
On Reducing Communication Cost for
Distributed Moving Query Monitoring Systems

Fuyu Liu Kien A. Hua Fei Xie

School of EECS
University of Central Florida

Orlando, FL, USA
{fliu, kienhua, xiefei}@cs.ucf.edu

Abstract

Moving monitoring query on moving objects is an
important type of query in location based services.
Existing solutions suffer from high communication cost.
In this paper, we propose a distributed solution to this
problem. Our approach employs two ways of
communications, on-demand access and broadcast
channel, to reduce communication cost. Two different
indexes are proposed and evaluated using simulations.
The performance results indicate that our solution
achieves from 30% to 60% savings in communications
when compared to MobiEyes [2].

1. Introduction

With the advance in wireless communication
technology and the popularity of positioning systems, a
variety of location based services have become
available to the public. Among them, spatial
monitoring of moving objects is fundamental to these
applications. In particular, if the spatial query is
anchored around a moving object (e.g., monitoring the
k nearest neighbors of a moving object), this query is
referred to as a moving query. In a more complex
environment where many objects are moving, we can
also have moving monitoring query over moving
objects. For instance, while walking in downtown, the
user can issue a query like “Find me the available
TAXIs within two miles.”

There are three main challenges in answering
moving queries over moving objects. First, the query
results must be updated constantly until the user
explicitly terminates the continuous query. Second, the
data points are moving constantly making location
updates very expensive. Third, the region of interest
(i.e., monitoring region) itself is also changing steadily
adding significantly more complexity. Most existing
solutions employ a centralized approach [5, 6, 7, 8],
where the focus is on designing efficient data structures
and algorithms. The limitations of this approach are
twofold. First, the server, with finite computation and

communication capability, may not be able to cope
with the high location-update frequency, desired in
some of the applications. Second, frequent location
update is not a natural fit for energy-constrained
mobile devices. It can quickly drain the mobile
batteries.

Addressing the aforementioned issues is not trivial
as a lower location-update rate would affect the quality
of the query results. Some recent techniques have
focused on distributed solutions [1, 2, 3, 4]. In a
distributed environment, mobile objects monitor the
query, and need to update the server only when the
query result changes. This approach requires much
fewer communications with the server. Nevertheless,
the server needs to supply relevant information, from
time to time, to support the query monitoring processes
on the mobile devices. When the number of mobile
objects increases or the object mobility increases, this
communication cost can become quite high [1, 2, 3, 4].
A more scalable solution is desirable.

In a wireless environment, there are two ways of
communications between the server and clients. One
way is on-demand access, in which client and server
send messages to each other whenever necessary.
Another way is using broadcast, where the server
periodically broadcasts data on an open wireless
channel. A client can tune into the channel to retrieve
the desired data.

In this paper, we leverage a hybrid of on-demand
data access and periodic broadcast to design a new
distributed solution for moving monitoring queries on
moving objects. The server sets aside a broadcast
channel to repeatedly broadcast query information.
The area of interest is mapped into grid cells. When a
mobile client moves from one cell into another cell, it
tunes into the broadcast channel to download
information on relevant queries instead of contacting
the server for the information. To improve the tuning
efficiency, we proposed two indexing schemes for the
broadcast technique. Our simulation results indicate
that the proposed solutions achieve from 30% to 60%
savings in communication cost when compared to

MobiEyes [2]. The reduction in communications also
significantly improves energy conservation on the
mobile devices.

The remainder of this paper is organized as
follows. We discuss some related work in Section 2 to
make the paper self-contained. In Section 3, we present
an overview of the proposed environment. We discuss
the index structures in Section 4, and the query
processing technique in Section 5. The simulation
study is presented in Section 6. Finally, we conclude
this paper in Section 7.

2. Related Work

In a wireless environment, mobile device’s limited
battery power is a critical concern. Because for a
mobile device, sending a message consumes more
energy than receiving a message, there are proposals
using broadcast channel to replace the on-demand data
request to save energy. In the existing proposals [10, 12,
13, 14, 15, 16], the focus is on how to design a good
index to facilitate data access. Since a mobile object
has the ability to switch between an active mode and a
doze mode, with an effective index, it can first tune
into the broadcast channel to get the predicted arrival
time of the desired data, then goes back to the doze
mode, and returns to the active mode to download the
data when the data comes.

Two performance metrics are typically used to
evaluate an index: tuning time and access latency
(time). The tuning time means the total time that a
mobile object needs to stay in the active mode to get
data, which includes the time spent on searching index
and downloading data. The access latency is referred to
the total time elapsed from the moment a mobile object
tuning into the broadcast channel to the moment the
mobile object actually obtaining the desired data. One
popular technique to reduce access latency is the (1, m)
interleaving technique [11], as shown in Fig. 1. In this
technique, a complete index is broadcast preceding
every 1/m fraction of the full broadcast cycle. By
duplicating the index for m times, the waiting time to
reach an index can be shortened, thus access latency is
reduced. Please note that this technique is orthogonal to
any proposed wireless index, and thus can be applied to
any index. In this paper, we also adopt this interleaving
technique.

Moving monitoring query over moving objects has
been studied extensively. One direction in this area is to
reduce server side workload by proposing efficient
server side data structure and index [5, 6, 7, 8]. Another
direction is to use distributed computing to reduce both
server side workload and communication cost. Gedik
and Liu introduced MobiEyes [2], which is capable of

answering moving range queries over moving objects.
Wu et al. [1] proposed a distributed solution to answer
moving kNN queries. Our recent works [3, 4] addressed
moving range and moving kNN queries in street
network environment. Moreover, in [9], the authors
used local-area wireless network to alleviate the high
communication cost problem. Trajcevski et al. [17]
worked on how to aggregate query results in a
distributed environment.

Figure 1. Layout for the Interleaving Tech.

To the best of our knowledge, our paper is the first
to combine broadcast channel and distributed
computing to answer moving monitoring query over
moving objects.

3. System Overview

In this section, we give an overview of our system
and the proposed query processing technique. The
system consists of a centralized server, a number of
stationary base stations and a large number of moving
objects. A moving object and the server communicate
with each other through base stations. We also assume
that the server can broadcast data on a wireless channel
accessible to all moving objects. Each moving object
has a GPS-like device to determine its location and has
some computing capability.

The geographical area of interest is a big
rectangular area, which is mapped into grid of cells of
an α × α square area. Every moving object has a
unique object ID. When a moving object reports its
location to the server, the message has the following
format <i, pi, vi, ti>, where i is the object ID, pi is the
object’s position, vi is the object’s velocity, and ti is the
time when the object’s position and velocity are
recorded.

In our system, moving range queries are issued by
moving objects. If a moving object has issued a
moving query, we call it a query object; otherwise, we
call it a data object. A moving range query is modeled
as a tuple <qid, oid, range>, where qid is the query’s
ID, oid is the ID of the associated query object, and
range defines the moving search area around the query
object. A query area can be a circle (specified by a
radius) or a rectangle (specified by width and length).

The result of a query is a set of identifiers of the
moving objects currently residing in the query’s region.
An example is given in Fig. 2.a, where the terrain is
divided into 16 cells, labeled according to the Hilbert
Curve order as C1, C2, …, C16. A query object is drawn
as a triangle, and the query region is the area covered
by the circle. Two data objects (drawn as the stars)
residing in that circle are included as the query result.

One important concept is the monitoring region of
a moving range query. Given a query object and its
current grid cell, the query region can overlap several
neighboring grid cells. The union of all grid cells this
query region may overlap as the query point moves
inside its current grid cell is referred to as the
monitoring region for the given query. In our
environment, all moving objects within the monitoring
region of a query must monitor their distance to the
query point and update the query result if they fall
within the query region (i.e., the distance is less than
the range field specified in the query). As an example,
the nine grid cells in the upper right corner of Fig. 2.a
comprise the monitoring region of the query. There are
two data objects in cells C7 and C11, respectively.
They are currently not part of the query result, but they
need to monitor their distance to the query object. We
note that the shape of a monitoring region is a
rectangular area if the query region is a rectangle.

 a b

Figure 2. Example of (a). moving query and
(b). monitoring region

If a monitoring region of a query overlaps with a

given grid cell, we say that this query intersects with
the cell. When an object moves around, it could exit its
current cell and enter a new cell. Whenever this
happens, the object needs to get a new set of queries
intersecting with the new cell to continue the
monitoring task. In Fig. 2.b, the monitoring regions of
three queries Q3, Q7, and Q9 are represented by the
three rectangular areas. The shaded cell in the center
intersects with all three of these queries. Any object
moving into this shaded cell should monitor these three
queries. Obviously, the costs associated with
obtaining these relevant queries from time to time
increases with the increases in the number of data
objects or the increases in the object mobility. We

discuss a broadcast technique to address this issue in
the following section.

4. Broadcast Index Design

In existing research works [1,2,3,4], when a
moving object moves to a new cell (or a new road
segment), the moving object contacts the server to
request a new set of queries. In this paper, we
broadcast query information on a wireless channel.
Instead of sending a message to the server, the moving
object just tunes into the wireless channel and
downloads the relevant queries. How to design an
effective index becomes critical. A good index should
enable short tuning time and incur little overhead on
access time. We introduce two indexes in this section.

Fig. 3 shows the overall structure of the first
proposed index, named as Grid Index (GI). This index
consists of two levels. The upper-level index is built on
top of grid cells, which can be any type of index
supporting a quick identification of grid cell given a
geographical location, for example, a quad-tree. In our
case, since the cell has a fixed pre-known size, no tree
index is needed. A simple mapping function is
sufficient to determine the desired cell.

Figure 3. Grid Index structure

The low-level index consists of many blocks, with

each block corresponding to a cell in the upper-level
index. Inside each block, we store the pointers to all the
queries intersecting with that corresponding cell. For
example, two blocks are shown in Fig. 3. The first
block stores all the pointers to the queries intersecting
with the cell C1, where P1, P2, etc. are the pointers to
query Q1, Q2, etc. At the end of each block, we put a
special tag to indicate the end of that block.

With the upper-level index, a moving object can
map its location to the corresponding grid cell.
Following the pointer in that cell, the object is directed
to the lower-level index, where the object can
download the pointers to the queries it should monitor.
When it sees the tag for the end of a block, it stops
downloading and goes to doze mode. It only returns to
active mode when the interested query data buckets
arrive.

One drawback of the above mentioned technique
is that when a mobile object moves from one cell to
another cell, it has to download a complete new set of
queries from the broadcast channel that it should
monitor in the new cell.

We observe that since the old cell and the new cell
are adjacent, there are some queries required to be
monitored by objects in both cells. When a mobile
object moves from the old cell to the new cell, only a
subset of the queries needs be downloaded. This
inspires us to design an index that can facilitate the
downloading of only the missing queries. Notice that a
mobile object can move into a new cell from four
directions: west, south, east, and north. We can
classify the queries whose monitoring regions intersect
with the new cell into different types, such that for a
specific direction from which the mobile object enters
the new cell only certain types of the queries need to be
retrieved. An algorithm that categorizes such queries
into nine types is given in Fig. 4.

Using the algorithm in Fig. 4, queries belonging to
type 1, 2, or 3 should be added for monitoring when an
object moves into this cell from the west side. Queries
belonging to type 3, 4, or 5 should be added for
monitoring when an object enters from the south side.
Similarly, when an object enters from the east side,
queries of type 5, 6, or 7 should be added; and queries
of type 7, 8, or 1 should be added when an object
enters from the north side.

Figure 4. Algorithm to determine query type

Fig. 5 illustrates the four scenarios when an object

moves into a new cell from four different directions. In
the diagram, Q1, Q2, …, and Q8 are examples of queries
which belong to type 1, type 2, …, and type 8,
respectively. As we can see, in the Fig. 5.a, when an

object moves from the lightly shaded cell (the old cell)
into the darkly shaded cell (the new cell), only queries
with type 1, 2, and 3 need to be added. Fig. 5.b, 5.c,
and 5.d are examples for the other three scenarios.

 (a) from the west (b) from the south

 (c) from the east (d) from the north
Figure 5. Scenarios when object changing cell

Figure 6. Direction Index structure

Based on the above observations, we propose a

three-level index structure, called Direction Index (DI).
Unlike the Grid Index, we include one more level to
represent the direction from which an object enters the
new cell, as shown in Fig. 6. We use letters “W”, “S”,
“E”, and “N” to represent the directions “West”,
“South”, “East”, and “North”, respectively. Inside a
“W” cell, there is a pointer pointing to the beginning of
the list of type 1 queries in the lower-level index. It is
similar for the “S” and “E” cell. For an “N” cell, it is a
little more complex. Since an object entering a new
cell from the north needs to get queries of type 7, 8 and
1, we provide two pointers in an “N” cell, with the first
one pointing to the beginning of type 1 queries, and the
second one pointing to the beginning of type 7 queries.

Besides the addition of the middle-level index,
there are two differences in the lower level. The first
difference is that there is no need to include pointers

Input: a cell c, all queries intersecting with this cell
Output: each query’s type for the cell c
For each query q

Get the monitoring region (MR) of q
If c is a west side boundary cell of MR

If c is the north-west corner cell of MR, q.type = 1
Else if c is the south-west corner cell of MR,

q.type = 3
Else, q.type = 2

Else if c is a south side boundary cell of MR
If c is the south-east corner cell of MR, q.type = 5
Else, q.type = 4

Else if c is an east side boundary cell of MR
If c is the north-east corner cell of MR, q.type = 7
Else, q.type = 6

Else if c is a north side boundary cell of MR
q.type = 8

Else // not a boundary cell
q.type = 9

for type 9 queries because they are already in the
object’s monitoring list when it is in the old cell. This
feature reduces the index size, and leads to better
access time and tuning time.

The second difference is that we need to sort the
pointers using the associated query types, and use a tag
to mark the end of types 1, 3, 5, and 7. This feature
enables an object to know when to stop downloading
the index packets. As an example in Fig. 6, if an object
is interested in downloading queries of types 1, 2, and
3, it first follows the pointer from the “W” cell and gets
to the start of type 1 queries. It then downloads the
queries until it recognizes the end tag of type 3 queries.
As another example, if an object enters cell Cn from the
east direction, since there is no link originated from the
“E” cell, the object knows that there is no query that
needs to be downloaded and it can go back to doze
mode.

5. Data Structures and Query Processing

In the proposed system, query processing is
distributed among moving objects and the server.
After a query is initiated, the server calculates the
monitoring region for that query, and notifies objects in
that monitoring region to monitor this query. In this
section, we first present the data structures on the
server and moving objects, and then discuss how the
system handles different activities.

5.1. Data Structures

There are three main data structures used by the

server. The Query Object Table stores the list of query
objects and their parameters including velocity,
position, and the time stamp when the velocity and
position are recorded. The Server Query Table, keeps
the list of moving queries. Each query contains the
query object’s ID, the specified range, and the
monitoring region. Query result is also saved in this
table. The third table is the Reverse Query Table,
where all queries intersecting with each cell are saved.
To facilitate the Direction Index, query’s type is also
stored in this table.

Each mobile object needs to maintain a Client
Query Table to keep track of all the queries it should
monitor. In this table, we store each query’s ID,
velocity, position, and the time when the velocity and
position were reported, and the specified range.

5.2 Installing Queries

When the server receives a new moving query

(with its associated moving object ID, position,

velocity, and the query’s search range), the server first
updates the Query Object Table and the Server Query
Table, then calculates the monitoring region for this
new query and saves the result into the Server Query
Table, and finally updates the Reverse Query Table.

After installing the query on the server, the server
forwards the query’s information to all moving objects.
Moving objects in the monitoring region save the
message and start to monitor their distance to the query
object. For objects outside of the query’s monitoring
region, they can simply ignore that message.

5.3. Handling Objects Changing Query Result

For all queries in its monitoring list, an object

needs to periodically predict the current positions of
the query objects using the saved velocity, time, and
position information in the Client Query Table. It then
calculates its distance to the query object to determine
if it is in the query’s range. If the result is different
from the previous result computed in the last time unit,
the object sends a message to request the server to
either adding it to the query result or removing it from
the query result. After receiving the message from the
moving object, the server locates the query from the
Server Query Table, and updates the result accordingly.

5.4. Handling Query Objects Changing
Velocities

Query objects need to report their new velocities to

the server if there are significant changes. Once the
server receives a new velocity, it broadcasts a message
with the updated velocity information to moving
objects in that query’s monitoring region. Upon
receiving the message, a moving object first updates its
Client Query Table, and then applies the updated
velocity to calculate the distance under monitoring.

5.5. Handling Objects Changing Grid Cells

When an object moves from one cell to another

cell, the object first needs to determine which queries
should not be monitored anymore. With the saved
query’s information, an object computes its minimum
distance to the query object given that the object itself
is moving within the new cell. If the minimum distance
is greater than the specified query range, that query is
dropped from the monitoring list. Also, the moving
object needs to get new queries to monitor. In existing
solutions, such as MobiEyes [2], moving objects
always send messages to the server to request new
queries. In our system, with the help of a broadcast
channel containing query information, moving objects

do not need to send messages to the server anymore.
Instead, they just tune into the broadcast channel and
download the necessary new queries. Two different
index methods are presented in Section 4. We study the
effectiveness of these two methods in Section 6.

When the moving object changing cell happens to
be a query object, it still needs to send a message to the
server. In response, the server performs the following
three tasks. First, it updates the tables on the server
and computes a new monitoring region for the query.
Second, the server broadcasts a message to all moving
objects residing in the old monitoring region to stop
monitoring this query. Finally, the server notifies all
moving objects in the new monitoring region to
monitor this query.

5.6. Communication between Server and
Objects

As we have discussed in Section 4, objects need to
switch to doze mode when they are waiting for query
data packets to arrive. However, objects have to stay
awake to receive broadcast messages from the server,
as suggested in Section 5.4 and 5.5. This presents a
dilemma. To solve this problem, we can make use of
synchronized time between the server and moving
objects [18, 19]. With synchronized time, the server
sends out messages to moving objects only at pre-
scheduled time slots, on the other hand, moving objects
just need to wake up periodically during doze mode at
these pre-scheduled time slots. If a moving object does
not receive anything from the server when it wakes up,
it goes back to sleep and wakes up again at the next
pre-scheduled wake up time.

6. Simulation Study

We implemented a simulator in Java to evaluate
the performance of the proposed system. The system in
the simulation consists of a base station, a broadcast
channel, and a number of moving objects. The
available bandwidth is set to 100K bps. The packet size
is varied from 64 bytes to 1024 bytes. In each packet,
two bytes are used for the packet ID, and two bytes are
allocated to a pointer. Coordinate is represented with
eight bytes. The size of a query is set to fifty bytes (to
hold query ID, position, velocity, time, and range). In
the broadcast channel, queries are ordered using the
Hilbert curve order. For each query, we first identify
the cell where the query’s query object is located in,
then calculate the Hilbert curve value for that cell, and
use that value for ordering.

Our simulation is set up as follows. The area of
interest is a square-shaped region of 64 × 64 square
miles. The whole region is divided into grid cells,
where each cell is a square with an area of α × α.
Moving objects are randomly generated and placed in
the region. The velocities are in the range of [0, 1] mile
per time unit (equivalent to [0, 60] mile per hour) with
random directions, following a Zipf distribution with a
deviation of 0.7. Among the moving objects, some are
randomly selected as query objects. The query regions
have circular shape with their radius randomly chosen
from the set {1, 2, 3, 4, 5} miles. At each time unit,
there are ten percent of moving objects changing their
velocities. The threshold for changing velocity is set as
0.1 mile per time unit. We run simulation for 10 times
with different seeds and compute the average as the
final simulation results. Each simulation lasts for 200
time units. The simulation was run on a Pentium 4
2.6GHz desktop with 2GB memory. In the experiments,
we vary different parameters to study the performance.
The parameters are listed in Table 1. If not otherwise
stated, the experiment takes the default values.

Table 1. Simulation parameters
Parameter Name Value Range (or Set) Default
Cell Size (mile) {1, 2, 4, 8, 16} 2
of Objects [2000, 10000] 10000
of Queries [200, 1000] 200
Packet Size (byte) {64,128,256,512, 1024} 64

In the remainder of this section, we first determine

a good cell size for the simulation study. We then
compare our system with MobiEyes on communication
cost. Finally, we compare the two proposed indexing
schemes in terms of access time and tuning time, and
discuss the effect of packet size on these two indexes.

6.1 On Selecting Cell Size (α)

One important parameter in our system is the cell

size α. An optimal α value should reduce the number of
messages as much as possible. To make sure that the
comparison on communication cost to MobiEyes is fair
(Section 6.2), we try to determine a good α value for
MobiEyes.

Fig. 7.a shows that as the value of α increases,
fewer messages are communicated. This can be
explained as follows. When the cell size is increased,
there are less messages resulting from objects changing
cells. We note that when the whole terrain consists of
only one cell, the number of messages drops to the
minimum. However, in this situation, all objects need
to monitor all queries in the system, which increases

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16

Alpha

of

 M
es

sa
ge

s
(in

 th
ou

.)

0

100

200

300

400

500

600

700

800

1 2 4 8 16

Alpha

of

 Q
ue

ri
es

 (i
n

th
ou

.)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16
Alpha

P
ro

du
ct

 (i
n

m
ill

.)

 (a) (b) (c)

Figure 7. Cell size selection. (a). # of messages vs. α, (b). # of queries monitored vs. α,
(c). Product of # of messages and # of queries monitored vs. α

the computation workload on the client side
considerably. To study this effect, we use the number
of queries monitored by each moving object as a metric
to approximate the level of computation workload. Fig.
7.b shows the average number of queries monitored by
each moving object with the increases in cell size. As
we can see, the curve increases sharply as expected.
To find a good α value, we compute the product of the
number of messages and the number of queries
monitored, and then plot the curve against the cell size
as shown in Fig. 7.c. This figure shows that the
product is the minimum when the cell size is the
smallest (equal to 1). Since the curve increases only
slightly when the cell size is set to 2, we select "α = 2"
as a good setting for MobiEyes. This value gives a
good balance between communication cost and
computation cost. We note that this α value is selected
to give MobiEyes the best performance in our
simulation study. It is not a universally good value.

6.2. On Communication Cost

In this section, we focus on the communication

cost of the system, which is measured in terms of the
number of messages communicated between the server
and moving objects. Our system is compared against
MobiEyes, where only the on-demand communication
mechanism is used between server and moving objects.
We study the sensitivity of our system on two
parameters: the number of moving objects and the
number of queries. The sensitivity analyses with
respect to other parameters have also been studied; but
we do not include the results here due to space limit.

In Fig. 8.a, we vary the number of moving objects
from 2000 to 10000, and measure the average number
of messages per time unit. The figure shows that our
system requires less than half the number of messages
required by MobiEyes, which equals about 60% in
savings in terms of communication cost. The reason is
that there are a lot of messages due to changing-cell
activities in MobiEyes. In contrast, in our system,

unless the object that changes cell is a query object, the
changing-cell activity does not entail extra message.

In Fig. 8.b, we study the effect of the number of
queries on communication cost. As we can see, when
the number of queries is increased from 200 to 1000,
more messages are needed. This is reasonable since
more queries mean more updates for query result
change (Section 5.3) and query object velocity change
(Section 5.4), which require more messages. Our
method saves about 60% of messages when the number
of queries is small, and still saves about 30% when the
number of queries is large.

6.3. Comparison of the Proposed Indexes

In this section, we compare the performance of the

Grid Index (GI) and Direction Index (DI) using access
time and tuning time as metrics. For the access time,
we also include a technique, called No Index, where no
index is used. The No Index technique only broadcasts
data packets, and clients have to download all the data
packets to determine which one to keep or discard.
Since the No Index technique does not use any index, it
has the minimal access time, and thus serves as a good
baseline for comparison. On the other hand, the tuning
time for the No Index technique is prohibitively long,
we do not include it when examining the tuning times
for the proposed indexes.

In Fig. 9.a, we vary the number of objects to
compare the two indexes and the No Index technique.
The figure shows that the access time increases linearly
when the number of objects increases. This is expected
because the access time is measured as an average per
time unit. When there are more moving objects, the
access time for all objects adds up linearly. The figure
also shows that both GI and DI need longer access time
compared to the No Index technique, but the difference
is not very big. The access times with GI and with DI
are about 1.5 times and 2 times that of the No Index
technique, respectively.

0

1000

2000

3000

4000

5000

6000

2000 4000 6000 8000 10000
of Objects

of

 M
es

sa
ge

s
/ T

im
e

Un
it

Proposed MobiEyes

0

2000

4000

6000

8000

10000

12000

200 400 600 800 1000

of Queries

of

 M
es

sa
ge

s
/ T

im
e

U
ni

t Proposed MobiEyes

 (a) Varying # of objects (b) Varying # of queries

Figure 8. Comparison with MobiEyes on communication cost.

0

100

200

300

400

500

600

700

2000 4000 6000 8000 10000
of Objects

A
cc

es
s

Ti
m

e
(in

 th
ou

. p
ac

ke
ts

) Grid Index
Direction Index
No Index

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2000 4000 6000 8000 10000

of Objects

Tu
ni

ng
 T

im
e

(in
 p

ac
ke

ts
)

 Grid Index
Direction Index

0

500

1000

1500

2000

2500

200 400 600 800 1000

of Queries

A
cc

es
s

Ti
m

e
(in

 th
ou

. p
ac

ke
ts

)

Grid Index

Direction Index

No Index

 (a) Access time vs. # of objects (b) Tuning time vs. # of objects (c) Access time vs. # of queries

0

2

4

6

8

10

12

14

16

18

200 400 600 800 1000
of Queries

Tu
ni

ng
 T

im
e

(in
 th

ou
. p

ac
ke

ts
) Grid Index

Direction Index

0

10

20

30

40

50

60

70

64 128 256 512 1024
Packet Size (byte)

A
cc

es
s

Ti
m

e
(M

B
)

Grid Index
Direction Index
No Index

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

64 128 256 512 1024

Packet Size (byte)
Tu

ni
ng

 T
im

e
(M

B
)

Grid Index
Direction Index

 (d) Tuning time vs. # of queries (e) Access time vs. packet size (f) Tuning time vs. packet size

Figure 9. Study on access time and tuning time for the proposed indexes.

As discussed in Section 4, the lower-level index in

the DI does not include type 9 queries, which leads to a
smaller lower-level index when compared to the GI.
However, because of the middle-level index, the total
size of the DI is still larger that the total size of the GI,
which explains why the DI needs longer access time.

We also study the tuning time of the two indexes
when varying the number of objects. As shown in Fig.
9.b, the tuning times of both indexing schemes increase
linearly with the increase of the number of objects,
with the GI experiences a steeper slope. This is due to
the fact that an object needs to download more queries
in GI.

In Fig. 9.c and 9.d, we study the effect of varying
the number of queries. Fig. 9.c shows the result on
access time. When the number of queries is still small,
GI is better than DI on access time. However, when the
number of queries increases, GI gradually loses its
advantage over DI. This can be explained as follows. In
one broadcast cycle, there are two components to be
broadcast: the index and the data, and the size of the
data component is much larger than the size of the

index. Although the size of the GI is smaller than the
size of the DI, when the number of queries increases,
the size of the data component also increases and
offsets the advantage brought in by the smaller index
size.

In Fig. 9.d, we can see the tuning time for the GI is
very sensitive to the number of queries, while the
tuning time for the DI only increases slowly with the
increases in the number of queries. This is because
when there are more queries, there are on average more
queries to be monitored for each cell. This translates
into more queries to be downloaded in GI when an
object switches cell. But for DI, this problem is not
very severe since only a subset of the monitoring
queries for a cell need to be downloaded, which
explains why the curve for DI only increases slowly.

For a system using broadcast channels, the size of
a packet is important to the performance. We study the
effect of packet size by varying the packet size from 64
bytes to 1024 bytes. The results are presented in Fig.
9.e and 9.f. In Fig. 9.e, it shows that the access times
for three indexes only change slightly when the packet

size varies. This is due to the fact that the access time is
dominated by the total length of one broadcast cycle,
and the effect of packet size on the total cycle length is
almost negligible.

In Fig. 9.f, it demonstrates that the tuning times for
both indexes increase quickly with the increase in
packet size. When the packet size is the smallest, the
system has the shortest tuning time. This is expected
due to the overhead associated with using larger
packets over smaller packets. One interesting finding is
that the DI requires shorter tuning time than the GI
when the packet size is small; but the tuning times for
the two indexes converge when the packet size
becomes larger. That is because more queries can be fit
in a larger packet; and when an object downloads one
packet, it downloads more queries than it actually
needs. This cancels the advantage of using DI.

In conclusion, when there are a large number of
queries and/or objects, DI is a better index than GI,
because DI requires much shorter tuning time, and only
demands slightly longer access time.

7. Conclusion

In this paper, we proposed to use periodic

broadcast to reduce the processing cost of moving
queries over moving objects. We designed two
indexing schemes for the broadcast environment. The
simulation results indicate that the proposed solutions
achieve 30% to 60% savings over MobiEyes. Our
future work includes extending this hybrid approach to
address more complex queries.

8. References

1. W. Wu, W. Guo, K. L. Tan: Distributed Processing of

Moving K-Nearest-Neighbor Query on Moving Objects.
In IEEE ICDE 2007.

2. B. Gedik and L. Liu: MobiEyes: Distributed Processing
of Continuously Moving Queries on Moving Objects in
a Mobile System. In EDBT 2004.

3. F. Liu, T.T. Do, K.A. Hua: Dynamic Range Query in
Spatial Network Environments. In DEXA 2006.

4. F. Liu, K.A. Hua, T.T. Do: A P2P Technique for
Continuous k-Nearest-Neighbor Query in Road
Networks. In DEXA 2007: 264-276

5. K. Mouratidis, M. Hadjieleftheriou, D. Papadias,
Conceptual Partitioning: An Efficient Method for
Continuous Nearest Neighbor Monitoring. In SIGMOD
2005.

6. K. Mouratidis, M.L. Yiu, D. Papadias, N. Mamoulis:
Continuous Nearest Neighbor Monitoring in Road
Networks. In VLDB 2006: 43-54.

7. H. Cho, C. Chung: An Efficient and Scalable Approach
to CNN Queries in a Road Network. In VLDB 2005:
865-876.

8. X. Yu, K. Q. Pu, and N. Koudas: Monitoring k-nearest
neighbor queries over moving objects. In ICDE 2005.

9. T.T. Do, F. Liu, K.A. Hua: When Mobile Objects'
Energy Is Not So Tight: A New Perspective on
Scalability Issues of Continuous Spatial Query Systems.
In DEXA 2007.

10. K. Prabhakara, K.A. Hua, J.H Oh: Multi-Level Multi-
Channel Air Cache Designs for Broadcasting in a
Mobile Environment. In ICDE 2000: 167-176

11. T. Imielinski, S. Viswanathan, B. R. Badrinath: Data on
Air: Organization and Access. IEEE TKDE 9(3): 353-
372 (1997)

12. B. Zheng, J. Xu, W.C. Lee, D.L. Lee: Energy-
Conserving Air Indexes for Nearest Neighbor Search. In
EDBT 2004: 48-66

13. C.H. Chu, H.P. Hung and M.S. Chen: Variant
Bandwidth Channel Allocation in the Data Broadcasting
Environment. In MDM 2007.

14. W.C. Lee, B. Zheng: DSI: A Fully Distributed Spatial
Index for Location-Based Wireless Broadcast Services.
In ICDCS 2005: 349-358

15. J. Xu, B. Zheng, W.C. Lee, D.L. Lee: Energy Efficient
Index for Querying Location-Dependent Data in Mobile
Broadcast Environments. In ICDE 2003.

16. J. Cai, T. Terada, T. Hara, S. Nishio: An Adaptive
Control Method in the Hybrid Wireless Broadcast
Environment. In MDM 2007.

17. G. Trajcevski, H. Ding, P. Scheuermann and I. Cruz:
BORA: Routing and Aggregation in Distributed Moving
Objects Databases. In MDM 2007.

18. H. Kopetz, W. Ochsenreiter: Clock Synchronization in
Distributed Real-Time Systems. IEEE Trans. Computers
36(8): 933-940 (1987).

19. B. Sterzbach: GPS-based Clock Synchronization in a
Mobile, Distributed Real-Time System. Real-Time
Systems 12(1): 63-75 (1997)

