conducted two sets of experiments. First, we compared the
performance of the Contiki code for our application, when it
is simulated in the Cooja environment with our IoT System
Model in SBIP. We focused on the response time for the reply
of a Server node to the Client’s request, i.e. the total time
elapsed for the end-to-end transmission, from the initialization
of the message in the Server until it is reliably received by
the Client. As shown by the sample window of Figure 10 the
obtained results were similar, however the SBIP System Model
had a slightly larger variability providing greater or smaller
values than the observed outliers of the Cooja simulator. This
is due to its improved accuracy, which enables a more fine-
grained simulation compared to the Cooja environment.
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Fig. 10: SBIP/Cooja response times for each Server (in ms)

The second set of experiments concerned with the injec-
tion of a realistic representation of bandwidth loss in the
IoT system model through probabilistic distributions, which
results in consecutive packet losses or out-of-order delivery
in the system. The main reason for analyzing packet losses
is that when a network node transmits a packet, it waits
for the acknowledgment in a certain time frame, namely the
macAckWaitDuration parameter of the MAC layer (provided in
Table I), before trying a retransmission. If this time expires, the
following retransmission will increase the packet transmission
frequency, leading eventually in higher probability of collisions
in the system. Indeed, Figure 11 illustrates such a behavior
obtained from the simulation of the SBIP model with the
addition of the Fault Model in BIP, presented in Section IV.



In particular, the response time for the reply of Server 1 to
the Client’s request can be increased up to 23.8 ms, due the
presence of collisions in the communication medium. Injection
of packet losses is also possible in the Cooja simulator, through
its UDGM - Distance Loss mode. However, since this behavior
is based on user-provided simulation values for parameters
as the SUCCESS RATIO TX and SUCCESS RATIO RX, it
cannot reflect the reality accurately. Therefore, our analysis
exceeds the simulation capabilities of the Cooja environment.
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Fig. 11: SBIP response times for each Server (in ms) with fault injection

The construction of the SBIP System Model also allowed the
analysis and validation of the aforementioned non-functional
requirements for the case study. Therefore, we accordingly
describe them with stochastic temporal properties using the
Probabilistic Bounded Linear Temporal Logic (PBLTL) for-
malism [10] and present their evaluation results through the
SBIP model checking tool.
NFR1. In order to satisfy this requirement several prop-
erties can be considered. Such properties are 1) φ1 =
(size(TxBuffer)) < A and 2) φ2 = (size(RxBuffer) <
B), where size(TxBuffer) and size(RxBuffer) indicate
the size of the transmission and reception buffer of the protocol
stack respectively. B and A are fixed non-negative numbers
representing a bound for the size of the two buffers. For the
sake of brevity in this experiment we focus on φ2, namely the
reception buffer of the CommHandler component, however this
analysis can be evenly conducted for the transmission buffer. In
this experiment we tried to estimate the value of B as it varies
according to the value of the period that the Scheduler uses to
check for the presence of incoming events in the event queues
(pscheduler). This period determines the frequency with which
the Scheduler posts events concerning the communication
through the protocol stack to the CommHandler component. If
this frequency is increased, the number of transmitted packets
over the network is equally increased. Therefore, more packets
are received in the reception buffer of the CommHandler
component. In particular, we have experimented with different
values for pscheduler, such as p1 = 0.1ms, p2 = 10ms and
p3 = 1s. For pscheduler = p1, as illustrated from Figure 12,
P (φ2) = 1 for A equal to 1. If pscheduler is increased and
is equal to p2, φ2 = 1 for B equal to 5. In the worst-case
scenario (p3), pscheduler was equal to the packet transmission
period (1s in the specific case study) and the value of A has
to be 10, in order to guarantee that the φ2 always holds. The
size of the reception buffer can be adjusted by the parameter
MAX NUM QUEUED PACKETS of the Contiki OS, found
specifically in the core module of the Contiki kernel. This

parameter corresponds to the value of A in our analysis and
is initially equal to 2.
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NFR2. We have accordingly expressed the second require-
ment as: φ3 = (size(AsynFIFO) < MAX), where
size(AsynFIFO) indicates the size of the asynchronous
event queue in the model. For this experiment we have con-
sidered the value of MAX equal to 10. As for the particular
case study we only consider a limited number of asynchronous
events, we have evaluated that this property holds always
(φ3 = 1) for the chosen value of MAX .
NFR3. This requirement is expressed as the property: φ4 =
(NC ≤ 1), where NC indicates the number of successive
retransmissions following the occurrence of a collision in the
model. In order to evaluate this property we have conducted
two sets of experiments the first one only on the IoT System
Model and the second with the addition of the Fault Model.
We have tested the property φ4 for the first experiment in
a large number of communication cycles and evaluated it as
P (φ4) = 1, meaning that no collisions are present in the
communication medium. However, for the second experiment
the impact the same property was evaluated as P (φ4) = 0.55,
as the extensive loss of bandwidth increased the packet trans-
missions and hence the number of collisions in the SBIP
model. This is also illustrated in Figure 11.

VI . RELATED WORK

An important direction of research is the Cloud centric vision
for the IoT, which leads to its worldwide implementation. The
Cloud receives data from ubiquitous sensors, analyzes it and
provides the user with easy to understand web-based visu-
alization. Developing IoT applications using low-level Cloud
programming models and interfaces is complex. To overcome
this, authors in [19] underline the need of an IoT application-
specific framework for rapid creation of applications and their
deployment on Cloud infrastructures.

A model-based methodology for the development of IoT
applications in WSN has been presented in [20]. The proposed
framework utilizes graphical Matlab tools to model and sim-
ulate the behavior of an application’s components at a high-
level. While being a promising approach which enables the
generation of network simulations to be executed in Contiki,
it does not address specific functional and non-functional
requirements. DiaSuite [21] supports a framework for the
different development phases of SCC applications, through an



integrated high-level specification. Although it is enriched with
a methodology to address non-functional requirements, valida-
tion support for them is not provided. Additionally, verification
techniques on functional requirements are not considered. An
approach in model-based development, closer to ours is the
modeling of system and application behaviors utilizing Finite
State Machines (FSM). In [22], authors introduce an FSM
approach to enable a model-driven development approach
for service-based IoT applications. Through the utilization of
FSM, the application logic can be described, which in sequence
can be evaluated though a GUI tool.

Alternative WSN operating systems which were extended
for IoT applications include the RESTful API implementation
for TinyOS [3] and the Linux environment. However, consid-
erable limitations exist for those two operating systems: Linux
consists of a monolithic kernel, which lacks modularity and
often results in a complex structure that is hard to under-
stand, especially for large-scale systems. TinyOS on the other
side, uses an event driven code style, thus it cannot support
multithreading. An emerging under-development IoT operating
system for such applications is RIOT [2], which is similar
to Contiki and includes further optimizations in the resource
usage. Nevertheless, as the development is still ongoing, it
doesn’t include an implementation for CoAP and porting of
the OS to IoT platforms is not yet fully provided.

VII . CONCLUSION

We presented a rigorous model-based analysis for resource-
constrained IoT applications using the BIP component frame-
work. The whole approach was demonstrated through the
systematic construction of faithful BIP models for RESTful
service-based applications over nodes running the Contiki
OS. All the developed models along with additional technical
details are available online2. As a proof of concept, our
approach was applied to a smart heating IoT application with
a client and multiple server nodes. Important functional and
non-functional requirements were verified, which extend the
analysis possibilities beyond those provided by the Contiki
simulation tools. On the other hand, we showed that simulation
results from our BIP model are very similar to those obtained
by the Contiki’s Cooja simulator. Various aspects of service re-
sponsiveness were checked by state space exploration, whereas
non-functional requirements concerning buffer utilization, col-
lision rate and blocking time in the event queues were analyzed
using statistical model checking. Finally, we proposed a fault
injection approach for exploring the impact of various error-
prone behaviors in the network communication.

For state space exploration, only a limited number of
nodes and client/server processes is required that suffice to
generate all the different execution traces at the node level.
For being able to explore the performance aspects of an
IoT application deployed on a large-scale system, we plan to
develop an appropriate stochastic abstraction of the presented
IoT system model [14]. Such an abstraction can be applied
only to the OS and protocol stack models, in order to avoid
loosing event interleavings due to the application’s functional
behavior. Furthermore, we consider possible extensions in the
IoT system model, in order to analyze various security risks
related to the DTLS transport and the CoAP protocols [23] or
the HTTPS URI scheme [24], as well as their overall impact

2http://depend.csd.auth.gr/ServiceSystemsModelling.php

on the system’s performance.
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[12] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate
probabilistic model checking,” in Verification, Model Checking, and
Abstract Interpretation. Springer, 2004, pp. 73–84.

[13] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

[14] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay, “Statis-
tical abstraction and model-checking of large heterogeneous systems,”
STTT’12, vol. 14, no. 1, pp. 53–72, 2012.

[15] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 packets over IEEE 802.15. 4 networks,” RFC, vol. 4944, 2007.

[16] Z. Shelby and C. Bormann, 6LoWPAN: The wireless embedded Internet.
John Wiley & Sons, 2011, vol. 43.

[17] L. S. Committee et al., “Part 15.4: wireless medium access control
(MAC) and physical layer (PHY) specifications for low-rate wireless
personal area networks (LR-WPANs),” IEEE, 2003.

[18] A. Lekidis, P. Bourgos, S. Djoko-Djoko, M. Bozga, and S. Bensalem,
“Building Distributed Sensor Network Applications using BIP,” in
SAS’15. IEEE, 2015.

[19] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future Gen. Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[20] Z. Song, M. T. Lazarescu, R. Tomasi, L. Lavagno, and M. A. Spir-
ito, “High-Level Internet of Things Applications Development Using
Wireless Sensor Networks,” in IoT. Springer, 2014, pp. 75–109.

[21] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Balland, and
C. Consel, “DiaSuite: A tool suite to develop Sense/Compute/Control
applications,” Science of Computer Programming, vol. 79, pp. 39–51,
2014.

[22] N. Glombitza, D. Pfisterer, and S. Fischer, “Using state machines
for a model driven development of web service-based sensor network
applications,” in ICSE’10. ACM, 2010, pp. 2–7.

[23] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” 2014.

[24] E. Rescorla, “HTTP over TLS.” IETF, 2000.


