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Abstract-This paper presents K-DJQ algorithms for solving
multi-way distance join query, which finds the K n-tuples from n
spatial datasets that have the smallest distance value according
to query graph. R-tree is used as index structure for each dataset.
K-DJQ algorithm is recursive non-incremental approach
following depth-first search strategy and synchronously
traverses all R-trees, which returns the K n-tuples of the result
all together at the end of the algorithm without producing any
intermediate result. In addition, distance-based plane-sweep
technique is used as optimization techniques for K-DJQ to
reduce the total query processing time. Finally, performance and
accuracy of K-DJQ algorithm are evaluated in terms of different
K value and the number of datasets through experimentation.

I. INTRODUCTION

T he spatial database is a database management system with
the ability to handle spatial data. In a computer system

spatial data are represented by points, line segments and
regions, which are referred to as spatial objects. The spatial
database can not only store and represent spatial objects, but
also manipulate them to process various kinds of spatial
queries. Therefore, spatial databases are widely applied to
specialized applications such as geographic information
systems (GIS), computer aided design (CAD), multimedia
information systems (MMIS), data warehouse (DW), satellite
image database, location based service (LBS), transportation
planning, and resource management etc. Some typical spatial
queries used in the real applications are the following: point
query, range query, pair wise (multi-way) spatial join query,
nearest neighbor query, and K closest pair query.

In recent years, with application of spatial database
popularizing, users frequently address the query problem of
finding the K (K 1) n-tuples among n spatial datasets that
have the smallest distance according to the edges of the query
graph (QG). For example, suppose we are given three spatial
datasets consisting of the locations of flats, kindergartens,
supermarkets represented R1, R2, R3, respectively, connected
as in figure 1. User wants to find K different 3-tuples (flat,
kindergarten, supermarket)({(sRl, SR2, sR3)j SRIE RI, sR2e R2,
SR3E R3}) with the minimum distance between a flat and a
kindergarten, this kindergarten and a supermarket and this
supermarket and this flat. Many other similar queries can be
found in the real life. The query type is called K multi-way

This work was not supported by any organization.
Yin Liang and Hong Zhang are with the Department of Computer Science

and Technology, China University of Mining and Technology, XuZhou
221008, ian gJr6Sj(,Azne Iiici

distance join query (simply K-MWDJQ).

Fig. 1. Connected graph for flat, kindergarten and supermarket

Distance join queries have been recently developed. In
References [1] and [2], a recursive and iterative branch and
bound algorithms for K-CPQ (K-closest-pair queries)
following a non-incremental approach are presented for
finding the K closest pairs between two spatial datasets.
References [3] and [4] used incremental approach for solving
this kind of distance-based query, which returns part of the
final result before algorithm is finished. In addition,
References [5] and [6] present similarity join and iceberg
distance join respectively, which involve two spatial datasets
and a given distance threshold. By far algorithms have been
presented only consider two spatial datasets, and can't apply to
K-MWDJQ.

To process problem of the K-MWDJQ, in this paper, based
on distance function and plane-sweep technique, we are going
to propose a recursive non-incremental algorithm called
K-DJQ for solving multi-way distance join query.

II. MULTI-WAY DISTANCE JOIN QUERY USING R-TREES

In this section, R-trees are described and K Multi-way
distance join query (K-MWDJQ) is defined.

A. R-trees
R-trees [7] are hierarchical, height balanced

multidimensional data structures, and it is a generalization of
B-tree for multidimensional data space. R-tree is consisted of
root node, internal node, and leafnode. All of leaves reside on
the same level; the root contains at least two entries. Each leaf
node contains entries of the form (MBR, Oid), such that Oid is
pointer; MBR is the minimum bounding rectangle that
encloses the real space object directed by the Oid. Space
object may be space data represented by points, line segments,
polygons, and volumes. Internal nodes contain entries of the
form (MBR, Addr), such that Addr is the pointer directed child
node and MBR is minimum bounding rectangle that encloses
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MBRs of all entries in that child node. Fig. 2 is an R-tree
example of2-D and 3-level, which some rectangles on the left
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Fig. 2. An example of an R-tree

and the corresponding R-tree on the right.
An R-tree partitions multidimensional space by using

hierarchical grouping objects. Each R-tree node occupied
subspace is always contained in the subspace of its parent
node. An MBR of an R-tree internal node always encloses the
MBRs of its descendent R-tree nodes. This property called
MBR enclosure property is commonly used spatial join
algorithms as well as distance-based query algorithms. Other
characteristic of R-tree can be found in [7]. R-tree is one of
dynamic space index structures used widely in space database
system. Therefore, K-DJQ algorithm use R-tree as space index
structure of datasets.

B. Multi-way Spatial Join Queries
Multi-way distance join query is one of special multi-way

spatial join queries. First of all, we describe multi-way spatial
join queries as follows.

Given n spatial datasets R1, R2, , R, and a query Q, the
multi-way spatial join query finds all n-tuples satisfied spatial
predicate. Formally, it can be expressed as follows [8]:

Q(RI, R2, , Rn)={(SR1, SR2,", SRn)| Vi,j(SRie Ri SRje Rj
SRi Qij SRj }, where Qij represents the spatial predicate that

should hold between Ri and Rj. Various spatial conditions
(intersect, meet, include, distance within, set containment, etc)
can be applied to spatial join predicate. The intersect is default
join predicate.
A multi-way spatial join can be modeled by a query graph

QG whose nodes represent datasets and edges represent spatial
predicates. But, in order to process the space queries such as
K-MWDJQ, query graph in K-DJQ algorithms need to be
extended as follows.
QG is extended to a directed graph GQ=(R, E), which

consists of a finite nonempty set of nodes R=- R,, R2,- , R,4
and a finite set of directed edges EB {eI j<Ri, Rj>I Ri, Rj E R

RiP-R.}; each directed edge eij connects an ordered pair of
nodes (Ri-Rj), where Ri is called start nodes and Rj is called
end nodes of the directed edge.

C. Distance Function

In order to determine the minimum distance between n
spatial objects that depend on the GQ, a new metric called
Dobject is defined based on distance function between tow space

objects.
Given n non-empty spatial object datasets RI, R2,"-, R"

and GQ (R1 > R2 >- . -*> Rn), a distance function Dobject
calculates the sum of distances between SRI and sU, sU and
SR3, *-, and sR, l and SRn, which SRi is space object from R1,.
Dobject: RI xR2x" xRn-{R+('x' is Cartesian product; R+ is
positive real number). For each t=<sRI, sU, ", SRn>e RIxR2x
...xR0, the function Dobject is defined as follows:

Dobject(t) E distance < S Ri, SRj > E R+ (1)
e,j1 EGQ

Which eij=<SRi, sRj> is directed edge in GQ, distance<sRi,
SRJ> is a distance function between space object SRi and sRj. The
distance function may be represented by the Euclidean
distance [2].

Given p=(pI, P2, , Pd) and q=(ql, q2, -**, qd) in the
d-dimensional data space, the Euclidean distance is defined as:

Id

distance (p, q) Z 2qi (2)
i=1

D. K Multi-way Distance Join Query (K-MWEDJQ)
Given n non-empty spatial datasets R1, R2,", Rn which

objects of Ri is in E(d) (d-dimensional Euclidean space) and GQ
(R1I>R2-- - R.), K-MWDJQ is K(1 K JR1,IR2J-- iR,
where IRil is radix of Ri) n-tuples of smallest Dobject-values.
K-MWDJQ is processed in two steps by using multi-way
spatial join query and distance function Dobject. The first step
evaluates R,1 JR2J --- jRn n-tuples <SR1, SU, ., sR,> E R,xR2x
*- xR ('x' is Cartesian product) satisfied query graph GQ by
using multi-way space join. The second step finds K n-tuples
of smallest Dobject-values from candidate n-tuples using
distance function Dobject and sort them.
K-MWDJQ(R1, R2, -, R GQ, K)={ tl, t2, ", tK}

Vt E R1xR2x xR&- {tl, t2, , tK }
Dobject (tl) Dobject (t2) * Dobject (tK-1) Dobject (tK)

Dobject (t)
n

In general, we consider 1 Ri n-tuples. Thus,
i=l

K-MWDJQ requires high processing cost due to large volume
of spatial data. To reduce the overall processing cost, we
develop an algorithm for K-MWDJQ called K-DJQ.

III. ALGORITHM FOR MULTI-WAY DISTANCE JOIN QUERY

In order to improve performance of K-MWDJQ,
distance-based plane-sweep technique is used as optimization
techniques in K-DJQ algorithm. Therefore, distance function
based on MBR is discussed above all.

A. Distance Function Based on MBR

Since R-trees are used widely in space database, we
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consider that all datasets are indexed by R-tree. In K-DJQ
algorithm, MINMINDIST ftmction [2] on pairs of MBRs is
defined to determine the minimum distance between two
MBRs.

Given two MBRs M1(A, B) and M2(C, D) in E(d), where
A-(a1, a2, , ad), B (bl, b2, , bd), C=(cl, c2, ", Cd), and
D-(dl, d2, , dd), such that ai bi, ci d-, for 1 i d. A and
B, C and D are the endpoints of M1, M2 major diagonals,
respectively. MINMINDIST(M1(A, B), M2(C, D)) is defined
as:
MINMINDIST(M1(A, B), M2(C, D))

Fci -bh, if c1> bi

=A> y= ai di, if ai > di (3)
0, otherwise

In Fig. 3, two MBRs and their MINMINDIST distances are
depicted. Dashed lines express the minimum distance of any
two points contained in different MBRs.

Fig. 3. MINMINDIST between two MBRs in E(2)

In the following, we present distance function DMBR
between n MBRs that depends on GQ based on function
MINMINDIST,.

Given n R-tree nodes NR1, N R2, **, NR. stored in internal
nodes of the R-tree TR,, TR2, .--, TR&, respectively, which
nodes NRi encloses a set of MBRs {MRij: 1 j INRil}, an

n-tuples ofMBRs is consisted of n MBRs from NRI, N R2, -',
NRC. Let m-(MRI, MR2, * *, MRO), where MRi is an MBR of the
node NR, in TRi, DMBR (m) is defined as:

DMBR(m)- E MINMINDIST(M Ri M Rj) (4)
eijeE Q

where eij-(MRi, MRj) is connected by the directed edge in
GQ.

B. Distance-based Plane-sweep Technique
In general, the plane-sweep technique is commonly used in

space join query for computing intersections. The basic idea is
to move a sweep-line, e.g. X-axis, from left to right. We apply
this technique for restricting all possible combinations of n
MBRs from n R-trees. Ifwe do not use this technique, we may

n

consider J7JR i n-tuples and process them.
i=l

The basic idea of distance-based plane-sweep technique is
as followings:
1) Let X-axis be sweep-line from left to right.

2) MBRs stored in internal nodes of n R-tree are sorted
based on lower left corner value of X-axis in creasing
order.

3) Let P be initialized to the MBR with smallest X-value of
lower left corner.

4) The P must be paired up with the MBRs stored in other
n-I R-tree from left to right according to sequential query
of GQ. All n-tuples m contained P that satisfies the
DMBR(m) z are found, where z is the Dobjeet-value of the
K-th n-tuple of spatial objects found so far.

5) The P is updated with theMBR ofthe next smallest value
of lower left corner.

6) Repeating 4 and 5.
Based on the previous ideas, we show process of

distance-based plane-sweep technique through using an
example.

In Fig. 4 illustrates three sets ofMBRs stored in three (n-3)
R-tree nodes Mp-{Mp1, MP2, MP3, MP4, Mp5}, MQ-{MQI, MQ2,
MQ3, MQ4 }, and MR {MRI, MR2, MR3, MR4, MR5},
respectively. Sequential query ofGQ is Rp->RQ---RR. Ifwe do
not apply distance-based plane-sweep technique, 5*4*5=100
triplets ofMBRs will be processed. Otherwise, this number of
possible triplets will be extremely reduced..~~~~~~~~~~~I

Uqjm

Fig.4 MBRs from three R-tree nodes

First, each MBR from three R-trees are sorted according to
X-value of lower left corner of MBR in increasing order.
S-(MPI, MQI, MRI, MP25 MR3 MR, MP45 MQ35 MQ2, MR5, MR45

MQ3, MQ2, MQ4), SR-(MRI, MR3, MR2, MR5, MR4) is obtained,
respectively. Then, P is initialized to MBR Mp1. P must be
paired up with MBRs in SQ and SR from left to rigit that
satisfies the DMBR (MPI, MQi, MR) z. Since X-valuesof MQ2.
MQ4, MR4, andMR5are greater than or equal to z, {MQ2, MQ4}
and {MR4, MR5} can be discarded. We will obtain a set of
triplets {(Mp4, MQ5I, PMIJ,(Mp, MQp, MR3), (MPI, MQ=1 M2),
(MP], MQ3, MR1), (MP1, MQ3, MR, (MP1, MQ3R MiR2)} for
candidate triplets. In this case, the number of candidate triplets
is 6, not 20. 14 triplets are reduced.

DMBR-values of each triplet in candidate are calculated.
Since DMBR(MP1, MQ3, MR1)>Z, (MPI, MQ3, MR1) is deleted
from candidate. Moreover, since X-value of MR3 and MR2 is
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greater than X-value of MRI, DMBR-values of (MpI, MQ3, MR3)
and (Mpl, MQ3, MR2) need not to be calculated. The triplets of
MBRs t(MpI, MQ3, MR), (MPI, MQ3, MR2)} can be directly
discarded. Thus, we can further reduce process time. Finally,
the number of candidate triplets is 3.

Then, P is updated with the next smallest value of lower left
corner MQ1 and the previous process is repeated.

C. K-DJQ Algorithm
K-DJQ algorithm is recursive following depth-first search

strategy and synchronously traverses all R-trees. It does not
produce any intermediate result, and returns the K n-tuples of
the result all together at the end of the algorithm. The
distance-based plane-sweep technique is used as optimization
techniques for improving performance.

First of all, we set a variable z, which is used to record
maximal Dobject-value ofK n-tuples. The z is initialized to oo.
Then, we establish two data structures F and E that F stores K
n-tuples of minimum Dobject-value and E store candidate
n-tuples ofMBRs that satisfy DMBR(m) z. Their initial values
are all null.

Query graph GQ is represented by 2-dimensional array Q[][
]. When an edge exits between dataset Ri and Rj, Q[i][j] 1,
otherwise Q[i][j]-0.

Initializing: z-oo; F=-D; E 4); Q[ ][ ]; K; n;
/* n is the number of datasets; K is the number of

n-tuples */
K-DJQ (R-treeNode N[ ], Query Q[][])
Fori:= tondo

{ Read(N[i][ ]); /* N[i][ ] are nodes of R-tree Ri */
Seq[i]=sort (N[i][ ].MBR); /* sort MBRs of node of

each R-tree Ri according to lower left corner
value of each MBR on X-axis in ascending order
*l

}
Sequence-sort(N[ ][ ].MBR); /* sort MBRs of all nodes

according to lower left corner value of each MBR on
X-axis in ascending order. */

For i:-1 to ISequencel do
{ P:= Sequence[i]; j-1; El-{P};
while (not(P Seq[j]) and (j n)) do

/* delete MBR outside sliding window z
{ for each MBR Seq[j] do

if MBR.x>P.x+z then
Seqj]= Seq[j]-tMBR};

j-j+1;
}

For k= I to n-I do /* finding n-tuples that satisfy query
graph*/

For each Seq do
if Q[i][k]<>0 then El Elx{Seq[k]};

/* "x" is Cartesian product */
EBE U El;

}
For each t E do /* delete n-tuples that DMBR-value greater

than z */
If DMBR(t)>z then E=E- {t};

For each t E do /* discuss each n-tuple in E */
If t are leafnodes then /*qualifying tuple is at leaf level */

FingK-n-tuple(F, K, t) /* find K n-tuples which
Dobject (t) is smallest */

Else /* qualifying tuple is at intermediate level */
K-DJQ (N.refl ], Q); /* recursive call to lower level */
Output(F);

FingK-n-tuple(query F[ ], int K, n-tuple t)
If JFJ<K+1 then

{ insert(F, t); /*insert t into F when then number of tuples
smaller than K */

Sort(F); /* sort F in ascending order of Dobject(F[i]) */
}

Else if Dobject (F[K])<Dobject (t) then return
else { delete(F[K]); /* delete a n-tuple which

Dobject-value is the greatest from F */
insert(F, t);
Sort(F);

z-Dobject (F[K]); /* update z value with
greatest Dobject-value in F */

}

IV. EXPERIMENTAL RESULTS

The evaluation of K-DJQ algorithm was performed based
on a variety of experimental tests on uniformly distributed
rectangular datasets. R-tree index is used as a spatial access
method for the datasets. The experiments were performed on a
Pentium TV 2. 1GHz platform on which Windows 2000
professional was running with 256 Mbytes RAM and
80Gbytes of secondary storage. The programs were created
using the VC++ 6.0 compiler.

In order to evaluate K-DJQ algorithm, we have used three
real spatial datasets A, B, C, representing flat, kindergarten,
and supermarket, respectively. The datasets are all point
objects. The characteristics of the datasets are summarized in
Table 1.
We have measured the performance of our K-DJQ

Table. 1
Cardinalities of real datasets

A B C
The number of 490 383 184

real spatial objects 493814

algorithm based on the following two performance metrics:
number of disk accesses (simply DA) and response time
(simply RT). We have studied two experiments.

In the first experiment, we study performance of K-DJQ
algorithm with increasing K values, varying from 1 to 10000.

415



Fig. 5 shows performance parameters for K-DJQ over the
following configuration: n=3 and GQ =(A-B--BC). In the left
figure, we can notice that DA only increase about 15% when
K value is increased from 1 to 10000. But, the right figure
shows RT is faster for small K values (K 1000), and
becomes slower for large K value (K=10000). RT is 4 times
from K=10000 to K=1.
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Fig. 5. performance comparison for K-DJQ algorithm varying K

In the second experiment, we study performance and
accuracy of K-DJQ algorithm over the following two
configuration: n-2, GQ =(A->B), and K=100; n=3, GQ -(A->
B->C), and K=100. Table 2 shows performance parameters.

Table.2
Comparison of performance for K-DJQ algorithm varying n

Disk accesses Response time
n=2 12 0.12
1n=3 187 6

Experiment results indicate K-DJQ
effectively resolve multi-way distance join
viewed as an extension ofK-CPQ [2].

algorithm can
query. It can be

V. CONCLUSIONS

Some typical spatial queries for the window query, spatial
join query, and nearest neighbor query were already
developed [9]-[12]. But the distance spatial join query is
immature. For the distance join query, algorithms only for
processing K-closest-pair have been developed [1]-[2].
However, algorithm for multi-way distance spatial join query
has not been developed yet. In this paper, we present K-DJQ
algorithm for multi-way distance join query based on function
DMBR between n MBRs in the multidimensional Euclidean
space.

Table. 1

Cardinalities of real datasets
A B C

The number ofreal 490 383 184
spatial objects

K-DJQ algorithm is recursive non-incremental approach
following depth-first search strategy and synchronously
traverses all R-trees, which returns the K n-tuples of the result
all together at the end of the algorithm without producing any
intermediate result. In addition, distance-based plane-sweep
technique is used as optimization techniques for K-DJQ by
filtering candidate n-tuples to reduce CPU cost and I/O
activity. Experiment results show K-DJQ algorithm can
effectively solve distance spatial join query between not only
two spatial datasets, but also n (n>2) spatial datasets. It can be
viewed as extension of K-closest-pair queries.
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