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Abstract—Service-Oriented Computing aims to facilitate devel-
opment of large-scale applications out of loosely coupled services.
The service architecture sets the framework for achieving cohe-
rence and interoperability despite service autonomy and the hete-
rogeneity in data representation and protocols. Service-Oriented
Architectures are based on standardized service contracts, in
order to infuse characteristic properties (stateless interactions,
atomicity etc). However, contracts cannot ensure correctness of
services if essential operational details are overlooked, as is
usually the case. We introduce a modeling framework for the
specification of Web Service architectures, in terms of formal
operational semantics. Our approach aims to enable rigorous
design of Web Services, based on the Behaviour Interaction
Priorities (BIP) component framework and the principles of
correctness-by-construction. We provide executable BIP models
for SOAP-based and RESTful Web Services and for a service ar-
chitecture with session replication. The architectures are treated
as reusable design artifacts that may be composed, such that
their characteristic properties are preserved.

Keywords—Service-Oriented Architecture, Rigorous Design,
Web Services, Correctness-by-Construction

I. INTRODUCTION

Service-Oriented Computing is a computing paradigm that
utilizes services as fundamental units for composing dis-
tributed applications. Services are designed as self-described
heterogeneous software that may be composed and recom-
posed into multiple applications and composite services.

The service architecture sets a framework for achieving
coherence and interoperability despite service autonomy, he-
terogeneity in data representation and protocols, and remote
system failures. Today’s services adhere to communication
agreements called service contracts, which are defined by one
or more service description documents and are independent
from their implementation. For the sake of the service ab-
straction principle, we usually lack a detailed formalization of
the processing resources for the individual service capabilities.
As a consequence, verifying that a service implementation
exhibits the expected properties involves intensive testing
and debugging in a highly asynchronous and unpredictable
environment.

To effectively master the inherent complexity of service de-
sign, we would like to be able to establish the correctness of a
service, in terms of the way in which it has been composed and
deployed, rather than just by testing its operational behavior.

“Correctness-by-construction” aims at a design approach with
measures that make it difficult to introduce defects and means
to detect and remove any defects as early as possible [1]. The
role of testing in this case is to validate the design flow and
not to find defects.

Correct-by-construction techniques have been successful
in hard real-time systems and VLSI design [2]. Regarding
software design and in particular services, the necessary in-
gredients for implementing similar techniques are still an open
research problem. Among other obstacles, we currently lack a
universally accepted service component model and we already
have to cope with a multitude of architectural styles [3].
Additionally, there is no theory with formal design rules that
will support reuse of proven service architectures, according
to the principles of correctness-by-construction.

In order to reason for the correctness of design artifacts
we need a model-driven approach based on a language with
formal execution semantics. To cope with the high heteroge-
neity in the service interaction mechanisms and between the
various programming models we need a unified and expres-
sive composition paradigm: coordination between architecture
components has to be expressed as architectural constraints
specified by composition operators over the components. To
this end, we adopt the Behavior Interaction Priorities (BIP)
component framework [4], in order to formalize common Web
Service architectures and thereafter to enable rigorous design
based on the principles of correctness-by-construction.

A formally defined architecture aims to enforce a charac-
teristic property such as session replication, atomicity etc. Ar-
chitectures are treated as reusable design artifacts that can be
composed, such that they do not interfere with each other and
their properties are preserved. This perspective of horizontal
correctness was first introduced in [2], but we still lack a theory
for an adequate composition operator. However, BIP already
supports preservation of invariants and deadlock freedom in
vertical component refinement. With this design step, we apply
action refinement [5] through proven source-to-source trans-
formations [6]. Thus, from a high-level BIP application model,
we can derive correct system models that take into account the
computational infrastructure and the communication protocols
of the execution platform. The ultimate aim is to gradually
build correct service implementations through rigorous design



steps and automatic code generation for the BIP execution
engine (standalone or distributed version).

The present article is the second research work towards
a complete design flow for correct-by-construction Web Ser-
vices. In [7], we presented a language embedding for trans-
lating WS-BPEL service compositions into BIP application
models. Our main contributions in this article are summarized
as follows:
• We formalize the operations of a Web Services stack

based on a context-free grammar for the logical structure
of a BIP model.

• We provide verified executable BIP models for both of
the two widely used Web Service architectures, namely
WS-? (SOAP-based services) and Representational State
Transfer (RESTful services).

• We introduce a formal architecture for session replica-
tion [8] and we consider its composition with the WS-?

architecture. A fundamental precondition of correctness is
deadlock-freedom and non-interference between the two
architectures.

• We provide Web Service implementations that run under
the control of the BIP execution engine.

In section II, we review the related work and in section III
we discuss the current Web Service design practice. The
definition of a formal architecture in BIP is provided in
section IV, along with a description of the structure of our
BIP models for Web Service architectures. In section V, two
formally checked models are described, one for SOAP-based
and another one for REST service architectures. In section VI,
we address the problem of composing a SOAP-based Web
Service with an architecture for replicating the session state.
Finally, in section VII we discuss two cases of “correct-by-
construction” Web Services and we conclude with a critical
review of our contribution and the future research prospects.

II. RELATED WORK

A. Service Oriented Architecture and formal methods

Formal methods play an important role in the research of
all computing paradigms including Service-Oriented Architec-
tures (SOAs) and their applications. They allow the definition
of precise semantics for the languages and protocols of service
architectures, and offer a basis for checking the correctness of
complex services. We focus on two pervasive Web Service
architecture paradigms: SOAP-based and RESTful services.

SOAP-based services are defined in Web Service Definition
Language (WSDL) files, which are essentially XML files.
They expose a set of operations using two basic interaction
patterns: synchronous invocation through remote procedure
calls, and asynchronous interactions via message exchange [9].
SOAP-based services represent a procedural style of design-
ing services as they require tightly coupled designs [10].
The SOAP-based approach mainly focuses on the application
design and is only secondarily concerned with distribution.
Consequently, this service style is preferable in areas that
require asynchrony and various service qualities.

On the other hand, RESTful Web Services are primarily
concerned with distribution issues [11]. REST represents a
navigational style of Web Services and favors a loose coupling
of components. Therefore, it is widely acknowledged as a
lightweight approach for the provision of services on the
Web. Most RESTful Web Services are not described using the
standard WSDL language. The REST technology provides a
new abstraction for publishing information and giving remote
access to application systems: the resource [9]. It uses the
inherent expressiveness of HTTP to retrieve representations
of Web resources in varying states [12]. The core idea is
to support few specific operations (the HTTP methods GET,
POST, PUT, and DELETE), for changing the resources’ state.

B. SOAP-based Web Services

Service compositions and the WS-BPEL standard are one
of the main areas of research on the use of formal methods
to ensure the correctness of applications utilizing SOAP-based
Web Services. In this context, the authors of [13] showed that
model checking approaches that ignore resource constraints of
the deployment environment are insufficient to establish safety
and liveness properties of service orchestrations. In order
to provide resource-aware process modeling, they used the
Finite State Process (FSP) notation [14], a process calculus for
concisely describing and reasoning about concurrent programs.
Their approach facilitates the analysis, detection and resolution
of deadlocks in a Web Services composition. It applies a
modeling of Web Service compositions in the form of a
translation of BPEL services to FSP and a representation
of architectures with resources (such as the distribution of
services across hosts, the choice of synchronization primitives
in the process and the threading configuration of the servlet
container that hosts the orchestrated Web Services).

In [15], the authors address the correctness problem of
Web Service protocol implementations by constructing a veri-
fiable Web Service runtime. They proposed a Service-Oriented
Description Language for precise and concise description of
message processing in Web Service protocol implementations.
They also provided an Extended Finite-State Machine model,
named FSM4WSR, to formally describe the dynamic behav-
iors for Web Service protocol implementations.

In [3], the authors focused on the analysis of dynamic
reconfigurations in SOAs. They formally defined the service
architecture and the relevant mechanisms for service publi-
cation, discovery and connectivity as graph transformation
systems with type graphs, constraints and transformation rules.
After having defined an abstract, business-level architectural
style and a refinement relationship between the abstract and the
SOA-specific style, they showed how to use this relationship
for checking the architecture refinements and how to derive
SOA-specific scenarios from given business-level scenarios.
They also described how the behavior refinement problem can
be formulated as a reachability problem, which can be solved
by applying graph transformation and model checking. In the
BIP framework, it has been recently introduced support for the



modeling and analysis of dynamic architectures [16]. However,
in current work this language extension is not utilized.

C. RESTful Web Services

Developing systems that conform to the principles of the
REST architecture is still a challenging task, though the REST
technology has become widespread in recent years. Existing
frameworks offer implementations of various Web technolo-
gies, without providing adequate assistance (e.g. tools for
development with the REST guidelines, automated checks for
compliance to service profiles etc.) towards a RESTful design
flow [17]. Most approaches in related works can be applied
to relatively small projects, but for real-world applications a
formal approach may be more effective [18]. Recent research
on formal models for RESTful systems has been published
in [19], [20], [21], [22], [23]. These results indicate that
framework developers can use formal models of RESTful
systems, if they leverage those models to provide suitable
development abstractions that encapsulate the fundamental
principles of REST [17].

More specifically, in [19], the authors discussed RESTful
process execution on the basis of a special class of Petri Nets.
The main concepts of REST, such as intentions at the protocol
level and uniform identification of resources, were introduced
and mapped to the formal model.

In [20], the authors explored the composition of RESTful
services as it is driven by the hypermedia net that is dy-
namically created while a client interacts with a server. Their
proposal is based on Petri Nets, as a mechanism for describing
the machine-client navigation.

In [21], the authors introduced a REST metamodel. The
metamodel provides a basis for model-driven development, by
proposing a vocabulary for REST and a technical perspective
that enables modeling of RESTful applications.

In [22], a model for RESTful systems based on a finite
state machine formalism is presented. The paper shows how
the model enables formalization of the REST architecture con-
straints, including the uniform service interface, the stateless
client-server operation, and the code-on-demand execution.

In [23], the authors used the CSP process algebra to model
the REST architecture. The components of a RESTful system
are represented by CSP processes and an abstract process alge-
braic model for each REST architecture constraint is provided.
Finally, the authors have used the PAT model checker to verify
two of the modeled architecture constraints.

D. Composition and Correctness of Web Service architectures

In a Web Service architecture, an architectural mis-
match [24] happens when its components make incompatible
assumptions about their interactions or operating environment.
Previous works on design-time detection of architectural mis-
matches ([25], [26]) focus on the declarative specification of
architectural styles using the ACME Architecture Description
Language. When composing styles, the resulting interaction is
checked for possible divergence from the expected message

traces. Architectural mismatches can affect fundamental ser-
vice properties such as responsiveness, reliability and liveness,
thus violating correctness of the Web Service architecture.

There is relatively limited research on the correctness and
the formal composition of architectures. The main reason may
be the lack, until recently, of a truly compositional formalism
for the modeling and analysis of complex systems. In light
of the latest developments regarding the proof of several
attractive properties of BIP (expressiveness, incrementality,
scalable analyses and correct-by-construction model transfor-
mations), we expect important new results on long-standing
research problems related to our work. One such problem is
the problem of feature interaction, as it is known in the area of
telecommunication systems and services [27]. In the context of
our work, this problem appears when a formal Web Service
architecture for a SOAP-based or RESTful application is to
be composed with another architecture, in order to provide
various service qualities such as fault tolerance, atomicity etc.

III. WEB SERVICE DESIGN

This section outlines the architecture design decisions in a
typical cycle of Web Service development. Currently, a number
of frameworks (such as Apache Axis21 and gSOAP2 for
SOAP-based services, Django3, Restlet4 and MS Casablanca5

for RESTful services) provide code generation functions for
the design and deployment of Web Services. We avoid using
a framework-specific terminology and we focus on the funda-
mental decisions in the design of a Web Service.

A. SOAP-based Web Services

• Application functionality is implemented in the form of
software components that initially are not bound to any
service context.

• A number of software components contributing to a
business goal is grouped into a module that will be
deployed as a service with one or more bindings. Each
binding defines the transport protocol to be used and the
message style ("RPC" or "document").

• For each binding and each component to be exposed as
a service task, a soapAction HTTP header and the
message encoding style are defined. The soapAction
header is attached to the incoming service requests,
in order to simplify server-side processing. A message
encoding style such as SOAP encoding assigns a set of
rules for serializing data in the body of SOAP messages.

• The framework generated code is eventually deployed
together with the service on an HTTP server.

• The WSDL service description can be published under a
single portType (set of abstract operations).

1http://axis.apache.org/axis2/
2http://gsoap2.sourceforge.net/
3https://www.djangoproject.com/
4http://restlet.com/
5http://casablanca.codeplex.com/
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Fig. 1: Flat and hierarchical BIP connectors

B. RESTful Web Services

The REST architecture aims at the creation of lightweight,
resource-based services. These services are characterized by
reduced complexity compared to SOAP-based services, since
the need for exchanging complex SOAP messages is elimi-
nated. In REST, Web Services communicate through a uniform
interface based on the HTTP methods (there is no need for
explicit binding definition).
• Data to be exposed as resources are identified and may

be accessed through URIs that are assigned to them.
• For each resource, appropriate HTTP methods (e.g. GET,
POST etc.) are selected to manage the corresponding data
and the media types supported as alternative resource rep-
resentations (e.g. XML, JSON, ATOM etc.) are defined.

• Application functionality is implemented in the form of
software components that will be exposed as service
tasks. Resource URIs and the HTTP methods used to
access them are called from dedicated program methods.
Every task consumes the provided resources, modifies
them and may return hyperlinks to allow invocation of
other tasks.

• The framework generated code integrates the imple-
mented tasks that are deployed as a service on a REST-
compliant HTTP server.

IV. FORMAL WEB SERVICE ARCHITECTURE

In this section, we provide an introduction to the BIP com-
ponent framework and a formal definition of what constitutes
a formal architecture. Also, we describe the structure of the
BIP models that represent Web Service architectures.

A. Introduction to the BIP component framework

BIP is an expressive component framework with rigorous
semantics. It allows the construction of complex, hierarchically
structured models from atomic components characterized by
their behaviour and their interfaces. We provide the formal
semantics of the BIP framework, as is defined in [28] and
earlier articles.

BIP atomic components are transition systems extended
with a set of ports and a set of variables. An atomic component
C is formally defined as a tuple (Q,X,P, T ), where Q is a
set of control locations, X is a set of variables, P is a set
of communication ports and T is a set of transitions. Each

transition τ is of the form (q, p, g, f, q′) where q, q′ ∈ Q are
control locations, p ∈ P is a port, g is a guard and f is the
update function of τ . g is a predicate defined over variables
in X and f is a function (BIP can invoke functions written in
C/C++) that computes new values for X according to their
current values.

In order to compose a set of n atomic components {Ci =
(Qi, Xi, Pi, Ti)}ni=1, we assume that their respective sets of
ports and variables are pairwise disjoint. We define the global
set P

def
=

⋃n
i=1 Pi of ports. An interaction a is a triple

(Pa, Ga, Fa), where Pa ⊆ P is a set of ports, Ga is a guard
and Fa is a data transfer function. By definition Pa contains at
most one port from each component. We denote Pa = {pi}i∈I
with I ⊆ {1 . . . n} and pi ∈ Pi. Ga and Fa are defined on the
variables of participating components, that is

⋃
i∈I Xi.

Given a set γ of interactions, a priority is defined as a strict
partial order π ⊆ γ × γ. We write aπb for (a,b) ∈ π, to
express the fact that interaction a has lower priority than b.

A composite component πγ(C1, . . . , Cn) is defined by a set
of components C1, . . . , Cn, composed by a set of interactions
γ and a priority π ⊆ γ×γ. If π is the empty relation, then we
may omit π and simply write γ(C1, . . . , Cn). A global state
of πγ(C1, . . . , Cn) where Ci = (Qi, Xi, Pi, Ti) is defined by
a pair (q, v), where q = (q1, . . . , qn) is a tuple of control
locations such that qi ∈ Qi and v = (v1, . . . , vn) is a tuple of
valuations of variables such that vi ∈ Val(Xi) = {σ : Xi →
D}, for all i = 1, . . . , n and for D being some universal data
domain.

The behaviour of a composite component without priority
C = γ(C1, . . . , Cn) is defined as a labelled transition system
over the set S of global states of C and the transition relation
with the following semantics: C can execute an interaction
a ∈ γ, iff (i) for each port pi ∈ Pa, the corresponding atomic
component Ci allows a transition from the current location
labelled by pi (i.e. the corresponding guard gi evaluates to
true), and (ii) the guard Ga of the interaction evaluates to
true. If these two conditions hold true for an interaction a
at state (q, v), then a is enabled at that state. Execution
of a modifies participating components’ variables by first
applying the data transfer function Fa on variables of all
interacting components and then the update function fi for
each interacting component. The local states of components
that do not participate in the interaction stay unchanged.



In the BIP language, interactions between components are
specified by connectors. A connector defines a set of interac-
tions based on the synchronization attributes of the connected
ports (Fig. 1i), which may be either trigger or synchron:
• if all connected ports are synchrons, then synchronization

is by rendezvous, i.e. the defined interaction may be
executed only if all the connected components allow the
transitions of those ports (Fig. 1ii),

• if a connector has one trigger, the synchronization is by
broadcast, i.e. the possible interactions are all non-empty
subsets of the connected ports that contain the trigger port
(Fig. 1ii).

Connectors can export their ports for building hierarchies
of connectors (Fig. 1iii). Furthermore, a port may be used to
export any subset of a union of ports (Fig. 1iv). Union ports
participate in interactions, if the transition of some port in the
union is allowed6. Connectors can use data variables, in order
to compute transfer functions associated with interactions.
Computations take place iteratively either upwards (up) or
downwards (down) through the connectors’ hierarchy levels,
but computed values are not stored between the execution of
two interactions (connectors are stateless).

B. Formal architecture
Formally specified architectures in BIP are the means for

applying two fundamental principles for the construction of
composite components that meet certain properties [2]: prop-
erty enforcement and property composability. The enforcement
of a given property over a set of components is done by
restricting their behavior, so that the resulting behavior meets
that property. Formal architectures are seen as solutions to
a coordination problem, in order to ensure a characteristic
property that assigns them a meaning that can be understood
without the need for explicit formalization (e.g. scheduling
policy). Property composability deals with the problem of
combining more than one architectures on a set of components,
in order to achieve a global property. This section is concerned
with the definition of formal architectures. The discussion for
the composition of architectures is postponed for section VI-A.

An architecture is defined in terms of a glue operator, say
gl, used to specify a particular set of interactions between
the coordinated components C1, . . . , Cn. gl defines a partial
function of the transition relations of the components. More
specifically, if Ci can execute in states si transitions of the
form si

ai→ s′i, then gl(C1, . . . , Cn) can execute transitions
of the form (s1, . . . , sn)

a→ (s′′1 , . . . , s
′′
n) where a is an

interaction, i.e. a non-empty subset of {a1, . . . , an} such that
s′′i = s′i if ai ∈ a and s′′i = si otherwise.

Definition 1 ([2]). An architecture is a context A(n)[X] =
gl(n)(X,D(n)), where gl(n) is a glue operator and D(n) a
set of coordinating components, with a characteristic property
P (n), parameterized by an integer n such that:
• A(n) transforms a set of components C1, . . . , Cn

into a composite component A(n)[C1, . . . , Cn] =

6Exporting a union of ports is a new feature introduced in BIP 2.0.

gl(n)(C1, . . . , Cn, D(n)), by preserving essential prop-
erties of the composed components, that is,

1) Deadlock-freedom: if components Ci are deadlock-free
then A(n)[C1, . . . , Cn] is deadlock-free too;

2) Invariants (state predicates preserved by the transition
relation): any invariant of a component Ci is also an
invariant of A(n)[C1, . . . , Cn].

• A(n)[C1, . . . , Cn] meets the characteristic property
P (n).

It has been proved that composition by glue operators
preserves the invariants of their arguments [29].

C. The Web Service architecture AWS

AWS provides the general structure of Web Service archi-
tectures in terms of a grammar with all necessary types of
behavior:

〈ws arch〉 ::= 〈srvc c〉+ 〈srvc s〉+ 〈srvc cs〉* network
〈srvc c〉 ::= invc endpt+ task c+ data*
〈srvc s〉 ::= listn disptch+ task s+ data*
〈srvc cs〉 ::= listn disptch+ invc endpt+ task cs+ data*

The BIP model ws arch for AWS consists of services
acting as clients (srvc c), servers (srvc s), or combine
both roles (srvc cs). Services communicate through the
internet (network).

A srvc s consists of a number of service tasks (task s)
and maintains a listener (listn) for receiving connection
requests for the destination addresses (IP address and port)
of the tasks. Also, srvc s employs dispatchers (disptch)
which process incoming requests and route them to the re-
quested task s. There must be one dispatcher for every
group of tasks that share the same combination of desti-
nation address and the (message style,message encoding)
binding elements. Servers may utilize data components for
e.g. maintaining the application state shared by the task s
components.

A srvc c includes a number of application tasks
(task c) for initiating invocations of multiple srvc s. A
srvc c creates one invocation endpoint (invc endpt) for
each srvc s interface specification (e.g. WSDL file), in
order to prepare and send the invocation request messages.
Clients may also store information (e.g. session IDs) in data
components.

The behavior of invc endpt and disptch components
encompasses the functions of message (de-)serialization and
transfer, which vary with the transport protocol and the trans-
formation between the messages’ format and a representation
that can be processed by the tasks. Additional functions that
may be offered by these components are user authentication
and logging.

In AWS , the components export the ports which are shown
in Fig. 3 and are coordinated with the connectors depicted
in Fig. 2. These ports constitute the required interface for
component coordination in every Web Service architecture.
Component behaviours do not have to enable all ports.
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Fig. 2: Pictorial representation of AWS

The data component receives through the query port a
certain query to execute (qry data) and returns the result (rslt)
through the result port. The components can submit queries
(sndQry) to data and get their results (getRslt).

The task c initiates an invocation (outReq) using a des-
tination address (dest), an input (inp), a binding (bind) and
optional settings (opt) such as a time-out deadline and gets
(inResp) the invocation’s result (outp). On the other hand,
the task s is invoked (inReq) with some input and returns

port description dir
data
query(qry) gets a query to execute in
result(rslt) returns the query’s result out
task c
outReq(inp,bind,dest,opt) initiates invocation out
inResp(outp) gets invocation’s result in
task s
inReq(inp) gets invocation’s input in
outResp(outp) returns invocation’s result out
invc endpt
prepReq(inp,bind,dest,opt) gets input to prepare an invocation in
initConn(dest) requests connection with srvc s out
connAcc(conn) srvc s established connection in
connRef(conn) srvc s refused connection in
sndReq(req) sends the request to srvc s out
rcvResp(resp) receives the request’s response in
dlvrResp(outp) delivers invocation’s result to task c out
listn
accept(conn) accepts connection with a srvc c in
reject() rejects connection with a srvc c in
disptch(conn) initiates disptch for a connection in
disptch
init(conn) is initiated for a connection in
rcvReq(req) receives a request message in
dlvrReq(inp,task) delivers input to task s out
prepResp(outp) gets task’s result in
sndResp(resp) sends a response to srvc c out
network
initConn(conn) receives a request for connection in
srchServer(conn) transfers connection to srvc s out
noServer() srvc s is not reachable out
accessConn(conn) provides access to a connection out
Ports that appear in more than one components
sndQry(qry) sends a query to execute out
getRslt(rslt) gets the query’s result in

Fig. 3: Interface (ports) of the BIP components in AWS

(outResp) the result.
The invc enpt gets (prepReq) from task c the input,

binding and destination of an invocation to be made. It
attempts to connect (initConn) to the server and is notified
upon the establishment (connAcc) or rejection (connRef ) of
a connection (conn). Also, it sends (sndReq) requests (req),
receives (rcvResp) responses (resp) and delivers (dlvrResp) the
output of invocations to task c.

The listn accepts (accept) or rejects (reject) a connection
with a srvc c and dispatches a connection to a disptch.
The disptch is initiated (init) for a given connection,
receives (rcvReq) invocations and delivers (dlvrReq) to a task
the invocation’s input. Also, it gets (prepResp) the result from
a task in order to prepare and send (sndResp) a response (resp).

V. SOAP-BASED AND REST ARCHITECTURES

We introduce instantiations of AWS , for the two common
Web Service architectures, namely the SOAP-based (ASOAP )
and the REST (AREST ). Both AWS instantiations include the
same behavior types with the ones shown in the grammar
of section IV-C with the same component interfaces and
connectors. ASOAP and AREST specify different architecture
constraints by varying the components’ behavior and the used
data types. Consequently, the glue operators glSOAP and
glREST (cf. definition 1) are parameterized as appropriate.

A. Correct-by-construction Web Service design

Architectures ASOAP and AREST are initial design arti-
facts, which may be composed with architectures that enforce
additional characteristic properties for the development of
correct-by-construction Web Services. This takes place in a
two-phase design flow: (i) in the model-based design phase,
correctness is the primary concern, (ii) in service implemen-
tation, the model is transformed into an executable program.
During model-based design, a prerequisite for establishing cor-
rectness is that the srvc c component activates all possible
srvc s execution scenarios independently of the messages
that are sent to srvc s. During service implementation, we
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Fig. 4: The behaviour of invc endptS and disptchS in ASOAP

need to attach to the model appropriate code for processing the
valuations vi of the model variables derived from the concrete
client messages. In more detail, the proposed design flow is
outlined as follows:
• Model-based design

1 The task s components are checked with the BIP tools
for application-specific properties and deadlock-freedom.

2 We select appropriate binding(s) for the service tasks to
a Web Service architecture and we add one disptch
component for each binding. The new components are
also deadlock-free.

3 The srvc c component for a client is created, with
one task c for every task s to be invoked and one
invc endpt for every binding used.

4 The components are composed with the glue glSOAP

or glREST , such that deadlock-freedom and component
invariants are preserved, as foreseen by Def. 1. This is
verified with the existing BIP tools that apply appropriate
checks on the model structure. At this stage, the content
of the exchanged messages is irrelevant, since we only
have to assign values to the model variables such that all
possible srvc s execution scenarios are activated.

• Service implementation
1. All connectors with interactions between srvc s and

network are removed. The ports used in these connec-
tors will not be exported by the srvc s interface.

2. We attach C++ code for processing the valuations vi
of the model variables, which will be invoked upon the
execution of transitions within the disptch, task s,
listn and data components.

3. We attach C++ code for communicating with network
sockets to the disptch and listn components.

B. SOAP-based Web Services

The SOAP protocol allows Web Services to exchange
structured information. SOAP works over a transport protocol
that in most cases is the HTTP. In our model for ASOAP we
adopt the assumption that the transport protocol used is HTTP.

A SOAP message is wrapped in an envelope XML element,
which contains an optional header and a required body with
an optional fault section. Non XML data can be also attached.

port description
invc endptS

handlReq Prepares the request and performs functions. Error occurs
• if some input for the message is not provided
• if some function (e.g. logging) fails

handlResp Processes the response, performs functions and trans-
forms the response’s content into the input format for
task c. Error occurs if:
• a mandatory element in header is not recognized
• an expected content element is not in the request
• some function fails

soapErr Adds information of an occurred error to the response.
disptchS

matchTask Identifies the requested task s by looking at the URI,
the soapAction, the first body element or any elements
of WS-Addressing in the request. Error occurs if:
• the soapAction is required but is missing
• the request does not match an offered task s.

handlReq Processes the request, performs functions and transforms
the request’s content into the input format for the re-
quested task s. Error occurs in the same cases as in
handlResp of invc endptS .

handlResp Prepares the response and performs functions. If an error
occurs, adds the fault section to the response. Otherwise,
it adds to body either some output or a WSDL-defined
error that was returned by task s.

soapErr Adds information of an occurred error to the result.

Fig. 5: Semantics of key transitions in ASOAP

The header section informs the recipient about application-
specific functions that are described in the WS-? specifications.
It is mandatory for the recipient to recognize and process the
elements of header which have the mustUnderstand attribute.
The body section includes the message payload that is intended
for the recipient service task. The fault section indicates a
SOAP error, which may happen during message processing.
Every SOAP message is preceded by the initial line of an
HTTP request or response, which contains the destination
address (URI) or the HTTP status of the request’s result,
respectively. The initial line is followed by HTTP headers with
various operating parameters like the content type, the length
of the transmitted message, routing information etc.
ASOAP aims to enforce the characteristic property:

PSOAP : contract-based service communication
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Fig. 6: The behaviour and interactions that implement the constraints of AREST .

Essential architecture constraints for enforcing PSOAP are:
(1) invc endpt structures service requests and parses re-
sponses according to an a-priori known WSDL definition,
(2) invc endpt and disptch handle possible message
parsing errors, if the processed messages do not comply to
the expected WSDL definition.

The aforementioned constraints are implemented by the
invc endptS and dispatchS components (shown in
Fig. 4) that correspond to the invc endpt and dispatch
behavior types of AWS . We define ASOAP as in Def. 1 by
enclosing the constituents of the composite components in
curly brackets:

ASOAP [

srvc c{task c+ data* invc endptS+},
srvc s {task s+ listn data* disptchS+},
network]

= glSOAP (

srvc c{task c+ data* invc endptS+},
srvc s {task s+ listn data* disptchS+},
network)

Fig. 4 shows the transitions for the atomic components
invc endptS and dispatchS by highlighting a number
of internal transitions used to implement the discussed archi-
tecture constraints. In Fig. 5 we describe the semantics of
these transitions, while the semantics of all other transitions
can be found in Fig. 3. We note that the tick ports represent
clock ticks which allow the components to leave a state when
a time-out condition is met.

Architecture ASOAP has been checked for deadlock-
freedom with the BIP verification tools.

C. RESTful Web Services

Service request messages in REST consist of (i) a URI
used to access an exposed resource, (ii) an HTTP method
and (iii) HTTP headers expressing communication directives

such as the resource representation media type in the expected
response, cache control directives etc. Requests might also
contain additional information in some format, such as plain
text or XML. Response messages deliver a status code and
structured documents representing the resources’ current state.
AREST aims to enforce the characteristic property:

PREST : P1

∧
P2

∧
P3

where
P1 : services are stateless
P2 : services expose a uniform interface
P3 : service output can be cached

Essential architecture constraints for enforcing P1 are: (1)
srvc s includes in responses the session state of srvc c,
(2) srvc c includes the session state in request messages
sent to srvc s. As a consequence of the aforementioned
constraints, there is no need for srvc s to maintain infor-
mation for communication with individual clients.
P2 is enforced by the following architecture constraints:

(1) srvc s includes URIs in the response messages (2) the
content of the next request message to be send to srvc s is
selected by task c from the previously received URIs.

The architecture constraints for P3 instantiate the data
behavior type to represent the cache memory (component
cache). These constraints are: (1) invc endpt retrieves
the version number of the cache entry associated with a
requested URI and attaches it to the message to be sent,
(2) disptch checks in the local cache if the version
of srvc c is fresh, (3) disptch delivers the request to
task s only if the requested URI is not found in local
cache, (4) disptch attaches to the responses an appropriate
cache control header.



The constraints are implemented by the invc endptR,
dispatchR and cacheR components (shown in Fig. 6)
that correspond to the invc endpt, dispatch and data
behaviour types. We define AREST as follows:

AREST [

srvc c{task c+ data* invc endptR+ cache,

srvc s {task s+ listn data* disptchR+ cache},
network]

= glREST (

srvc c{task c+ data* invc endptR+ cache,

srvc s {task s+ listn data* disptchR+ cache},
network)

In Fig. 6, we highlight the key transitions used to implement
the discussed architecture constraints, whose semantics are
described in Fig. 7. Architecture AREST has been checked
for deadlock freedom with the BIP verification tools.

port description
invc endptR

buildReq Prepares a request out of a URI and possibly a given
input, the session state information and the version
number of the resource in cache, if one is found.

parseResp Parses the response and transforms the returned URIs
and session state to the input format for task c.

noCache Skips caching, if the response cannot be cached or if a
failure status has been returned (e.g. 404 Not Found).

disptchR

matchTask Identifies the requested task s by extracting the HTTP
method and the URI. Error occurs if the request cannot
be matched to some task s.

isFresh Client’s or server’s cached result is fresh.
parseReq Parses the request and transforms it into the input format

for task s.
buildResp Prepares the response by adding an appropriate status

code, a list of URIs and HTTP headers for caching.
cache
rmvExpr Removes entries that have expired.
Ports in more than one component
sndQryG Sends query to cache to retrieve an entry and its version

number
sndQryU Sends query to cache to update an entry and its version

number

Fig. 7: Semantics of key transitions in AREST

VI. COMPOSITE WEB SERVICE ARCHITECTURE

In this section, we focus on the problem of composing an
architecture for a SOAP-based Web Service with an architec-
ture for replicating the service’s session state, so that the two
architectures do not interfere with each other.

A. Superposition of non-interfering architectures

When a Web Service is designed based on a formal archi-
tecture, we enforce the characteristic properties of this archi-
tecture. Two architectures should be possible to be composed,
so that their properties are preserved in the composite archi-
tecture. Such a design approach would realize the principle of
separation of concerns. We currently lack a formally defined
composition operator for guaranteeing deadlock-freedom and
non-interference of the composed architectures.

For this reason, we discuss sufficient conditions for the
correct-by-construction superposition of two architectures,
whose behavior encompasses all control locations needed for
their coordination. Let us consider that the superposition of
architectures A[C1, . . . , Cn] and B[C1, . . . , Cn] results in a
new architecture (A+B)[C1, . . . , Cn] defined over the same
set of global states. Any two interactions a and b from A and
B respectively, which may be concurrently enabled at some
state q, do not have to interfere in A+B. This is guaranteed
for any of the following two conditions:
• If a and b remain independent in A + B with q a→ q′ and
q

b→ q′′, then both sequences ab and ba are possible from
state q and lead to the same state, say qf . This means that
interactions a and b are commutative: q a→ q′

b→ qf and
q

b→ q′′
a→ qf .

• If a and b are synchronized in A + B, thus yielding the
interaction ab then

1) whenever a is enabled, b is enabled too that is: ∃q′. q a→
q′ iff ∃q′′. q b→ q′′.

2) we have commutativity: q a→ q′
b→ qf and q b→ q′′

a→ qf

These two conditions guarantee that the result of synchroniz-
ing the interactions a and b will not introduce any deadlock.
In the architecture A+B, we will have q ab→ qf .

B. Web Services with Session Replication

Services may implement stateless interactions with their
clients or they can keep a session state for each of them. In the
latter case, clients are assigned a session identification and the
server maintains, for each session, information spanning over
multiple task executions. The goal of session replication is to
replicate the session state of services in a cluster of replicas
(i.e. servers), thus offering transparency at fail-over.

The main variation points of an architecture for session
replication are the means used for in-cluster communication
and session state storage. For example, architecture variants
may involve multicast in-cluster communication, memory to
memory session replication etc.

We define an architecture ASREP for a session replication
with sticky sessions (i.e. where all requests of one client are
routed to the same replica) in a cluster where replicas send
periodic heartbeats to a registry and the session state is stored
in a shared database.
ASREP aims to enforce the characteristic property:

PSREP : P1

∧
P2

∧
P3

∧
P4

where
P1 : services assign and maintain sticky sessions
P2 : available servers can be discovered
P3 : server fail-overs are transparent to clients
P4 : session state can be transferred among servers

The model for ASREP shown in Fig. 8 includes a proxy
service (srvc csCp) that routes requests to the k replica
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Fig. 8: Pictorial representation of ASREP

services (srvc sj=1..k
Cr ). The srvc csCp includes a reg-

istry (reg), multiple proxy tasks (task csCp) and a data
component (dataCp) which stores the session state in a
transactional manner. The task csCp implements the logic
for routing an invocation, while the reg is responsible for
detecting and broadcasting replica failures. Every srvc sj

Cr

includes a replica listener (listnCr) that sends heartbeats
and multiple replica tasks (task sCr) with instructions for
reading/writing the session state.

For k replicas (srvc cCr) ASREP is defined as follows:

ASREP (k)[

srvc c{invc endpt+ task c+ data*}
srvc csCp{invc endpt+ disptch+ task cpCp+

dataCp reg},
srvc s1Cr{task sCr+ listnCr data disptch+},

... , srvc skCr,

network]

= glSREP (k)(

srvc c{invc endpt+ task c+ data*}
srvc csCp{invc endpt+ disptch+ task cpCp+

dataCp reg},
srvc s1Cr{task sCr+ listnCr data disptch+},

... , srvc skCr,

network)

The glue in Fig. 8 (ports are defined in Fig. 9) applies a set
of architecture constraints to enforce the characteristic prop-
erty of ASREP . More precisely, the constraints that enforce
P1 are: (1) task sCr stores session ids for new requests to
reg and returns them to clients. (2) task sCr stores every
session’s state in dataCp and resets the sessions’ idle time
upon receiving their requests. (3) reg maintains and gives
access to a list of alive sessions and their idle time (i.e. elapsed
time since last request). (4) task csCp associates a session
with an alive replica and forwards all the session’s requests
to this replica. (5) reg periodically removes sessions that
have expired (i.e. whose idle time has exceeded the maximum
allowed idle time) also deleting them from dataCp.

Property P2 is enforced by the constraints: (1) reg main-
tains and provides access to a list of alive replicas and their
idle times. (2) Periodically, reg detects replica failures by
checking the idle times and broadcasts these failures to all
task csCp. (3) All listnCr send signals of aliveness to
reg, which resets their idle time.

The constraints for P3 are: (1) task csCp receives client
requests, forwards then to a srvc sj

Cr and sends the re-
sponses back to clients. When it expects a response from
a failed srvc sj

Crs and receives a failure notification, it
forwards the request to another srvc sj

Cr. (2) The mul-
tiple task sCr store request results (with checkpoints) in
dataCp and do not perform their function (and effects on
session state) for requests with stored results.

The constraints for P4 are as follows: (1) task sCr

searches every request’s session state first in data (local
store) and then in dataCp (global store). (2) Before return-
ing the response,task sCr stores atomically (transactional
mode) in dataCp the altered session state and the checkpoint.

C. Correctness and non-interference in ASREP +ASOAP

By establishing the correctness of ASREP with respect to
its characteristic property we exclude problems like the loss of
session state. Such a functional safety property can be easily
checked by state exploration of the BIP model, as in [7].

The superposition of ASOAP and ASREP denoted by
ASREP + ASOAP merges glSOAP and glSREP . Any two



port description
task csCp

getSes retrieves the list of alive sessions
getRplcs retrieves the list of available replicas
match matches a session id with a replica
select assigns a replica to a session
noRplcs there are not available replicas
rcvFail is notified about replica failures
reg
accessSes gives access to the list of alive sessions
accessRplcs gives access to the list of available replicas
isAlive receives the heartbeat of a replica
chkRplcs starts checking for failed replicas
nextRplc checks the next replica on replicas’ list
incIdlRp increases the idle time of a replica
chkSes starts checking for expired sessions
nextSes checks the next session on sessions’ list
incIdlSes increases the idle time of a session
rmvSes removes an expired session
sndQry removes the data of an expired session
fin the check of replicas’ or sessions’ list is completed
listnCr

amAlive sends a heartbeat to reg
dataCr

beginTx creates a transaction scope
queryTx receives query during a transaction
resultTx sends result of a query during a transaction
commit ends a transaction by making its effects permanent
abort ends a transaction by discarding its effects
task sCr

rQryC sends query for retrieving a checkpoint
foundC a checkpoint is retrieved
noSes the request does not provide a session id
rQryS sends query for retrieving session state stored in data
nfoundS the session state is not retrieved from data
rQryRS sends query for retrieving session state stored in

dataCp

wQryS sends query for storing session state in data
addSes adds a new session to reg
updSesIdl refreshes a session’s idle time to reg
begTx begins a transaction
wQryTxRS sends query during a transaction for storing a check-

point
wQryTxC sends query during a transaction for storing session

state in dataCp

commit commits a transaction

Fig. 9: Description of transitions’ semantics in ASREP

interactions aS of glSOAP and aC of glSREP that may be con-
currently enabled at some global state q of ASREP +ASOAP

do not interfere. This is true because:
• All interactions aS and aC that remain independent in
ASREP + ASOAP are commutative. In fact, the only case
when this might not hold is if a single component enables
concurrently some aS and aC. However, interactions aS are
enabled exclusively by the invc endptS and disptchS

components, which do not enable any aC.
• Any aS and aC that are synchronized in ASREP +ASOAP

are always enabled together and are commutative.

VII. CASE STUDIES

We present two cases of correct-by-construction Web
Services and their executable BIP models built by apply-
ing the design steps of section V-A. The two services
are based respectively on ASOAP and AREST and have
been checked for deadlock-freedom using the BIP state

exploration tool. The BIP models and the Web Services
can be accessed in http://depend.csd.auth.gr/
ServiceSystemsModelling.php.

A. A Web Service based on ASOAP

Our SOAP-based Web Service for online management of
shopping baskets (carts) is represented by a srvc s BIP
component that includes three task s: (i) task sCrt,
which creates a cart (ii) task sAdd, which adds an item
to a cart and (iii) task sClr, which clears a cart.

component operation input output
task sCrt CartCreate cartId
task sAdd CartAdd cartId, itemId cartId, error
task sClr CartClear cartId error

Fig. 10: Input and output of the implemented task s

In Fig. 10, the input and output of the task s components
are shown. The task sCrt must be invoked first, in order the
client to obtain the session id of the subsequent communica-
tion. Upon invocation, the task sCrt creates a new cartId,
which is returned to the client. Then, the task sAdd may
be invoked, which adds the item itemId to the cart cartId. If
cartId indicates an expired session, an error and a new cartId
are returned to the client. The task sClr removes all items
from a cart.

The session state for each client is maintained in a data s
component. The data s stores two table structures, one for
the cartIds and their idle times and one for the associated
itemIds and cartIds.

The BIP model also includes a srvc c with a task c1

that invokes service tasks according to the expected invocation
sequence, i.e. task sCrt, task sAdd, task sClr. A sec-
ond srvc c includes a task c2 that invokes task sClr,
task sAdd, task sClr,task sAdd, task sAdd, in this
order. The model has been deployed as a Web Service under
the control of the BIP execution engine that invokes message
processing functions generated by the gSOAP toolset [30].

B. A Web Service based on AREST

Our model for a RESTful Web Service consists of a
srvc s that includes two task s: (i) the task sget for
viewing a list of available items and (ii) the task spost for
adding an available item to an existing cart, while making the
item unavailable for other clients.

Requests are issued in parallel by task cR1 and task -
c2, which are included in two separate srvc c. Initially,
task c1 issues a request for task sget and stores the
result to local cache. Subsequently, it invokes task spost.
On the other hand, task c2 issues two sequential requests
for task sget.

The task c1 and task c2 components realize scenarios
where (i) the client does not own a cached result (ii) the client
owns an old cached result and (iii) the client owns a fresh
cached result. The composite model with the aforementioned
components was also found deadlock-free.



VIII. CONCLUSION

We presented an approach for the design of correct-by-
construction Web Services. Our work, inspired by the recent
developments in the BIP component framework, applies the
principles of property enforcement and property composability
in the design of Web Service architectures. In section V-A we
discussed the steps of a design flow based on the developed
BIP models for SOAP-based and RESTful Web Service archi-
tectures. Regarding the challenge of composing architectures
that enforce specific properties, we examined the superposition
of one architecture over another one and the associated prob-
lem of non-interference between their interactions. In this way,
we were able to derive a SOAP-based Web Service architecture
with session replication. As a proof of concept, we discussed
the development of one SOAP-based Web Service and one
RESTful service based on the design flow of section V-A.

The overall contribution constitutes a new proposal in the
design of Web Services, as opposed with the current design
practice that was outlined in section III.

In our future plans we aim to combine the new design flow
with the result of our work in [7] towards the development
of correct-by-construction service compositions. We also aim
to utilize the BIP extensions for the modeling and analysis of
Web Service architectures with dynamic reconfigurations [16].
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