Eilenberg P Systems: a Bio-Computational Model

Marian Gheorghe!*, Mike Holcombe! and Petros Kefalas?

! Department of Computer Science
Sheffield University, Sheffield, S14DP, UK
2 Department of Computer Science
City College, 54624 Thessaloniki, Greece
Email: {M.Gheorghe,M.Holcombe}@dcs.shef.ac.uk kefalasQcity.academic.gr

Abstract. The paper presents the main features of P systems, X machines and
of a new computational device called Eilenberg P system. The sequential and
the parallel Eilenberg P systems are presented and results reflecting the compu-
tational power of these models and their effectiveness in solving NP-complete
problems are briefly mentioned. The behaviour of a bee colony is modelled as
a society of communicating agents acting in parallel and synchronizing their
behaviour. Two computational models for defining the agents behaviour are
introduced and compared and tools developed for these models are briefly illus-
trated.

1 Introduction

Various computational models that are successfully used elsewhere in computer science
to model software engineering problems (Petri nets [39], 7 calculus and ambient calcu-
lus [27], Statecharts [30], X machines [22]), artificial intelligence paradigms (agents of
various types [16]), theoretical approaches (formal language theory [38], process algebra
[41]) have been considered to modelling different biological phenomena and aspects of
the living organisms. A lot of effort has been spent into pragmatic modelling leading
to specific computational approaches facilitating model exchanges between various re-
search groups through different standard software platforms (SBML [25], CellML [23])
[35].

The idea of modelling various biological aspects by means of formal language based
methods and of linguistics approaches has been considered since its inception. Histor-
ically the decade that unveiled the structure of DNA also witnessed a revolutionary
development in linguistics initiated by the work of Noam Chomsky [11]. Recently par-
allels between biological evolution and the history of language have been revealed [29]
and a thorough survey has been dedicated to the use of linguistics methods in the study
of DNA as language and of the genome as the book of life [40].

In the last years attempts have been made to devise computational models in the
form of generative devices like P systems [36], inspired by bio-chemical mechanisms
occurring in living cells, splicing systems [38], expressing transformations defined upon
DNA strands (more information on these subjects may be found at [24] and [26], re-
spectively). New computational paradigms of modelling concurrent systems’ behaviour

* Research partially supported by EPSRC grant GR/R84221/01

148

such as Gamma [4] or Cham [9], inspired by chemical reactions developing in paral-
lel, were introduced in the field of concurrent programming. Experiments have been
made in order to show how DNA strands may be used as a massive parallel computer
to solving well-known hard problems [1]. All these models, paradigms or experiments
rely on some bio-chemical facts in approaching new ways of computing either at some
abstract level or in a more practical manner. There are, on the other hand, compu-
tational models like random grammars, Boolean networks [31], developed to express
bio-chemical reactions occurring at the cell level, or X machines, utilized to model
metabolic pathways [20], or the behaviour of bee colonies [14]. The important role of
generative models has been emphasised in the context of analysis of the emergence of
functional adaptive systems [31].

Some variants of X machines may become suitable for molecular computing models
due to their completeness property, capability of naturally simulating different compu-
tationally complete models - Turing machines [13], two-stack automata [22], P systems
with replicated rewriting [2] -, suitability to define dynamic systems reacting to in-
put stimuli, flexibility in expressing hierarchical or distributed systems, and ability in
capturing hybrid specifications.

This work will present membrane computing or P systems which is a new emerging
component of natural computing paradigm and X machines which is one of the formal
methods used largely in software engineering, but with significant biological modelling
capabilities. A simple example showing the behaviour of a honey-bee colony will be
presented using P system and X machine models. Tools developed for these models
demonstrate the practicality of the approach. A new model combining P systems and
X machines is also presented.

2 P Systems and X Machines

We only briefly summarize some topics currently under development in the rapidly
growing area of membrane computing (P systems) which is part of the natural com-
puting paradigm. Already a monograph has been dedicated to this subject [37] and
some fairly recent results have been reported ([10,24]). Membrane computing has been
introduced with the aim of formally defining a computing device which abstracts out
from the cell and some of its functionality (initially has been called a super-cell system
[36]). Some of the main elements of the living cells are the membranes which separate
the cell from its environment by means of plasma membrane and compartmentalize
the inner part of the cell through internal membranes; each compartment contains its
own enzymes and other specialized molecules. The following feature has been identified
for the computing device that abstracts out from the living cell structure and its func-
tionality: the membrane structure, where multisets of chemical or biological elements
react according to prescribed developmental rules. The cell as a complex living system
has several compartments which are separated by membranes of various types. The
elements floating in these compartments are either simple chemical ions or more com-
plex DNA molecules all reacting according to some rules in a broadly nondeterministic
manner and mostly simultaneously.

149

The model inheriting most of these characteristics is a hierarchically organized
system containing in each region a multiset of objects and/or other regions as well.
The whole structure is separated from the environment by a membrane called the skin
membrane. The evolution rules are applied in a nondeterministic maximally parallel
manner: the objects evolve and the rules applied to them are nondeterministically
chosen and all the objects that may evolve at a given stage should do so. The rules
reflect both object transformation and object transfer from a region to another one;
these characteristics might both be present in the same rule or might come separately
in distinct rules. There are also rules which act upon the membrane structure as well
creating new membranes or dissolving some of the existing ones. In this way a dynamic
membrane structure supports the transformations occurring within it. The membrane
structure with the set of objects and the evolution rules constitutes a P system. The
membrane structure and the set the objects occurring inside of it at a given moment
identify a configuration of a P system. By using the rules in the specified way a transition
from one configuration to another one takes place. A sequence of transitions defines a
computation and a successful computation is one which halts. A halting computation is
defined to be the result produced by the system which is usually read from a specified
region or consists of all the objects sent out of the system. The result may consist of
the set of all vectors of natural numbers describing the multiplicities of the objects at
the end of a successful computation or the output produced starting from an initial
configuration.

Definition 1. A P system is a construct [37]
I =,T,u,wi,...,wn,R1,...,Ry),
where

— V is a an alphabet; its elements are called objects;

— T CV is the output alphabet;

— u is a membrane structure consisting of n membranes, with the membranes labeled
in a one to one manner with the elements 1 to n;

—w;, 1 < i < n are strings which represent multisets over V associated with the

regions 1,...,n delimited by the membranes with the same labels of u;
— R;,1 < i < n are finite sets if evolution rules over V associated with the regions
1,...,n of u, of the form a — x where a is a word over V and x is a word over

{aherea Qiny Qout | ac V}

The evolution rules are rewriting rules with targets associated to its right hand
side objects. When the result of a halting computation is collected in a specified region
then this is identified in the above definition. An example with five regions is shown
in Fig. 1. The multiset ws consists of zuzy and one of the evolution rules of R is
U = UpereTout; When this rule is applied then every v from this region is replaced by
an u which will stay in 2 and an = which will be sent outside of this region, i.e. in the
region labelled by 1.

Various other ingredients have been also considered in addition to the basic Ele-
ments mentioned above. Some of these have been brought from other similar generative

150

devices: an order relationship among the rules from the same region, Lindenmayer par-
allel rewriting systems when objects are replaced by strings, probabilistic systems, P
systems with graph rules. However most of the features associated with these sys-
tems have a biological motivation: electrical charges, energy, membrane permeability,
catalysts, carriers, promoters and inhibitors. P systems using only symport/antiport
communication rules have been introduced, as well as various kinds of P automata
[37]. Also there are variants of P systems with string objects and appropriate evolution
rules. These variants will be used in section 4.

2
Ri={... U= UnereXout »--}

W,= XUXY

Fig. 1. An example of a P System with five regions.

Although the theoretical side has been intensively investigated, some applications
and connections with other research areas have been considered also: distributed al-
gorithms defined in the context of communicating membrane systems [12], models of
ecological systems [42], models of social insects behaviour [14], software simulating dif-
ferent variants of P systems [24]. New programming language paradigms relying on
various bio-computational models refer to P systems as well [15].

Biological modelling has been approached by some ’classical’ methods coming from
various well-established research areas: formal languages, computational models, soft-
ware engineering, artificial intelligence, artificial life. One of these approaches is based
on X machines which previously have been investigated in software engineering. Simi-
larly well known models of concurrent and distributed systems with a very successful
history in software engineering modelling (Petri nets [28], Statecharts [17]) have been
also applied to biological modelling ([39, 30]).

The X machine model was introduced by Eilenberg in mid seventies [13] as a general
computational machine. These devices are equivalent in computational power to Turing
machines. The study of X machines has been abandoned for more than a decade and
has been reconsidered in the late eighties in a slightly modified form called stream X
machine as a specification language for dynamic systems [18]. A stream X machine re-

151

sembles a finite state machine (FSM) with outputs but with two significant differences:
(a) there is a memory component attached to the machine, and (b) the transitions are
not labelled with simple inputs/outputs but with functions that operate on inputs and
memory values, update the memory values and yield output symbols. These differences
allow the X machines to be more expressive and flexible than the FSMs. Other machine
models like pushdown automata or Turing machines are too low level and hence of little
use for real system specifications. The machine, depending on the current state of con-
trol and the current memory value, consumes an input symbol from the input stream
and determines the next state, the next memory value and an output value which is
catenated at the right side of the output stream.

Definition 2. A stream X machine is a construct [22]
X = (E7F7Q7M7¢7F7[7T7m0)7
where:

— X is a finite set called the input alphabet;

— I' is a finite set called the outputalphabet;

— @ is a finite set called the set of states;

— M is a (possibly infinite) set of memory symbols;

— @ is a set of basic partial functions ¢ : ¥ x M — M x I, called the set of basic
processing functions;

— F is the next state function F : Q x & — 29;

— I and T are the sets of initial and final states;

— my s the initial memory value.

A configuration (¢, m, o) of an X machine is given by a state ¢, a memory value m
and an input symbol o. A transition takes place between two configurations (g, m, o)
and (¢',m', o) if there exists a function ¢ such that (o, m) € dom(¢) (where dom(¢)
denotes ¢’s domain), ¢’ € F(q, ¢) and there exists v € I" such that ¢(o,m) = (m’,~).
An initial configuration has the form (go, mo, o), where go € I, my is the initial memory
value and o is an input symbol. A computation is a sequence of transitions starting
from the initial configuration and arriving in a configuration with a state ¢ € T. A
computation associates a stream of inputs and produces a stream of outputs. In the
initial configuration the input symbol used is the leftmost symbol of the input stream
and the output stream is empty. A computation is successful if in its last configuration
the input stream is emptied. In Fig. 2 it is shown an X machine with four states and
eight functions. If s; is the current state with the current memory value m and the
next input value o then the function ¢; is triggered and this will update the memory
value, m’ and will output a value v that is added to the right hand side of the current
output stream. The computation will then resume from the state s which together
with m' and the input value next to o define the next configuration of this machine.

A stream X machine acts as a translator which, during a successful computation,
Transforms an input stream into an output one.

The power of these devices has been investigated in the case of simple functions
(push and pop) and with the memory organized as a stack [22].

152

The main strength of the X machine model has been explicitly proven in the area
of software testing and verification, a very important component of almost all software
engineering processes. A very powerful theory has been developed which describes
how to test the behavioural equivalence of two stream X machines with a finite test
set providing certain design for test conditions are satisfied ([22,19]). The issue of
what happens when the two machines are refined in a controlled way has also been
investigated [22].

MEMORY . m PEY
) . ‘
I |

input stream

|:Y|:|"_‘|:|:|

output stream

Fig. 2. An abstract example of an X-machine; ¢;: functions operating on inputs and memory,
S;: states.

A new model of concurrency has been introduced which is based around the asyn-
chronous communication of a collection of X machines mediated through a matrix
representing the channel capabilities.

A communicating X machine model consists of several X machines, which are able
to exchange messages. These are normally viewed as inputs to some functions of an X
machine model, which in turn may affect the memory structure. A communicating X
machine model can be generally defined as a construct:

CX = (Xy,...,X,,CR),
where

— X; is the i-th X machine component that participates in the system, and
— CR is a communication relationship between the n X machine components.

There are several approaches in order to formally define a communicating X machine.
Some of them deviate from the original definition of the X machine which has the effect
of not being able to reuse existing models [6,5]. Also, in these approaches CR is de-
fined in different ways, with the effect of achieving either synchronous or asynchronous
communication.

In the current work, C'R is defined as a relationship CR C X x X where X =
{X;|1 <i < n}, which determines the communication channels that exist between the

153

X machines of the system. A tuple (X;,X;) € CR denotes that X machine X; can
write a message through a communication channel to a corresponding input stream of
X machine X;. A formal definition of communicating X machine model is provide in
[32], but is omitted in this approach as the example presented below will show only a
fragment which deals with an X machine component

3 An Example: Collective Foraging

In this section both P systems and X machines will be used in order to specify the
collective foraging behaviour of a colony of honey-bees. The behaviour is restricted to
a number of rules referring to: travelling from the nest to the source, searching for the
source, collecting nectar from the source, travelling back to the nest, transmitting the
information about the source, the reaction of a bee in the nest to the dancing of a nest
mate [43].

The P system model has the following elements organized on three layers:

— the environment (w;) containing the nectar source;
— the nest (ws);
— the bees (w3 to wy).

wy will contain information about the amount of nectar carried by a bee, its current
position, and information about the source. ws will have for each bee in the hive, the
amount of nectar carried, its current position, a memory value identifying the nectar
source position as well as an identification of each bee. w;, 3 < i < n will give the
position of a bee, the amount of nectar carried by a bee and a position of the source
as a memory value; when some nectar will be transferred to another bee, the position
and amount to be transferred will be also specified. The bees can be either in the
environment or in the nest.

The membrane structure is: o = [1[2[i;]i, - - - [i,)i, Jiolips1 Jipss -+ lin—olin_o]1-

There are seven different types of rules [14] but only two are presented below. The
rules are distribute across the sets R;.

— (nectar,p,m,i) — (nectar,p,m,)>(0,p,m,i)% according to this rule the nectar
load of the foraging bee i and k copies indicating the source position are passed
from the environment to the nest; the k copies above simulate the information
that is passed through the waggle dance to k bees (the amount of nectar is not
considered);

— (nectar,p,m,i) — (nectar, p, m); - this rule shows that the bee i (re)starts forag-
ing after nectar has been given to the honey-bees in the hive.

The next model will approach the foraging problem from a different perspective. In this
case instead of modelling the whole problem, we will approach different aspects and
model them as separate X machines. At the end we will have a set of such machines. In
[32] it is proposed a way of aggregating these components by providing a protocol for
communication among them. We will illustrate here only the X machine which models
the dancing behaviour.

The X machine X will have the following elements:

154

X = {fbee, space, nest, source};

— I' = {"dancing”,” flying out”,” flying in”,” source found’,” keep flying”};

— @ = {in the nest,out of nest};

— M = {(bee_pos, source_pos) | bee_pos, source_pos € Fin}, where Fin is a finite set
of integer values {0, ..., Position-max};

— & contains

e dancing(fbee, (bee_pos, source_pos)) = ((bee_pos, source_pos),” dancing”);
e fly_out(space, (bee_pos, source_pos)) =

((bee_pos’, source_pos),” flying out”);

e fly_in(nest, (bee_pos, source_pos)) = ((bee_pos’, source_pos),” flying in”);
e find_source(source, (bee_pos, source_pos)) =

((source_pos, source_pos),” source found”);

e keep_fly_out(space, (bee_pos, source_pos)) =

((bee_pos’, source_pos),” keep flying”).

— F(in the nest,dancing) = in the nest; F(in the nest, fly_out) = out of nest;
F(out of nest, fly-in) = in the nest; F(out of nest, find_source) = out of nest;
F(out of nest, keep_fly_out) = out of nest;

— I = {in the nest}; F = Q.

In both systems either their rules (in the first case) or the X machine components (in
the second case) run in parallel approaching the honey-bees behaviour as cooperative
agents.

We will show how the formal models previously defined might be transformed into
an executable code such as to be able to simulate the behaviour of the defined system.

A P system simulator has been implemented; it allows to input a P system specifi-
cation and then to simulate its and highly parallel behaviour [3].

The MzScheme code for the P system model defined in the previous section, is
presented below (only the rules for the environment are provided):

(define A (vector (nl pl ml)...(nk pk mk) (nl pli ml 3)... (nl pl ml m)

(nk pk mk 3)... (nk pk mk m)))
;the alphabet codifying the system objects
(define MS ((1 2) (1 3) (1 4)... (1 p)
(2 pt1)... (2 m)); the membrane structure
(define objects
(vector ((n1 p1 ml1 3)... (nh ph mh j)))
; initial configuration
(define rules
(vector (((n pm)->((npmi) 2)((n pmi) 2)... ((n pmi) 2))
(mpmi)->((n pm) i)) ; rules above defined
)

The X machine model is supported by a mark-up language called XMDL [32]. An
XMDL fragment code of the X machine specification of the model previously defined
is given below:

155

#input = {fbee, space, nest, source}.
#output = {"dancing", "flying out", "flying in", "source found",
"keep flying"}.
#memory = {(b,s)| 0<=b<=Position, 0<=s<=Position}.
#state = {in_the_nest, out_of_nest}.
#fun dancing(?inp, (?b_p,?s_p)) =
if 7inp==fbee then ((?b_p,?s_p),"dancing").
#fun fly out(?space,(?b_p,?s_p)) =
if next(?b_p,?s_p,?b_p’,?s_p’) then ((?b_p’,?s_p’),"flying out").

From the above sample code we may notice the obvious similarity between their
formats and the formalisms used by these models. Both tools are able to animate the
specified systems and XMDL is also providing a sort of formal analysis of the system
by generating test sets and supporting model checking analysis.

4 Eilenberg P Systems

There have been two kinds of attempts to investigate different links between P systems
and X machines. On the one hand various ways of simulating P systems with replicated
rewriting as stream X machines and communicating stream X machines with a com-
munication matrix [2] and P systems with symbol objects as communicating stream
X machines with ports and channels [33] have been investigated. On the other hand
there have been defined some computational models called Eilenberg P systems (or
Eilenberg P systems) that combine features of both P systems and X machines [7].

In general most of the existing P systems use a sort of regulated rewriting mech-
anism that can be a priority relationship, permitting/forbidding context, electrical
charges, membrane permeability etc. [37]. In Eilenberg P systems this additional mech-
anism is provided as a transition diagram associated with an X machine giving birth to
two classes of Eilenberg P systems, a sequential version called Eilenberg P systems and
a parallel one, called Parallel Eilenberg P systems. In both variants, each transition has
a specific set of evolution rules acting upon the string objects contained in different
regions of the membrane system. The system will start in a given state and with an
initial set of string objects. Given a state and a current set of string objects, in the
case of Eilenberg P systems, the machine will evolve by applying rules associated with
one of the transitions going out from the current state. The system will resume from
the destination state of the current transition. In the parallel variant, instead of one
state and a single set of string objects we may have a number of states, called active
states, that are able to trigger outgoing transitions and such that each state hosts a
different set of string objects; all the transitions emerging from every active state may
be triggered once the rules associated with them may be applied; then the system will
resume from the next states, which then become active states. Eilenberg P systems are
models of cells evolving under various conditions when certain factors may inhibit some
evolution rules or some catalysts may activate other rules. Parallel Eilenberg P systems
introduce a parallel behaviour of the system in respect of the transitions emerging from
active states, model cellular division and parallel development of the new born cells as
well as cell collision when multiple transitions join a target state. The objects belonging

156

to these systems are in this case string objects and the evolution rules are associated
with such objects as well.

Definition 3. An FEilenberg P system is a construct
X = (p,X),

where u is a membrane structure consisting of n membranes, with the membranes and
the regions labelled in a one to one manner with the elements 1,...,n and an X machine
whose memory is defined by the regions 1,...,n of u. The X machine is a system

X:(V,F,Q,Ml,...,Mn,¢,F,I),
where

— V is the alphabet of the system;

— I',Q, F are as in Definition 2; I' C 'V, is called now terminal alphabet;

— MP,...,M? are finite languages over V and represent the initial values occurring
in the regions 1,...,n of the system; this is called the initial memory configuration
of the system;

- & ={Py,...,P,}, D = (Ri1,.--Ripn), 1 <i <pand R;; is the set of evolution
rules (possibly empty) associated with region j, of the form A — (u,tar), with
A eV, ueV* tar € {here,out,in};

— I ={q}, @ € Q is the initial state; all the states are final states (equivalent to
Q=T).

The rules occurring in R;; have only one target indication in their right hand
side due to object strings manipulations. A computation in ITX is defined as follows:
it starts from the initial state gy and an initial configuration of the memory defined
by M?,...M? and proceeds iteratively by applying in parallel rules in all regions,
processing in each one all the strings that can be rewritten; in a given state ¢, each
string of the current memory component M;, 1 < ¢ < n is processed by a single rule
following the target indication of that rule (for instance, when rewriting x Av by a rule
A — (u,tar), the string zuv obtained will be send to the region indicated by tar,
with the usual meaning in P systems [37]); if several rules may be applied to a string,
then one rule and one symbol to which it is applied are randomly chosen; the rules are
from a component @; which is associated with one of the transitions emerging from
the current state ¢ and the resulting strings constitute the new configuration of the
memory, M7, ..., M]; the next state, belonging to F(q,®;), will be the target state of
the selected transition. The result (a set of strings containing only symbols from I") is
collected outside of the system at the end of a halting computation.

Parallel Eilenberg P systems have the same underlying construct (i, X), with the
only difference that instead of one single membrane structure, it deals with a set of
instances having the same organization (i), but being distributed across the system.
More precisely, these instances are associated with states called active states; these
instances can divide up giving birth to more instances or collide into single elements
depending on the current configuration of the active states and the general topology
of the underlying machine. Initially only ¢ is an active state and the initial memory

157

components associated with go are MY, ... MY. All active states are processed in par-
allel in one step: all emerging transitions from these states are processed in parallel
(and every single transition processes in parallel each string object in each region, if
evolution rules match them).

Cell division: if g; is one of the active states, M 1, ..., M; , is its associated memory
components, and @, 1, ..., P, are $'s components associated with the emerging transi-
tions from g;, then the rules occurring in ®;;, 1 < ¢ < t, are applied to the string objects
from M;,, ..., My, the control passes onto ¢;1,...,q;t, which are the target states of
the transitions earlier nominated, with Mj11,...,Mjn1,..., Mj14,..., Mjny, their
associated memory components, obtained from Mj1,..., M, ,, by applying rules of
Pi1,...,P;+; the target states become active states,

g; is desactivated and Mj 1, ..., M, , vanish. Only @;; components that have rules
matching the string objects of Mj 1,..., M} ,, are triggered and consequently only their
target states become active and associated with memory instances Mj 1 ;,..., Mj ;.
If none of @;; is triggered then in the next step ¢; is desactivated and M 1,...,M;,
vanish too. If some of @;; indicate the same component of ¢ then the corresponding
memory configurations Mj 1 ,..., M;,,; are the same as well; this means that always
identical transitions emerging from a state yield the same result.

Cell collision: if

&y, ..., P, enter the same state r and some or all of them emerge from active states,
then the result associated with r is the union of membrane instances produced by those
P)s emerging from active states and matching string objects from their membrane
instances.

A computation of an Eilenberg P (Parallel Eilenberg P) system halts when none
of the rules associated with the transitions emerging from the current states (active
states) may be applied.

Like most of the variants of P systems, both Eilenberg P and Parallel Eilenberg P
systems are computationally complete. More precisely it has been shown that Eilen-
berg P systems with either one membrane, three states and eight sets of rules or two
membranes, one state and seven sets of rules are computationally complete [7]. On
the other hand any Parallel Eilenberg P system may be simulated by an Eilenberg
P system. When symbol objects are replacing string objects then the corresponding
Eilenberg P systems with at least one membrane, two states and four sets of rules com-
pute no more than Parikh images of ETOL languages [8].Parallel Eilenberg P system
are very effective in solving some hard problems. For example SAT problem may be
solved in time linear with the number of clauses and number of variables by Parallel
Eilenberg P systems using string objects [7] or symbol objects [8].

These results show that Eilenberg P systems represent a very promising area of
investigation providing a wide front of research both on its theoretical side and in
using them as models of various biological phenomena.

5 Conclusions

The work reported in this paper refers to two computational models that are proposed
to modelling the behaviour of social insects, in particular honey-bee colonies. The

158

models are parallel distributed paradigms with specific communication mechanisms
and are supported by software tools able to animate the systems specified in these
frameworks.

These approaches have some similarities: they are computational devices with com-
ponents running in a fully parallel manner and acting as a society of agents. For both
models the design is flexible and reusable as the whole system may be built from in-
dividual components (multisets and rules in the membrane approach and component
X machines in the second case) that are assembled and enriched with the communica-
tion aspects. There are also some important differences between the two approaches.
In the case of the membrane systems the outputs are defined only at the end of the
computation and in some specified components; the inputs are defined only in some
variants, the memory is implicitly defined as being the set of symbols associated to
each component. For X machines the inputs and the outputs are explicitly associated
to every basic function and a memory element is part of any computation.

A new computational model, called Eilenberg P system, has been also introduced.
The sequential and the Parallel Eilenberg P systems are presented and results reflecting
the computational power of these models and their effectiveness in solving NP-complete
problems are briefly mentioned.

Acknowledgements. The authors wish to thank the anonymous referees for their
helpful comments on a first version of this paper.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems, Science,
226:1021-1024 (1994)

2. J. Aguado, T. Bildnescu, M. Gheorghe, M. Holcombe, F. Ipate, P Systems with Replicated
Rewriting and Stream X Machines, Fundamenta Informaticae, 49:17-33 (2002)

3. D. Balbotin Noval, M. J. Pérez Jiménez, F. Sancho Caparrini, A MzSceme Implementation
of Transition P Systems. In Membrane Computing (Gh. Piun, G. Rozenberg, A. Salomaa,
C. Zandron, eds.), Springer LNCS Vol.2597, (2003), 58-73

4. J-P. Banatre, D. Le Metayer, The Gamma Model and its Discipline of Programming,
Science of Computer Programming, 15:55-77 (1990)

5. J. Barnard, COMX: a Design Methodology using Communicating X-machines, Journal of
Information and Software Technology, 40:271-280 (1998)

6. T. Balanescu, T. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, C. Vertan, Com-
municating Stream X Machines Are no more than X Machines, Journal of Universal
Computer Science 9:497-502 (1999)

7. T. Balanescu, M. Gheorghe, M. Holcombe, F. Ipate, Eilenberg P Systems, in Membrane
Computing. International Workshop, WMC-CdeA 2002, Springer LNCS Vol.2597, (2003),
43-57

8. F. Bernardini, M. Gheorghe, M. Holcombe, Eilenberg P Systems with Symbol Objects
(submitted 2003)

9. G. Berry, G. Boudol, The Chemical Abstract Machine, Theoretical Computer Science,
96:217-248 (1992)

10. M. Cavaliere, C. Martin-Vide, Gh. Paun, Brainstorming Week on Membrane Computing,
Rovira i Virgili University, Tarragona, (2003)
11. N. Chomsky, Syntactic Structures, Mouton, The Hague, (1957)

12

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.

37.
38.

159

G. Ciobanu, Distributed Algorithms over Communicating Membrane Systems, BioSys-
tems, 70:123-134 (2003)

S. Eilenberg, Automata, Languages and Machines, Academic Press, (1974)

M. Gheorghe, M. Holcombe, P. Kefalas, Computational Models of Collective Foraging,
BioSystems, 61:133-141 (2001)

J.-L. Giavitto, O. Michel, Modelling the Topological Organization of Cellular Processes,
BioSystems, 70:149-164 (2003)

R. Gregory, R. Paton, J. Saunders, Q. H. Wu, A Model of Bacterial Adaptability based
on Multiple Scales of Interaction: COSMIC, in Computing in Cells and Tissues, (R.C.
Paton et al eds.), Springer, Series on Natural Computing, 2003 (to appear).

D. Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, 8:231-274 (1987)

M. Holcombe, X-machines as a Basis for Dynamic System Specification, Software Engi-
neering Journal, 3(2):69-76 (1988)

M. Holcombe, X-machines in Computing, Biology and Art, In: Proceedings International
Workshop Grammar Systems, R. Freund, A. Kelemenova (eds.), Silesian University at
Opava, Bad Ischl, (2000) 343-346.

M. Holcombe, Computational Models of Cells and Tissues: Machines, Agents and Fungal
Infection, Briefings in Bioinformatics, 2:271-278 (2001)

M. Holcombe, K. Bogdanov, M. Gheorghe, Functional Test Generation for Extreme Pro-
gramming, Proceedings 2nd International Conference on Extreme Programming and Flex-
ible Processes in Software Engineering, Italy, (2001), 109-113.

M. Holcombe, F. Ipate, Correct Systems. Building a Business Process Solution, Springer,
Series on Applied Computing, (1998)

http://www.cellml.org

http://psystems.disco.unimib.it

http://www.sbml.org

http://www.wi.leidenuniv.nl/ pier/dna.html

http://www.wisdom.weizmann.ac.il/ aviv/

K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use,
Vol.1-3, Springer, Berlin, (1992, 1994, 1997)

S. Jones, The Language of the Genes, Flamingo, London, (Revised edition), (2000)

N. Kam, I. R. Cohen, D. Harel, The Immune System as a Reactive System: Modelling T
Cell Activation with Statecharts, Technical report MCS01-09, The Weizmann Institute of
Science, Israel, (2001)

S. A. Kauffman, it The Origins of Order. Self-organization and Selection in Evolution,
Oxford University Press, (1993)

P. Kefalas, Formal Modelling of Reactive Agents as an Aggregation of Simple Behaviours,
In: I.P. Vlahavas, C.D. Spyropoulos (eds.), Springer LNATI Vol.2308 (2002), 461-472

P. Kefalas, G. Eleftherakis, M. Holcombe, M. Gheorghe, Simulation and Verification of P
Systems through Communicating X Machines, BioSystems, 70:135-148 (2003)

P. Kefalas, M. Holcombe, G. Eleftherakis, M. Gheorghe, A Formal Method for the Devel-
opment of Agent Based Systems, In Intelligent Agent Software Engineering, V. Plekhanova
(ed.), Idea Group Publishing, (2003), 68-98

H. Kitano, Computational Systems Biology, Nature, 420:206-210 (2002)

Gh. Paun, Computing with Membranes, Journal of Computer System Sciences, 61:108-
143 (2000). Also, Turku Center for Computer Science TUCS Report No.208, (1998),
http://www.tucs.fi

Gh. Paun, Membrane Computing. an Introduction, Springer, Berlin, (2002)

Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing - New Computational Paradigms,
Springer, Berlin, (1998)

160

39. M. Peleg, I. Yeh, R.B. Altman, Modeling Biological Processes Using Workflow and Petri
Net Models, Bioinformatics, 18:825-837 (2002)

40. D. B. Searls, The Language of Genes, Nature 420:211-217 (2002)

41. C. Tofts, Describing Social Insect Behaviour using Process Algebra, Transaction of Society
for Computer Simulation (1993), 227-283

42. Y. Suzuki, J. Takabayashi, H. Tanaka, Investigations of an Ecological System Using an
Abstract Rewriting System of Multisets, In: Recent Topics in Mathematical and Compu-
tational Linguistics, Gh. Pdun (ed.), The Publishing House of the Romanian Academy,
Bucharest, (2000), 300-309

43. H. de Vries, J. C. Biesmeijer, Modelling Collective Foraging by means of Individual Be-
haviour Rules in Honey-bees, Behavioral Ecology and Sociobiology, 44:109-124 (1998)

