
A Sampling-Based Approach to Optimizing Top-k Queries in Sensor Networks∗

Adam Silberstein Rebecca Braynard Carla Ellis Kamesh Munagala Jun Yang
Department of Computer Science, Duke University, Durham, NC 27708, USA

{adam,rebecca,carla,kamesh,junyang}@cs.duke.edu

Abstract

Wireless sensor networks generate a vast amount of data.
This data, however, must be sparingly extracted to conserve
energy, usually the most precious resource in battery-powered
sensors. When approximation is acceptable, a model-driven
approach to query processing is effective in saving energy by
avoiding contacting nodes whose values can be predicted or
are unlikely to be in the result set. To optimize queries such
as top-k, however, reasoning directly with models of joint prob-
ability distributions can be prohibitively expensive. Instead of
using models explicitly, we propose to use samples of past sen-
sor readings. Not only are such samples simple to maintain, but
they are also computationally efficient to use in query optimiza-
tion. With these samples, we can formulate the problem of op-
timizing approximate top-k queries under an energy constraint
as a linear program. We demonstrate the power and flexibility
of our sampling-based approach by developing a series of top-
k query planning algorithms with linear programming, which
are capable of efficiently producing plans with better perfor-
mance and novel features. We show that our approach is both
theoretically sound and practically effective on simulated and
real-world datasets.

1 Introduction
Technology advances in wireless sensor networks have opened
up new opportunities for collecting data from all sorts of envi-
ronments. The task of effectively and efficiently querying these
networks is an important and challenging problem. Because
sensors are often battery-powered, the lifetime of the network
is tied to the rate at which it consumes energy. In particular,
radio communication is a primary source of energy consump-
tion in sensor networks. Hence, minimizing communication in
query execution can save significant amounts of energy and help
prolong the lifetime of the network. This goal is complicated by
the topology of the network, which dictates how nodes are con-
tacted during querying.

The seminal work by Deshpande et al. [4] proposes model-
driven data acquisition, which suggests using models such as
multivariate Gaussians to predict sensor readings. Models let us

∗The authors are supported by NSF CAREER award IIS-0238386 and
grants CCR-0204367, CCR-0208920, and CNS-0540347.

avoid visiting nodes whose readings can be accurately predicted
or are unlikely to contribute to the final result. This approach
can dramatically reduce the energy consumed by the network,
but of course makes results approximate. Such approximation
is acceptable in many scenarios, where users are often not in-
terested in exact answers, and small errors usually have little
bearing on how the results are interpreted and used. At any
rate, sensors already need to cope with errors that are inevitable
due to the stochastic nature of measurements.

Much work is still needed to fully realize the potential of
model-driven data acquisition. As we will demonstrate, rea-
soning directly with models—even those as simple as inde-
pendent Gaussians—can be prohibitively expensive when plan-
ning complex queries. Energy cost models and network topol-
ogy further complicate this effort. Our goal is to develop a
powerful, flexible, and computationally tractable framework for
optimizing queries that considers energy constraints and net-
work topology, and realizes the benefits of the model-driven
approach while avoiding the complexity involved in reasoning
with models.

Top-k Sensor Query
In this paper we focus on optimizing top-k queries in sensor
networks. A top-k query returns the k nodes with the highest
sensor readings in the network. Top-k queries are both useful
in practice and theoretically interesting. They serve as a case
study to illustrate the challenges and difficulties in reasoning
with models of joint distributions, and demonstrate the advan-
tages of our proposed optimization framework.

Consider the simple example of ornithologists studying var-
ious bird species in a forest who do not know where birds are
most likely to be found at any given time. They place bird feed-
ers in various locations in the forest, each of which includes a
sensor that detects weight changes to count the number of times
birds land at the feeder. Before entering the forest, the ornithol-
ogists want to know the best locations to find birds. They run a
top-k query over the network to determine the feeders that have
attracted the most birds recently, and therefore are likely to be
good points of observation. Unpopular feeders attracting few
birds should be omitted from the query result. A top-k query
meets exactly this goal. Of course, in practice, the basic top-k
query may need to be more tailored to this setting, e.g., the re-
searchers might want to group nearby feeders into clusters for
purposes of observation, and obtain the top k clusters ordered

u

Query Station

Figure 1. Local filtering.
by average bird count. Nevertheless, the basic form of the query
remains top-k.

Optimization of top-k sensor queries is significantly more
complex than selection queries (e.g., return all readings greater
than x). Suppose we have a joint probability distribution over
all sensor readings. A cursory approach for selecting sensors
most likely in the top k is to choose the k sensors whose means
are highest. Unfortunately this approach does not work. Con-
sider an example where all readings hover near µ (with low
variance), except a group of, say, 3k sensors whose readings
are drawn from a distribution with mean µ′ < µ, but with high
enough variance such that each has a 1/3 probability of being
greater than µ. In this case, we expect most of the top k to come
from the group of 3k. However, the naive approach will choose
other sensors simply because their means are higher.

It is possible to calculate the probability that a reading is in
the top k directly from a model of the joint distribution. How-
ever, this task is computationally very expensive even for ex-
tremely simple cases, such as when each reading is drawn from
an independent Gaussian (see Section 3 for details). Direct
calculation involves summing over an exponential number of
cases, and there does not appear to be a close-form solution.
The key point here is that unlike in simple selection queries,
whether a reading is in the result of a top-k query depends on
the readings from other sensors.

Suppose we can efficiently estimate the likelihood of each
reading being in the top k. The problem of building an effi-
cient query plan still remains tricky and challenging. A seem-
ingly reasonable approach is to acquire readings from the most
promising sensors, and send all of their readings up to the query
station. This strategy is still far from optimal. Consider the sce-
nario depicted in Figure 1. Suppose all readings in the dotted
region have an equal likelihood of ranking in the top k, yet no
more than a fifth can actually do so. It is suboptimal to send any
more than 2 out of the 10 readings to the query station. This
form of negative correlation is not uncommon in real-world sit-
uations. Consider our ornithology example. Certain birds are
known to be increasingly territorial as the quality of food re-
sources in an area increases, and it becomes more worth the
effort to defend that area. Such a trend in our example would
result in certain parts of the forest having less bird traffic. In
these areas, although some feeders, chosen arbitrarily, might
still be heavily frequented by the few birds there, the other feed-
ers would be largely unused. In this situation, the best strategy
is to obtain readings from all sensors, pass them all to the root
of the subtree spanning this area, and select and pass on only
the highest readings. We call this technique local filtering. The
approach of acquiring readings and passing each of them all the

(9, 4, 2, 0)

(8, 6)

(7, 3)

1(9, 8, 7, 6, 4)
?

Figure 2. Constructing a proof.
way to the root falters here: It would have a hard time choosing
which readings to acquire, and end up passing up many read-
ings (mostly unneeded) in order to increase the chance that one
of them is in the actual solution. The challenge here is to build
query plans that use local filtering effectively.

Finally, we face the issue of assessing the result of an ap-
proximate answer using a model-based approach. How does
the user know if the result is acceptable? The typical approach
is to provide a confidence measure, but that assumes the model
(built on past observations) accurately reflects current condi-
tions. We propose approximate top-k queries with “proofs,”
which are a stronger guarantee that does not assume the accu-
racy of the model. The idea is to acquire and pass up some
additional readings for the purpose of proving that others are
in the top k. As an example, consider the sensor in Figure 2,
which has local reading of value 1 and receives three lists of top
values from child subtrees. Suppose that this sensor is charged
with the task of returning five top values to its parent. Among
these five values, the first four can be proven because other child
subtrees have returned smaller values. However, the fifth value,
4, cannot be proven because the middle subtree could possibly
contain a value between 4 and 6. Note that certain values re-
turned by the subtrees, such as 3, will not make it into the top
k, but are useful in constructing proofs. We expect the cost of
proof-carrying plans to be higher than those without proofs, be-
cause every reading must be acquired—any sensor not visited
could potentially produce the highest value. How efficient can
we make proof-carrying plans? And how can we do any bet-
ter than a simple plan that always returns the exact answer by
having each sensor return the top k values in its subtree?
Contributions
We have briefly motivated a host of challenges in optimizing
top-k query plans in sensor networks: complexity in using mod-
els directly, complex plans integrating local filtering and proofs,
energy-constrained and topology-aware optimization. The goal
of our work is to develop an optimization framework that is ef-
ficient in exploiting past behavior, powerful enough to produce
plans with local filtering and proofs, and flexible enough to in-
corporate energy and topology considerations.
• We propose keeping samples of past sensor readings rather

than maintaining models explicitly. Such samples are not
only simple to maintain, since no model is explicitly con-
structed, but are also computationally efficient to use in
query optimization. We explain how to exploit the predictive
power of samples while avoiding the complexity of main-
taining and reasoning with models explicitly. We show that
the sampling-based approach is theoretically sound.

• We develop a query optimization framework for our

sampling-based approach using linear programming. Lin-
ear programming complements sampling well and is able to
encode energy constraints, topology, and complex plan fea-
tures such as local filtering and proofs. Encoding energy
constraints gives us a powerful ability. We can apply an en-
ergy budget to the query plan building process. The result-
ing plan is designed to achieve the highest possible accuracy
while exhausting no more energy than allocated it.

• We apply the above concepts and techniques to the top-k
problem in our PROSPECTOR class of query planning al-
gorithms, so named because query plans, like prospectors
(e.g., for gold), must carefully choose where to dig given
limited resources. We evaluate these algorithms using simu-
lated and real-world data. We show that approximate query
plans obtained using PROSPECTORs achieve good approx-
imation results given energy constraints. We confirm the
savings in using approximate query plans over exact query
plans. Interestingly, by extending the PROSPECTOR algo-
rithm for generating proof-carrying approximate plans, we
obtain a two-phase exact top-k algorithm that outperforms
traditional, non-model-driven exact algorithms.

2 Preliminaries
A sensor network consists of n nodes u1, . . . , un, each mea-
suring a numeric value. We assume the network is organized
as a spanning tree T rooted at a root node. T is initially con-
structed and modified over time as needed to cope with topology
changes using techniques such as those in [5]. Let parent(ui)

denote the parent of node ui in T , and children(ui) denote the
set of ui’s children. Let ei denote the edge (communication
link) between ui and parent(ui). A top-k query (1 ≤ k ≤ n)
returns the k largest values measured by the nodes. Follow-
ing the convention in TAG [10], we assume that the query is
pushed down into the network from the root node in a distribu-
tion phase, and the result values are routed up from children to
parents and eventually to the root in a collection phase.

The primary source of energy consumption in a sensor net-
work is radio communication. Therefore, we use the total
amount of energy spent on communication as the primary yard-
stick for measuring the cost of a query. In a collection phase,
messages are unicast from children to their parents. The total
amount of energy spent in sending and receiving a unicast mes-
sage with x bytes of content is given by σ + δx, where σ and
δ represent the per-message and per-byte costs, respectively. In
the table below, we show how to calculate a typical value for δ

from the specification of MICA2 motes [2]:

sending cost (s) 36 mJ/sec
receiving cost (r) 14.4 mJ/sec

byte rate (b) 2500 bytes/sec
per-byte cost (δ = (s + r)/b) 0.02016 mJ/byte

The per-message cost σ stems from the “handshake” between
the sender and the receiver required by a reliable communica-
tion protocol, and the additional message header preceding the
actual message content. Our use of a reliable protocol comes
into play when we deal with failure in Section 4.4. For MICA2

motes, a typical value for σ in our query scenario is .645 mJ,
which is high compared with δ. In other words, merely com-
municating between nodes, regardless of how few values are
transmitted, incurs a significant cost. This observation moti-
vates approximation algorithms that reduce energy consump-
tion by visiting only a subset of the nodes; on the other hand,
such algorithms necessarily give up the exactness of results be-
cause any node not visited could produce a value in the actual
top k.

We differentiate between an initial distribution phase and
subsequent distribution phases. In the initial distribution phase,
a new query plan is installed into the network. In this case,
each node sends a subplan to each of its children using a uni-
cast message, whose energy cost can be estimated as discussed
previously. Each node stores its part of the plan (i.e., how many
values it expects from each of its children and how many val-
ues need to be returned to its parent). Once the plan has been
stored, subsequent distribution phases can use broadcast mes-
sages to trigger query execution. A “re-execute” message with
an empty body is recursively broadcast to subtrees where some
values are expected. Thus, the total energy spent in a subse-
quent distribution phase is much less than a collection phase
and the initial distribution phase. To simplify discussion, we
focus only on the collection phase, and omit the details of han-
dling the energy costs of the distribution phases. Nonetheless,
our experimental results do account for the costs of distribution
phases.
Naive Exact Top-k Algorithms We begin with two naive al-
gorithms that guarantee exact answers to top-k queries without
using any predictive models. These algorithms provide a trade-
off between the number of messages used and the number of
values transmitted.

The first algorithm, NAIVE-k, computes the answer bottom-
up in one pass over the network. Each node simply collects
the top k values from each of its children, computes the top k

among all such values and its own, and passes them on to its
parent. If the subtree rooted at a node has fewer than k nodes,
then all values from the subtree are passed up to the parent.
This algorithm uses the minimum possible number of messages,
since every node must be visited in order to guarantee an exact
answer. The sizes of the messages used by NAIVE-k, however,
are quite large. A node with fan-out f receives (fk) values from
its children, but at least (f − 1)k of them will not be in the final
result, representing a significant waste of bandwidth.

The second algorithm, NAIVE-1, computes the answer in a
pipelined fashion, where each node requests only one value at
a time from its children. More precisely, each node maintains a
heap containing its own value and the last value requested from
each of its children. When the node receives from its parent a re-
quest for a value, the node first ensures that the heap has a value
from each of its children (unless the child has no more values to
return); if not, a new value is requested from that child. Then,
the largest value in the heap is removed and returned to the par-
ent. Intuitively, NAIVE-1 attempts to minimize the number of
values transmitted. A node with fan-out f receives no more than
f + k′ − 1 values from its children, where k′ ≤ k is the num-

ber of values requested from the node by its parent. Since each
value is transmitted in a separate message, however, NAIVE-1
requires a large number of messages, and the overhead incurred
is prohibitive.
Approximate Top-k Query Plans An approximate top-k
query plan allows for a continuous tradeoff between the accu-
racy of the result and the cost of querying. Formally, a single-
pass approximate plan is an assignment of “bandwidth” b(ei)

to each edge ei in the network. This bandwidth represents the
number of values that should be transmitted on ei from ui to
parent(ui) in a collection phase. Upon receiving the lists of
values from its children, node ui sorts these values along with
its own, and sends the top b(ei) values up to its parent. Nat-
urally, we require that 0 ≤ b(ei) ≤ 1 +

P

nj∈children(ni)
b(ej).

The answer to the query consists of those values returned by the
root node.

Given a limit on the total amount of energy the plan is al-
lowed to spend on communication, it is conceivable that the
answer produced by the plan does not exactly contain the top
k values in the network. The goal is to find a plan that mini-
mizes the expected number of top k values not returned. The
expectation is taken over the joint distribution of all values in
the network.

3 Sampling-Based Query Planning
As mentioned in Section 1, reasoning directly with models of
sensor values can be computationally intractable. Recall that
we cannot order nodes’ likelihood of ranking in the top-k sim-
ply by sorting them by expected value. We must calculate the
probability that each node ranks anywhere in the top-k. To il-
lustrate the complexity of this task, consider the problem of cal-
culating the probability that node un has the k-th ranked value
in the network. This occurs in

`

n−1
k−1

´

disjoint cases, each with
a different subset of k − 1 nodes whose values rank higher than
that of un. For simplicity, assume that the value at ui is drawn
independently from a distribution with probability density func-
tion Pi(x) and cumulative distribution function Di(x). The fol-
lowing integral computes the probability that un’s value ranks
lower than those from nodes in a set U but higher than all others:

Z

Pn(x)
Y

ui∈U

(1 − Di(x))
Y

uj 6∈U∪{un}

Dj(x) dx.

Even for the simple, common case where all distributions are
normal, the above integral has no closed-form solution and is
expensive to evaluate numerically. Moreover, there are

`n−1
k−1

´

such integrals for each of k ranks. The calculations must be
repeated for each node. If we were to drop the independence
assumption, or try to reason about more complex scenarios such
as local filtering, the complexity would get even more out of
hand.

Our solution is to base optimization on a set of samples
from the joint distribution of all values, where each sample is
an assignment of value for each node in the network. These
samples can be easily generated at runtime using the “explo-
ration/exploitation” framework from machine learning litera-
ture [9]. At randomly chosen timesteps, we spend more energy

to collect all values in the network and use them as a sample.
The most recent samples are maintained and used in optimiza-
tion. This approach naturally adapts to changes in the joint dis-
tribution over time. Maintaining a model encoded in samples,
then, is extremely simple to maintain, since no model is ex-
plicitly built. Alternatively, if a model of the joint distribution
is already available, we can use it to generate random samples
directly.

We translate each sample from a set of sensor values into
a Boolean vector, whose i-th component is 1 if the value from
node ui is among the top k in this sample, and 0 otherwise. The
vectors from a set of samples form a Boolean matrix S, where
S[s, i] = 1 if and only if ui produces one of the top k values
in the s-th sample. The optimization goal can be restated as
follows for sampling-based query planning: Given a network-
wide limit for energy consumption, find an approximate top-k
query plan that minimizes, over all samples, the total number of
top-k values (i.e., 1’s in S) that fail to be returned by the plan.

Note that this approach can be easily generalized to queries
that return subsets of all sensor values, e.g., selection and quan-
tile queries. In the general case, we would set S[s, i] = 1 if ui

contributes to the answer in s-th sample, and 0 otherwise. The
optimization goal would still be to minimize the total number
of 1’s in S missed by the plan.

The intuition behind sampling-based query planning is that
given a large enough set of samples, patterns of nodes contribut-
ing to answers will emerge. Such patterns include obvious ones
where certain nodes appear most often in answers, as well as
more subtle ones where a subtree may consistently contain the
same number of answer values, even though in each sample they
may come from different nodes in the subtree. Looking at the
samples, we can optimize an approximate plan by encouraging
acquisition of values from nodes and subtrees that contribute
most to the answers.

We call our sampling-based query planning algorithms
PROSPECTORs. To warm up, we first present a simple
PROSPECTOR that uses a greedy strategy. Then, in the remain-
der of this section, we provide the theoretical foundation for
our sampling-based approach. More sophisticated PROSPEC-
TORs that consider network topology, local filtering, and proofs
are presented in Sections 4.
PROSPECTORGREEDY This simple algorithm constructs a
query plan incrementally by greedily adding values to be ob-
tained, one at a time. The intuition is to give priority to nodes
who are contributing the most to the top k values over all sam-
ples. As long as the energy cost of the plan constructed so far
does not exceed the prescribed budget, the algorithm greedily
picks the node ui (among all nodes not visited by the current
plan) for which

P

s S[s, i] is the largest, and expands the cur-
rent plan to obtain the value from ui.

3.1 Theoretical Foundation of Sampling
As discussed, the objective function of our optimization is to
minimize the expected “error” over the entire joint distribution
of all sensor values. The size of this distribution is exponential
in the number of values. The essence of the sampling-based ap-

proach is to avoid enumerating the entire joint distribution, and
instead to approximate the joint distribution by drawing a num-
ber of samples over which optimization is carried out. Shmoys
and Swamy [13] show that this approach works for solving a
large class of two-stage stochastic optimization problems with
recourse by solving a linear relaxation of the integer program
on the sample and converting the resulting solution into an in-
teger one. For such problems, only a polynomial number of
samples are needed to achieve an arbitrary degree of accuracy
in the solution of the linear relaxation.

STOCHASTIC-STEINER-TREE is an example of such a two-
stage problem that arises in demand forecasting applications.
The goal is to purchase a set of links to connect a set of de-
mands to a central hub with as little cost as possible. The first
stage only knows of possible demand scenarios, while actual
demand is given in the second. We can show that a simplified
top-k problem is a special case of this problem. Details on how
to reduce the general top-k problem to a two-stage stochastic
optimization problem are omitted here due to lack of space, but
are available in the full version of this paper [15].

4 Linear Programming Formulations
In this section we describe how to optimize approximate top-k
queries over samples using linear programming. We present a
series of PROSPECTOR algorithms, which use linear programs
of increasing complexity to obtain plans with better perfor-
mance or additional features. PROSPECTORLP−LF exploits
the topology of the sensor network in optimization, but does
not consider plans with local filtering. PROSPECTORLP+LF
is not only topology-aware, but also considers local filter-
ing. PROSPECTORPROOF further adds proofs to plans, and we
show how to extend it to a two-phase exact top-k algorithm,
PROSPECTOREXACT, which can outperform naive exact algo-
rithms described in Section 2.

The PROSPECTORs also demonstrate our ability to use lin-
ear programming to constrain query processing to a set energy
limit. The algorithms construct plans to return the highest ac-
curacy given that limit.

For the discussion below, we introduce some additional no-
tations. Let anc(ui) denote the set of ancestors of node ui and
itself, and desc(ui) denote set of descendants of ui and itself.
Let the cost of sending a message with x values along edge ei

be σi + δix. Recall that typical values for σi and δi are given
in Section 2 (δi needs to be scaled by the number of bytes per
value). The algorithms are given a cost limit of C.
4.1 PROSPECTORLP−LF
PROSPECTORLP−LF, our first formulation of PROSPECTOR
using linear programming, considers the network topology in
optimization. Unlike PROSPECTORGREEDY, this algorithm en-
courages plans to obtain promising values clustered under the
same subtree, because these values can be transmitted together
in one message from the subtree to the root, without incurring
separate per-message costs. On the other hand, like PROSPEC-
TORGREEDY, this algorithm does not support local filtering;
any value that it chooses to obtain will travel all the way to the
root.

We use one integer variable x(ui) for each node ui; a value
of 1 means that the value at ui is chosen by the plan and will be
transmitted to the root, while a value of 0 means the plan will
ignore this value. We also use an integer variable a(ei) for each
edge ei to indicate whether ei is ever used for communication
by the plan. The linear program is shown below, followed by
explanation:

Minimize
X

i

“

(1 − x(ui))
X

s

S[s, i]
”

, subject to:(1)

x(ui) ≤ a(ej) ∀i, j s.t. uj ∈ anc(ui);(2)
P

i

`

a(ei) · σi

´

+
P

i

`

x(ui) ·
P

uj∈anc(ui)
δj

´

≤ C;(3)

0 ≤ x(ui), a(ei) ≤ 1 ∀i.(4)

Line (1) captures the optimization goal of minimizing the to-
tal number of top-k values missed by the plan over all samples.
The term

P

s S[s, i] counts the number of times that ui’s value
is in the top k.

Line (2) captures the constraint that if the plan chooses the
value at ui, then all edges above ui are used for communication
(to transmit this value).

Line (3) upper-bounds the total cost by the prescribed bud-
get. The first summation calculates the total per-message costs
incurred on all edges used by the plan. The second summa-
tion calculates the total cost of sending the chosen values to the
root, ignoring any per-message overhead. If ui is chosen, then
the plan pays the per-value cost on all edges above ui, totaling
P

uj∈anc(ui)
δj .

Line (4) captures the integrality constraints on variables
x(ui) and a(ei). Strictly speaking, these constraints should be
expressed as x(ui), a(ei) ∈ {0, 1}. Since most solvers work
on linear constraints, we replace these constraints with linear
ones on Line (4). The resulting program can then be efficiently
solved by a linear solver such as the simplex method. The so-
lution produced by the solver may have some of the x(ui) and
a(ei) variables set to fractional values, though it is unlikely in
practice. In the event that a fractional solution happens, we can
construct a feasible integer solution from it by setting x(ui) = 1

if x(ui) ≥ 0.5 in the fractional solution, and setting x(ui) = 0

otherwise; variables a(ei) are handled in the same way. It can
be easily shown that the resulting integer solution increases the
objective function value by at most a factor of 2, and costs at
most 2C. We omit the detailed proof here. In practice, we find
that the linear relaxation performs much better than what the
theoretical bound guarantees.1

Finally, note that the only place where we use the Boolean
sample matrix S is in calculating the total number of 1’s in a col-
umn. Therefore, instead of storing the entire S, we can simply
maintain a vector of column sums (except in situations where

1We also note that PROSPECTORLP−LF with integrality constraints
might be solvable to an arbitrarily good approximation factor by dynamic
programming. In particular, our NP-hardness proof for this problem re-
duces from the KNAPSACK problem for which such a guarantee is achiev-
able. However, the other algorithms in this section may not be amenable to
dynamic programming; therefore, we use the linear programming frame-
work, which is generally applicable to all our algorithms.

we want to maintain a “window” of recent samples and expire
old ones from the window). The same optimization also applies
to PROSPECTORGREEDY.

4.2 PROSPECTORLP+LF
In this version of PROSPECTOR, we consider approximate plans
with local filtering. We use two integer variables for every
edge in the network: b(ei) denotes the “bandwidth” assigned
by the plan to edge ei, representing the maximum number of
values that can be transmitted along that edge; a(ei) indicates
whether ei is ever used for communication by the plan, just as in
PROSPECTORLP−LF. The assignment of bandwidth to edges
completely specifies an approximate top-k query plan, as de-
scribed in Section 2.

Local filtering will take place when b(ei) <
P

uj∈children(ui)
b(ej), because in this case ui receives

more values than it sends up. For example, in Figure 1,
PROSPECTORLP+LF may allocate a bandwidth of 3 to the
edge out of node u, even though this node is going to receive
9 values from its children. As motivated in Section 1, local
filtering can greatly improve the performance of a plan by
allowing it to examine more values and make more informed
decisions at runtime on which values to pass on. The challenge
to query optimization is how to determine the appropriate
amount of filtering, i.e., what amount of bandwidth to assign
to each edge. We will now address this challenge with
PROSPECTORLP+LF.

To capture local filtering in a linear program, we need some
more integer variables. For the s-th sample, let ones(s) denote
the set of nodes that provide the top k values for this sample.
In other words, ui ∈ ones(s) if and only if S[s, i] = 1. We use
an integer variable xs(ui) for each such entry. Setting xs(ui)

to 1 means the plan returns the value at ui when executed on
the s-th sample; otherwise, setting xs(ui) to 0 means the plan
misses the value at ui (which should have been returned) for the
s-th sample. The linear program is shown below, followed by
explanation:

Minimize
X

s

X

ui∈ones(s)

(1 − xs(ui)), subject to:(5)

P

i

`

a(ei)σi + b(ei)δi

´

≤ C;(6)
xs(ui) ≤ a(ej)(7)

∀s, i, j s.t. ui ∈ ones(s) ∩ desc(uj);
P

ui∈ones(s)∩desc(uj)xs(ui) ≤ b(ej) ∀s, j;(8)

0 ≤ a(ei), xs(ui) ≤ 1 ∀s, i.(9)

Line (5) specifies the optimization objective: to minimize
the total number of misses over all samples.

Line (6) constraints the total cost of the plan.
Line (7) encodes the constraint on when an edge needs

to be used for communication, analogous to Line (2) of
PROSPECTORLP−LF. Here, the constraint is slightly more
complicated. Intuitively, if the plan returns the value of ui for
the s-th sample (i.e., xs(ui) = 1), then the plan must use each
edge ej above ui for communication (i.e., a(ej) = 1).

Line (8) encodes the bandwidth constraint, which captures
the fact that the bandwidth allocated to an edge ej necessarily
limits the number of top k values that can be returned from the
subtree rooted at uj , since all such values must go through ej .

Line (9) captures the integrality constraints on variables
a(ei) and xs(ui) with linear relaxation, analogous to Line (4)
in PROSPECTORLP−LF.

The biggest difference between PROSPECTORLP+LF and
PROSPECTORLP−LF is that the former uses one variable
xs(ui) for each ′′1′′ entry in the Boolean sample matrix S,
while the latter uses one variable x(ui) for each column of S.
The additional variables allow PROSPECTORLP+LF to capture
plans that make finer-grained decisions using local filtering. In
contrast, having only one variable x(ui) for each node ui im-
plies that the plan must return ui’s value either for all samples
or not at all; in other words, the plan cannot make a run-time
decision on whether to pass on ui’s value based on local filter-
ing.

4.3 PROSPECTORPROOF

The previous approximate algorithms are unable to guarantee
the accuracy of their results unless we assume that the model
or past samples indeed reflect the current behavior of sensor
values. As motivated in Section 1, if a stronger guarantee is de-
sired, we can augment an approximate top-k query plan with a
“proof” constructed in a bottom-up fashion by passing up addi-
tional non-top-k values necessary for proving the correctness of
top-k values returned. We now present PROSPECTORPROOF,
an algorithm capable of generating such plans. We begin by
describing a proof-carrying top-k query plan in more detail.

As in a regular top-k query plan, each edge in the network
is allocated a bandwidth b(ei) specifying the maximum number
of values that node ui can pass up. Additionally, in a proof-
carrying plan, ui will ensure that among the b(ei) values that it
returns, a subset of size l indeed consists of the top l values in
the subtree rooted at ui. We say that these l values are proven
by ui. During the execution of a proof-carrying plan, each node
ui proceeds in the following sequence of steps:

1. Receive values from child subtrees. From each child uj

of ui, ui receives b(ej) values, among which the top kj

values are proven by uj .
2. Sort. Node ui sorts all values received from its children as

well as its own value, and determines the top b(ei) values
to be passed up.

3. Prove values. Consider each value y among the top b(ei)

values to be passed up from ui. This value is proven by ui

if and only if for every child uj of ui, one of the following
three conditions holds:

(c.1) y comes from uj and is proven by uj .
(c.2) There is a value y′ proven by uj , and y′ < y.
(c.3) b(ej) = |desc(uj)|, i.e., uj passes up all values at or

below it in the network.
From the above, it is not difficult to see that if y is proven,
then all values greater than y in the top b(ei) are proven as
well.

4. Return to parent. The top b(ei) values are passed up to
parent(ui). The number of values proven by ui is also
passed up if this number is less than b(ei); otherwise, all
b(ei) values are assumed to be proven. This optimization
saves the cost of transmitting this number from small sub-
trees that will likely prove all values they pass up, and
completely eliminates the need for leaf nodes to transmit
such numbers.

At the end of the execution, the root node returns a set of val-
ues as the answer, and additionally proves that the top k′ among
them are indeed the top k′ values in the entire network. The rest
of the values returned by the root may or may not be in the ac-
tual top k, but they may still be useful to the user. Furthermore,
they can help us construct a more efficient “mop-up” plan to re-
trieve the missing actual top k values, as we show later in this
section.

The following lemma is immediate from the description of a
proof-carrying plan:
Lemma 1 The set of l values proven by a node in a proof-
carrying top-k query plan are indeed the top l values in the
subtree rooted at this node.

We now describe how to formulate a linear program to opti-
mize the bandwidth allocation for a proof-carrying query plan,
so that in expectation, the largest number of top k values can be
proven by the root. As before, we have the Boolean sample ma-
trix S. In addition, however, we need to keep the actual values
in samples. Again, ones(s) denotes the set of nodes with the top
k values in the s-th sample. We also denote by smallers(ui, uj)

the set of nodes in the subtree rooted at uj whose values are
smaller than the value at ui in the s-th sample.

As in PROSPECTORLP+LF, we use a variable b(ei) for ev-
ery edge ei in the network. However, we do not need a vari-
able a(ei) indicating whether an edge is used by the plan. The
reason is that a proof-carrying plan must use all edges in the
network, or else we cannot even prove the top 1 value since any
node not visited by the plan may actually have the largest value.
We use an integer variable xs(ui, uj), where ui ∈ desc(uj),
which indicates whether the value of ui is proven by uj when
the plan runs on the s-th sample. Let r denote the root node,
and sibling(ui, uj), where ui ∈ desc(uj), denote the set of
uj ’s children who are not ui’s ancestors. The linear program
is shown below:

Maximize
X

s

X

ui∈ones(s)

xs(ui, r), subject to:(10)

P

i

`

σi + b(ei)δi

´

≤ C;(11)
P

ui∈desc(uj)
xs(ui, uj) ≤ b(ej) ∀s, j;(12)

xs(ui, parent(uj)) ≤ xs(ui, uj)(13)
∀s, i, j s.t. ui ∈ desc(uj) ∧ uj 6= r;

xs(ui, uj) ≤
P

v∈smallers(ui,uk)xs(v, uk)(14)

∀s, i, j, k s.t. ui ∈ desc(uj) ∧ uk ∈ sibling(ui, uj)

∧ smallers(ui, uk) 6= ∅;

0 ≤ xs(ui, uj) ≤ 1 ∀s, i, j s.t. ui ∈ desc(uj).(15)

Line (10) specifies the optimization objective of maximizing
the expected number of top k values proven by the root, over all
samples.

Line (11) constrains the total amount of energy spent by
the plan. The cost of sending the number of proven values is
small and can be incorporated by conservatively reserving a
fixed amount of energy for each non-leaf edge. We omit the
details here.

Line (12) encodes the bandwidth constraint, analogous to
Line (8) of PROSPECTORLP+LF.

Line (13) encodes the constraint that for any value to be
proven by a node, that value must be proven by all nodes be-
tween this node and the node who owns the value.

Line (14) encodes the proof constraint. Namely, for a value
y (from ui) to be proven by a node uj , every child uk of uj (ex-
cept the child from which y comes) must prove some smaller
value. The only exception to this constraint is when the child uk

actually returns all values in the subtree rooted at uk (in which
case all these values are proven by uk), and none of these values
is smaller than y. This exception is captured by the condition
smallers(ui, uk) 6= ∅, which prevents the constraint to be gen-
erated in this case.

Line (15) captures the integrality constraints on xs(ui, uj)

variables with linear relaxation (as previously discussed for
Line (4) of PROSPECTORLP−LF).

Compared with PROSPECTORLP+LF, where the number
of xs(ui) variables used is on the order of the product of the
number of samples and the size of the network, PROSPEC-
TORPROOF uses one variable xs(ui, uj) for each sample and
descendant-ancestor node pair, thereby increasing the number
of variables in the linear program by another factor equal to
the height of the network. Nevertheless, the overall size of
the linear program remains polynomially bounded by the prob-
lem size. In our experiments, we have never run into situations
where our linear solver takes too much time on realistic problem
sizes.
From PROSPECTORPROOF to PROSPECTOREXACT
PROSPECTORPROOF also serves as the first phase in the two-
phase algorithm, PROSPECTOREXACT, which always returns
the exact top-k solution. The details of PROSPECTOREXACT
are available in the full version of this paper [15]. The basic
strategy notes that PROSPECTORPROOF provides a lower
bound on the k-th value and proofs that can be used to gauge
the potential additional contributions from subtrees in the
network. This feedback guides a second “mop-up” phase that
retrieves missing (or unproven) top-k values. The hope is that
the first phase will produce a reasonable answer, so the second
phase will be cheap or even unnecessary. In Section 5, we
show that PROSPECTOREXACT performs considerably better
than NAIVE-k in experiments.

4.4 Other Features
Coping with Failures For simplicity, we have described the
PROSPECTORs assuming a static network topology where all
nodes and edges are always available. We now present tech-
niques for coping with failures. We assume that permanent

node failure is possible, but rare. As mentioned in Section 2,
the spanning tree T can change over time as necessary. If a
node is non-functioning for an extended period of time, T ad-
justs to exclude the node. The plan is then re-optimized based
on the new topology.

On the other hand, we expect transient failures to happen fre-
quently. Recomputing a new topology every time is expensive
and ineffective, since the latest topology will always lag behind
the latest failures. Instead, we can incorporate failures into opti-
mization. Recall that we use a reliable communication protocol;
in the event that a message is not delivered, we attempt to route
it around the failure to the intended destination or its parent (re-
quiring some additional state be maintained at the nodes). We
collect statistics on the frequency with which each edge fails, as
well as the cost of re-routing around such edges. To incorporate
this information into our optimization framework, we simply
increase the cost of each edge by the product of its failure prob-
ability and the extra cost incurred by re-routing.

An alternative is to develop query plans that directly cope
with transient failures during execution without using a reliable
communication protocol. This approach has the potential of
delivering better performance, and is an interesting problem for
future research.
Modeling Other Costs We have focused on radio transmission
costs because these dominate energy consumption. We have
ignored non-radio costs, such as sensor reading acquisition and
computation. It is straightforward to integrate them into our
optimization framework. For example, we can add acquisition
to the PROSPECTORs by adding its cost to the overall energy
constraint and enforcing that in order for the root to acquire a
node, the node must acquire a measurement.
Plan Dissemination To simplify presentation, we have ignored
the costs of installing a query plan in the initial distribution
phase and triggering its execution in subsequent distribution
phases. Such costs can be incorporated in the linear program-
ming framework. Furthermore, our experimental results do ac-
count for these costs.
Plan Re-calculation It is prohibitively expensive to dissemi-
nate a new plan every time conditions change. We can, however,
often re-calculate the optimal plan at the base station. Only if
this plan performs considerably better than the current one, do
we disseminate it.
Re-sampling We need to sample the entire network peri-
odically to gather input needed for optimization. When to
re-sample depends on how confident we are in the accuracy
of the current model for predicting top k. This confidence
can be measured by periodically running PROSPECTORPROOF
or PROSPECTOREXACT (instead of PROSPECTORs without
proofs), which can tell us the accuracy of our approximate solu-
tions. If the accuracy is not acceptable, the rate of re-sampling
is increased.

5 Experimental Evaluation
We evaluate our algorithms using our own simulator of a net-
work of Crossbow MICA2 motes [2]. Our simulator uses a

generic MAC-layer protocol. We model only communication
costs, as discussed in Section 2. The cost of queries that we re-
port include both the cost of triggering query execution (assum-
ing that the plan has already been stored in the network in the
initial distribution phase) and the cost of the collection phase.

To create a sensor network, we start with a given rectangu-
lar space and a root node, place a number of nodes randomly
within the space, and then, while adhering to mote radio dis-
tance limits, build a spanning tree over them where each node
is as few hops from the root as possible.
Approximate PROSPECTORs We perform a comparison of a
number of algorithms, plotting energy cost in mJ against accu-
racy of the query plan. Accuracy is measured as the percentage
of actual top-k values returned by the query. Sensor values in
this synthetic data experiment are drawn from independent nor-
mal distributions whose means and variances are chosen ran-
domly from small ranges. The results are shown in Figure 3.
ORACLE is a non-plausible algorithm that knows the exact lo-
cation of the top k values beforehand; its cost serves a baseline
for comparison of the approximate algorithms. For approxi-
mate top-k algorithms, we set k = 40 and vary the energy bud-
get. For exact algorithms (ORACLE, NAIVE-k, and NAIVE-1),
we vary accuracy by changing k (e.g., k = 36 corresponds to
90% accuracy), and then measuring the cost of the plan. The
relative order of algorithms is as predicted. NAIVE-k performs
much worse than the others, supporting the case for approxi-
mate over exact solutions. We do not plot NAIVE-1 in this fig-
ure; its cost at k = 4 already matches the cost of NAIVE-k at
k = 40, and grows linearly more expensive with increasing k.
The three approximate algorithms in increasing order of perfor-
mance are PROSPECTORGREEDY, PROSPECTORLP−LF, and
PROSPECTORLP+LF. This ranking incrementally shows the
benefits of topology-awareness and local filtering. We explore
these features further in later experiments.
Variance We next explore the effect of variance on the
distribution of sensor values for PROSPECTORLP−LF and
PROSPECTORLP+LF. The means are again chosen within a
small range, while variance moves from low to high. Variance
controls the predictability of the top-k. When variance is low,
nodes can almost be ranked by their means. When variance is
high, nodes have almost equal probability of ranking in the top
k. The energy limit is fixed at a sufficiently high level over all
trials to allow PROSPECTORLP+LF to achieve near perfect ac-
curacy when variance is negligible. The results are shown in
Figure 4. When variance is low, the algorithms perform sim-
ilarly since they essentially know where the top k values are,
and can visit just those nodes. As variance increases, perfor-
mance degrades for both algorithms, but PROSPECTORLP−LF
degrades faster. The reason is that it must still choose a limited
number of values to acquire. In contrast, PROSPECTORLP+LF
reacts to the increasing uncertainty by visiting more nodes and
using local filtering to pass on the most promising ones. While
it pays for visiting more nodes by not being able to send as
many values all the way to root, the values it does send up
are much more likely to be in the top k than those sent by
PROSPECTORLP−LF. Finally, both algorithms level out once

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
cc

ur
ac

y
(%

 o
f t

op
 k

)

Energy Cost (mJ)

Oracle
LP+LF
LP-LF

Greedy
Naive-k

Figure 3. Comparison of algo-
rithms.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

A
cc

ur
ac

y
(%

 o
f t

op
 k

)

Variance

LP+LF
LP-LF

Figure 4. Effect of variance.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

A
cc

ur
ac

y
(%

 o
f t

op
 k

)

Energy Cost(mJ)

LP+LF
LP-LF

Figure 5. Contention zones.

Figure 6. Contention zones.
variance rises to the point that the mean values are diluted and
all nodes have roughly equal probability of making the top k.

Local Filtering To better understand the impact of negative
correlation on query planning, as introduced in our ornithology
example from Section 1, we present a scenario where the net-
work contains six “contention zones” spaced evenly around its
perimeter with the query root in the center, as depicted in Fig-
ure 6. Each contention zone contains k nodes. Nodes outside
the zones have fixed means, µ, and low variances. Nodes in-
side the zones have lower means than µ, but higher variances
such that each of these has an identical 1/6 chance of exceed-
ing µ. This means the total expected number of zone nodes
above µ is k. Each zone is expected to provide k/6 of the
top k values. We again measure energy cost against accuracy,
as shown in Figure 5. PROSPECTORLP+LF greatly outper-
forms PROSPECTORLP−LF. PROSPECTORLP−LF makes the
mistake of acquiring all values from a single zone before vis-
iting another. Remember that all zone nodes have equal prob-
ability of making the top k, and appear to be of equal benefit
in sampling. If PROSPECTORLP−LF pays the initial cost of
traversing the network to reach a particular zone, it is cheaper
to continue accessing its nodes than those in another zone. For
the same amount of energy, PROSPECTORLP+LF can visit sev-
eral zones and all nodes within them, but locally filter out only
the highest k/6 values from each. PROSPECTORLP+LF gains
advantage as allocated energy increases. This intuitively makes
sense; each additional value PROSPECTORLP−LF acquires has
only a 1/6 chance of making the top k. PROSPECTORLP+LF
allocates additional energy more intelligently using local filter-
ing for greater benefit.

We continue this experiment by starting with the above sce-
nario and varying the number of zones, and adjust the fraction
of nodes within each that are greater than µ accordingly. For
example, when there are 4 zones, each still has k nodes, but the
probability of a node being greater than µ rises to k/4. The en-
ergy limit is set to a level shown to create a large performance

gap between PROSPECTORLP−LF and PROSPECTORLP+LF,
as determined in the previous experiment. The result is shown
in Figure 7. As the number of zones increases, the penalty that
PROSPECTORLP−LF suffers for acquiring an entire zone in-
creases, since a lower percentage of the top k values are in any
zone. Both algorithms degrade in performance because as the
number of zones increases, each one must visit more zones and
pay a higher cost to acquire the same number of top k values.
Intel Lab Data We evaluate our algorithms on a dataset built
from the Intel Berkeley Research Lab [7], consisting of envi-
ronmental readings over a series of time epochs collected by 54

motes spread around their lab, from which we have extracted
temperature readings. In addition, because we are interested in
network topology, and the lab area is not large enough to force
much hierarchy on the spanning tree, we shorten radio range
to 6 meters, the minimum that still allows for a fully connected
tree. Lastly, the data set is missing values in various epochs. We
have filled in a missing value at a given node and epoch with
the average of the node values read at the prior and subsequent
epochs.

We test approximation algorithms using the first 100 epochs
as samples and run queries on the following data with k =

15. We plot energy cost versus accuracy for the approxi-
mate PROSPECTORs. The results for PROSPECTORLP−LF
and PROSPECTORLP+LF are nearly identical. Therefore,
in Figure 9, we only show results for PROSPECTORGREEDY
and PROSPECTORLP−LF. This result shows topology con-
siderations have an impact on performance, but local filtering
does not. PROSPECTORGREEDY does not perform as well as
PROSPECTORLP−LF until they reach energy levels where both
acquire nearly all of the top k values. The lack of impact
for local filtering stems from the fact that the locations of the
top k values are fairly predictable in the dataset. In this case,
PROSPECTORLP−LF is clearly sufficient to build an efficient
query plan. As would be expected with this data set, approxima-
tion methods greatly outperform NAIVE-k. Although not plot-
ted here, to acquire the top 9 values (60%), NAIVE-k requires
over 800 mJ, more than three times what the approximates need
for near 100% accuracy.
PROSPECTORPROOF We next evaluate the effectiveness of
PROSPECTOREXACT by comparing it to the exact algorithms,
NAIVE-k and ORACLEPROOF. ORACLEPROOF, similar to Or-
acle, knows the locations of the top k values, but still accesses

all nodes to provide a proof for the solution. It serves as a
baseline for exact algorithms. A new baseline is needed here
because exact algorithms must visit all nodes, and therefore
cannot compete with the energy savings of the approximate
ones. So while we propose PROSPECTOREXACT as a very ef-
ficient algorithm for getting an exact solution, we acknowledge
that due to unavoidable high overhead cost, the savings versus
NAIVE-k are of a much smaller magnitude than those achieved
by the approximate PROSPECTORs.

Results for this experiment are shown in Figure 8.
PROSPECTOREXACT is a two-phase algorithm, and we plot
the breakdown of costs in two phases. NAIVE-k and ORA-
CLEPROOF are single-phase algorithms, so their costs are fixed
in this setting and plotted as horizontal lines. Recall the goal
of PROSPECTOREXACT is to plan the first phase so that the
second one is unneeded or requires very little energy. When
the first phase is allocated smaller amounts of energy, the sec-
ond phase is necessary and expensive, resulting in poor perfor-
mance. When energy is higher in the first phase, the cost of the
second phase is low, but the first phase acquires more values
than needed. The optimal point falls in the middle. Accepting
the limited potential savings we can achieve, we do find that the
optimal point realizes roughly 70% of the possible improvement
between NAIVE-k and ORACLEPROOF.
Other Results We have omitted the full details of our investi-
gation on the performance impact of sampling size. Under con-
ditions similar to those for Figure 3, we find that, as expected,
using just a single sample results in very poor accuracy. With
only a small increase to 4–5 samples, accuracy increases dra-
matically and then essentially levels out, only increasing very
slightly up to 25–30 samples. Experiments on the Intel Lab
data show a similar trend, with benefit of additional sampling
leveling out around 5 samples.

We also mention here that cost of installing the query plan in
the initial distribution phase, which requires unicasting instruc-
tions to each node involved in the plan, is on the order of the cost
of one collection phase. Following our assumption on install-
once, run-many-times usage, this cost is reduced in significance
when amortized over many subsequent runs of the same query.

While time spent solving linear programs had no impact
on our cost measurements, it is worth mentioning these re-
sults. We ran our experiments using ILOG CPLEX 8.1 on a
650MHz desktop computer. Running time was very depen-
dent on the energy constraint, and was significantly slower at
levels where there were many plans of similar value. In the
worst cases, given a program with 200 nodes and 50 samples,
PROSPECTORLP+LF finished in 30 seconds and PROSPEC-
TOREXACT finished in 120 seconds. In better cases, these often
took just a few seconds.

6 Related Work
A substantial amount of work has been done on querying sensor
networks. The general question of what type of queries should
be done on networks, such as event-based or periodic, is ex-
plored in [11] and [16]. Many papers focus on saving energy
and extending the life of the network. One main strategy is to

do at least some query work in-network, as suggested by [12]
and [16]. In-network aggregation reduces overall energy con-
sumption by performing computation within the network and
reducing the size of transmissions propagated upward.

A second main strategy for conserving energy is using ap-
proximation. The idea of using models to encode the relation-
ships between sensor values at different motes, as well as be-
tween different types of sensors, is introduced in [4]. Tech-
niques for using such models are further explored in [3]. These
models, however, are mainly directed at selection-type queries.
Several approaches for extending the useful lifetime of the net-
work are based on deploying a redundant amount of motes,
where a subset of them can represent the whole collection.
The “connected k-coverage” problem, presented in [18], finds a
minimal set of nodes that are fully connected and can stand for
the entire set of nodes, given approximation limitations. Snap-
shot queries take a similar approach by choosing a subset of
nodes to stand if for their neighbors [8]. The resolution of the
query can be adjusted by involving more nodes. The set of
nodes that is used in querying can be adjusted depending on
which nodes have the highest remaining energy resources.

Other papers also investigate specific strategies for solving
more complicated queries than selection. [14] proposes meth-
ods for computing approximations of quantile aggregates such
as median and mode. They present a structure, q-digest, which
nodes use to summarize the data they receive into a fixed size
message, with approximation bounds. [6] suggests linear re-
gression as a means to develop a model covering measurements
at all nodes. When a query is performed, the network does not
transmit large numbers of values to convey measurements from
all nodes, but instead transmits small numbers values that con-
strain the parameters of the model, thereby providing informa-
tion that can be used to derive the measurements.

There is considerable work on other top-k variations. Bab-
cock and Olston discuss the problem of monitoring the top-k
data objects within a distributed system [1]. In their setting,
an object’s score is the sum of its local scores (one from each
node). Our problem ranks the values from each node. Addi-
tionally, theirs is a continuous query, while ours is periodic. A
closer parallel to their work for sensor networks is [17]. Scores
for the same object can accumulate at different sources, and
they leverage that an object might easily rank in the top k in
one part of the network to prop up its ranking in other parts.
This technique can be used to maintain an overall top-k with
some confidence, and avoid recomputing it as often as would
otherwise be necessary.

7 Conclusions
We have presented sampling-based query planning as a means
to leverage the advantages of modeling network behavior, while
avoiding the sometimes prohibitive costs of dealing explicitly
with models. Sampling maintenance is also quite simple. Sam-
pling and linear programming complement each other well to
form an optimization framework. This framework lets us con-
strain query plans to a user-defined energy budget. We apply the
framework to the top-k query problem and create the Prospector

 0

 20

 40

 60

 80

 100

 2 3 4 5 6

A
cc

ur
ac

y
(%

 o
f t

op
 k

)

Number Contended Areas

LP+LF
LP-LF

Figure 7. Varying # of zones.

 0

 1000

 2000

 3000

 4000

 5000

 6000

7654321

En
er

gy
 C

os
t (

m
J)

Trial Instance

Phase 2 Cost
Phase 1 Cost

Naive-k
OracleProof

Figure 8. PROSPECTOREXACT.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

A
cc

ur
ac

y
(%

 o
f t

op
 k

)

Energy Cost (mJ)

LP-LF
Greedy

Figure 9. Intel Lab data.

series of algorithms, which integrate topology-awareness and
local filtering into planning, and provide approximation solu-
tions, as well as a “proof” version that can be extended to an
exact solution. Our evaluation shows the impact of various con-
ditions on our algorithms. Among the points we make are that
we can realize large energy savings with approximate over ex-
act solutions while achieving high accuracy levels, and that lo-
cal filtering is a more advantageous feature the more a network
contains areas of contention in which subsets of nodes have top-
k values. These confirm that the sampling-based framework
does achieve the energy-saving benefits of the modeling-based
approach, while affording advantages in ease of calculation.

The basic techniques and framework in this paper provide
an innovative way of interacting with sensor networks. We have
also presented a number of extensions for coping with some of
the realistic issues that arise with sensors, such as frequent fail-
ure. We foresee two interesting lines of research for making our
techniques more adaptable to real-world conditions. The first
is to model failure and other complications and integrate them
into optimization. The second is to build more flexible plans
that leverage actual network conditions once they are observed
during query execution.

References
[1] B. Babcock and C. Olston. Distributed top-k monitoring. In

Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management
of Data, San Diego, California, USA, June 2003.

[2] Crossbow Inc. ”MPR-Mote Processor Radio Board User’s
Manual”.

[3] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Ex-
ploiting correlated attributes in acquisitional query process-
ing. In Proc. of the 2005 Intl. Conf. on Data Engineering,
Tokyo, Japan, Apr. 2005.

[4] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In Proc. of the 2004 Intl. Conf. on Very Large Data Bases,
Toronto, Canada, Aug. 2004.

[5] R. Gallager, P. Humblet, and P. Spira. A distributed algo-
rithm for minimum-weight spanning trees. ACM Trans. on
Programming Languages and Systems, 5(1):66–77, 1983.

[6] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Mad-
den. Distributed regression: an efficient framework for mod-
eling sensor network data. In Proc. of the 2004 Intl. Confer-
ence on Information Processing in Sensor Networks, Berke-
ley, California, USA, Apr. 2004.

[7] Intel Berkeley Research Lab.
http://berkeley.intel-research.net/labdata/.

[8] Y. Kotidis. Snapshot queries: Towards data-centric sensor
networks. In Proc. of the 2005 Intl. Conf. on Data Engineer-
ing, Tokyo, Japan, Apr. 2005.

[9] N. Littlestone and M. Warmuth. The weighted majority al-
gorithm. Information and Computation, 108(2):212–261,
1994.

[10] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag:
a tiny aggregation service for ad-hoc sensor networks. In
Proc. of the 2002 USENIX Symp. on Operating Systems
Design and Implementation, Boston, Massachusetts, USA,
Dec. 2002.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor net-
works. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, San Diego, California, USA, June
2003.

[12] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. Bal-
ancing energy efficiency and quality of aggregate data in sen-
sor networks. The VLDB Journal, 13(4):384–403, 2004.

[13] D. Shmoys and C. Swamy. Stochasitc optimization is (al-
most) as easy as deterministic optimization. In Proc. of
the 2004 IEEE Symp. on Foundations of Computer Science,
Rome, Italy, Oct. 2004.

[14] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Me-
dians and beyond: New aggregation techniques for sensor
networks. In Proc. of the 2004 SenSys, Baltimore, Mary-
land, USA, Nov. 2004.

[15] A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and
J. Yang. A sampling-based approach to optimizing top-k
queries in sensor networks. Technical report, Duke Univer-
sity, June 2005. http://www.cs.duke.edu/dbgroup/
papers/2005-sbemy-sentopk.pdf.

[16] Y. Yao and J. Gehrke. Query processing for sensor networks.
In Proc. of the 2003 Conf. on Innovative Data Systems Re-
search, Ansilomar, California, USA, Jan. 2003.

[17] D. Zeinalipour-Yazti, S. Neema, D. Gunopulous, V. Kaloger-
aki, and W. Najjar. Data acquisition in sensor networks with
large memories. In Proc. of the 2005 IEEE Intl. Workshop
on Networking Meets Databases, Tokyo, Japan, Apr. 2005.

[18] Z. Zhou, S. Das, and H. Gupta. Connected k-coverage prob-
lem in sensor networks. In Proc. of the 2004 IEEE Intl. Conf.
on Computer Communications and Networks, Chicago, Illi-
nois, USA, Oct. 2004.

