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Abstract. In this paper we suggest a new transformation scheme for 
All-Or-Nothing encryption, originally suggested by Rivest. The new transform 
concerns the use of quasigroups for the preprocessing of the data before any or-
dinary encryption method. We describe a method of constructing random qua-
sigroups and we propose a way of using the advantages of quasigroup in 
Rivest's method. This combination makes the method faster and maintains the 
advantages against brute-force attacks.  

1    Introduction 

Brute-force is the most common attack to any cryptosystem. This kind of attack is 
passive and the objective is to try every possible key until the plaintext makes sense. 
Any encryption scheme vulnerable to a ciphertext-only attack is considered to be 
completely insecure [4]. Rivest in [1] introduced All-Or-Nothing (AON) encryption 
mode in order to devise means to make brute-force search more difficult, by appropri-
ately pre-processing a message before encrypting it. The method is general, but it was 
initially discussed for block-cipher encryption, using fixed-length blocks. It is an 
unkeyed transformation, mapping a sequence of input blocks ),,,( 21 sxxx …  to a se-
quence of output blocks ),,,( 21 syyy ′…  having the following properties: 

• Having all blocks ),,,( 21 syyy ′…  it is easy to compute ),,,( 21 sxxx …  

• If any output block iy  is missing, then it is computationally infeasible to 
obtain any information about any input block ix . 

Several transformation methods have been proposed in the literature for AON. In 
this paper we propose a special transform which is based on the use of a quasigroup. 
The main idea is to preserve a small-length key (e.g. 64-bit) for the main encryption 
that can be handled by special hardware with not enough processing power or mem-
ory. This gives the method a strong advantage, since we can have strong encryption 
for devices that have minimum performance. 

The organization of this paper is as follows: In section 2 we present the basic prin-
ciples of AON transforms, in Section 3 we give the definition of quasigroups and 
discuss their application to encryption, in Section 4 we describe our suggestion for 
using quasigroups as an AON method and finally in Section 5 we conclude with a 
discussion on the proposed method.  
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2    All-Or-Nothing Transforms 

The method of AON originally proposed by Rivest [1] is very simple and is based on 
the need for keeping small-length keys for devices with minimal storage and process 
capability, but increasing their security as if they were using biggest-length keys. The 
add-on component of the standard encryption methods is a pre-process stage, during 
which All-Or-Nothing transformations are being calculated over the data. For the 
description of the method, we assume that an adversary can obtain one block of the 
message and decrypt it. The chipher-block chaining (CBC mode) is used for the illus-
tration of the method.  

Definition 1. Suppose that a block cipher encryption mode transforms a sequence 
),,,( 21 smmm …  of s  message blocks into a sequence ),,,( 21 tccc …  of t  ciphertext 

blocks for st ≥ . We say that the encryption mode is strongly non-separable if it is 
infeasible to determine even one message block im  (or any property of a particular 
message block im ) without decrypting all t  ciphertext blocks. Rivest in [1], proposed 
a strongly non-separable mode as follows: 

• Transform the message sequence ),,,( 21 smmm …  into a pseudo-message se-
quence ),,,( 21 smmm ′′…′′  (for ss ≥′ ) with an AON transform. 

• Encrypt the pseudo-message with an ordinary encryption mode with the 
given cryptographic key K  to obtain the ciphertext ),,,( 21 tccc … . 

Definition 2. A transformation T  mapping a message sequence ),,,( 21 smmm …  into 
a pseudo-message sequence ),,,( 21 smmm ′′…′′  is called an All-Or-Nothing Transform 
(AONT) if 

• The transformation T  is reversible: given the pseudo-message sequence, one 
can obtain the original message sequence. 

• Both the transformation T  and its inverse are efficiently computable (that is, 
computable in polynomial time). 

• It is computationally infeasible to compute any function of any message 
block if any one of the pseudo-message blocks is unknown. 

 
An AON transform is strongly non-separable and cannot be considered as an en-

cryption method itself, because it does not use any secret key. It is just a preprocess 
step which amplifies the actual encryption operation that follows. So this step exists 
only for converting a message into a pseudo-message and backwards. The original 
AON transforms, introduced in 1, were called package transforms and can be de-
scribed as follows: 

1. Let the input message be ),,,( 21 smmm …  (where im  is a b -bit string) 
2. Choose at random a key K  for the package transform block cipher. 
3. Compute the output sequence ),,,( 21 smmm ′′…′′ , where 1+=′ ss as follows: 

)(iEmm Kii ⊕=′  for si ,,2,1 K= . 
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( (.)KE  is a b-bit block cipher with the key K  and ⊕  is the bitwise XOR 
operation). 
Let  

ss hhKm ⊕⊕⊕=′′ K1  

where 

)(
0

imEh iKi ⊕′=  for si ,,2,1 K=  and 0K  is a fixed, publicly-known key. 

The block cipher for the package transform does not use a secret key and does not 
have to be the same as the block cipher for encrypting the pseudo-message. The key 
space for the package transform is assumed to be large enough, so it would be compu-
tationally infeasible for someone to obtain it with a brute-force attack. It is obvious 
that the package transform is invertible: 

ss hhmK ⊕⊕⊕′= ′ K1  
)(iEmm Kii ⊕′=  for si ,,2,1 K=  

If any block of pseudo-message sequence is unknown, the key K  cannot be com-
puted and therefore it is computationally infeasible to retrieve any message block. 

Many AON transforms have been proposed in the literature. Stinson in [5] intro-
duced a different definition for these transforms. His approach has to do with uncon-
ditionally secure transforms, as compared to the conditionally secure schemes consid-
ered in [1]. Desai in [6] proved that the method is strong and secure in the Shannon 
Model of block cipher. He gave a new characterization of AON transforms and a new 
notion concerned with the privacy of keys that provably captures an exhaustive 
key-search resistance property. AON property was combined also with hash functions 
in [7]. In [8] a new mode was suggested and practically the adversary does not know 
the ciphertext as AON transforms are used after encryption, resulting in the shuffling 
of the ciphertext. For a thorough review of various AON methods we refer to [10]. 

3    Quasigroups and encryption 

A quasigroup is a groupoid ),( fQ  satisfying the law 

),!)(,( QyxQvu ∈∃∈∀ )),(&),(( vuyfvxuf == . 

This implies the cancellation laws 

zyzxfyxf =⇒= ),(),( , zyxzfxyf =⇒= ),(),(  

and that the equations 

bxf =),(α , byf =),( α  

have unique solutions yx,  for each Qb∈,α . 
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Definition 3 A nk ×  Latin rectangle on an alphabet },...,{ 1 nqqQ =  is an array with 
entries njkiQqij ,...,2,1&,...,2,1, ==∈  such that each row and each column consists 

of different elements of Q . If nk = , then the Latin rectangle is called a Latin Square 
of order n . 

It is obvious that if },...,{ 1 nqqQ =  is a carrier of a quasigroup ),( ∗Q  then it can be 
considered as a nn×  Latin Square. Thus the construction of a Latin Square essen-
tially provides a method to obtain a random quasigroup. One such method is given by 
Hall's theorem [2], which states that any nk ×  Latin rectangle can be extended to a 

nk ×+ )1(  Latin rectangle, for each 1,...,2,1 −= nk , and the extension can be made in 
at least )!( kn −  ways. This shows that we can have at least !!1!2)!...1(! nnn −  Latin 
Squares of order n over an alphabet with cardinality n . 

Using a quasigroup ),( ∗Q  we define a binary operation /  on Q  with the follow-
ing characteristic: 

yzxzyx =∗⇔=/ , 

for all Qyx ∈, . It is clear that the qroupoid /),(Q  is also a quasigroup. 
It is also obvious that the operation /  is dual to ∗ , and that /),(Q  is a dual qua-

sigroup to ),( ∗Q . Furthermore the algebra /),,( ∗Q  is a quasigroup, an expansion of 
),( ∗Q . For the quasigroup /),,( ∗Q  it follows that: 

yyxx =∗ )/( ,   yyxx =∗ )/(  

With the method we just described, we first construct a Latin Square and we ob-
tain our quasigroup by considering it as the multiplication table of the quasigroup. For 
the purposes of our AON transform, we employ another method in order to construct 
very quickly random Latin Squares from which we will create a pair of quasigroups 
with dual operations. The method gives Latin Squares of order 1−= pn , where p is 
a prime. 

In our application, we use a Latin Square of order 256, with elements the numbers 
256,...,1  (note that the number 257 is a prime). The reasons for this choice will be 

explained below. Our Latin Square is constructed by the following general process: 
Step 1. The first row ),...,,( 11211 naaa  is created randomly as a random permuta-

tion of the elements n,...,1 .  
Step 2. Every element of the i -th row, ni ,...,2=  is calculated by 

paia jij mod1∗= , where nji ,...,2,1, =  and 1+= np  prime. 
It is easy to show that the array constructed by the above method is a Latin Square, 
since for every prime p the set }1,...,2,1,0{ −= pZ p , with the operations of addition 

and multiplication pmod , is a Galois Field GF(p).Indeed, first note that the multipli-

cation pmod  of any two non-zero elements of pZ  never gives 0. Now, let ikij aa = . 
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Then, kj aiai 11 ∗=∗  and from the algebraic properties of pZ  we have that kj aa 11 = . 

Similarly, if sjij aa = , then jj asai 11 ∗=∗  and si = . Thus, it is impossible to have in 
the same row or column the same element and this means that the constructed array is 
a Latin Square of order 1−= pn . 
 
Example 1. As an illustration, we give a Latin Square of order 6, with 716 =+=p  
constructed by the above method.  
 
 1 2 3 4 5 6 
1 3 5 2 1 6 4 
2 6(=2*3mod7) 3(=2*5mod7) 4(=2*2mod7) 2(=2*1mod7) 5(=2*6mod7) 1(=2*4mod7) 
3 2(=3*3mod7) 1(=3*5mod7) 6(=3*2mod7) 3(=3*1mod7) 4(=3*6mod7) 5(=3*4mod7) 
4 5(=4*3mod7) 6(=4*5mod7) 1(=4*2mod7) 4(=4*1mod7) 3(=4*6mod7) 2(=4*4mod7) 
5 1(=5*3mod7) 4(=5*5mod7) 3(=5*2mod7) 5(=5*1mod7) 2(=5*6mod7) 6(=5*4mod7) 
6 4(=6*3mod7) 2(=6*5mod7) 5(=6*2mod7) 6(=6*1mod7) 1(=6*6mod7) 3(=6*4mod7) 
 

We have chosen this construction method because it is faster and easier to pro-
gram it than Hall's. Based on the definitions above, it is obvious that the produced 
Latin Square defines a quasigroup and we can define the dual operation. 

Quasigroups have already been proposed for online communication in [3, 9] as an 
encryption method combining security and speed. The method is simple since the two 
parties need only to know the pair of the quasigroups used. Then each character is 
encrypted and transmitted. It is clear that an initializing stage is needed for establish-
ing the communication, the handshaking for exchanging the initial character and the 
pair of the quasigroups. The method is claimed to be secure, but the main advantage is 
that is fast. Security and speed are the main reasons for choosing quasigroups, since 
each character is encoded by one only. Moreover, one can choose a known pair of 
quasigroups or create each time a new pair randomly, amplifying this way the secu-
rity.  

Our approach uses the above features to give the AON method speed and increase, 
in a way, its security. We are not interested in the encryption power and completeness 
of the quasigroup as in 9, since our goal is to preserve main advantages of the two 
methods and combine them in the best way. 

4    The All-or-Nothing Transform With Quasigroups 

The idea is based on the AON property and is actually a modification of it. Since the 
basic disadvantage of AONTs seems to be time, it became a good motive for us to 
look for a way to reduce time needed. It is obvious that the simplicity of the algorithm 
doesn't let enough room for improvement, so we preserved the advantage of the 
all-or-nothing method and replaced only the algorithm that produces the 
pseudo-message. As discussed in the previous section our method is a combination of 
AON mode and encryption with quasigroups. So instead of the bitwise XOR used as 
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basic operation in AONTs, we have used the encryption with quasigroups method as 
follows: 

a) The first row of the quasigroup is randomly created. Then the rest 255 rows are 
being created with the procedure of Section 3. 

b) One of the quasigroups elements, called leader (say 1a ), required for the initial 
step of the process, is randomly chosen. 

c) With the help of the leader and the quasigroup the pseudo-message is created.  
Each message block (size of 8 bits) with the help of the quasigroup is mapped 
into the appropriate output block. The method is the one described in 3 with a 
few modifications:  
1. We have a pair of quasigroups of order 256, so we can "encrypt" the 256 

ASCII characters. Someone  can then consider, blocks of 8 bits as binary 
strings, as already proposed. This way each block is a binary representa-
tion of a number between 0 and 255 and it can be mapped to a unique 
element ofthe quasigroup. Since the construction method we described 
uses as elements the numbers 1 to 256, we just have to replace 256 by 0 
in order to use the 8-bit representation. 

2. The pseudo-message is created with the following procedure: 
Let }...,,{ 21 nqqqQ =  )1( ≥n  be an alphabet and let /),,( ∗Q  be the qua-
sigroup defined above. The two unary operations ∗f  and /f  are defined 
as follows: 
 

Definition 4. Let Qui ∈ , 1≥k .  
Then 

kk vvvuuuf ...)...( 2121 =∗  
Where 

111 uav ∗= , 11 ++ ∗= iii uvv , 1,...,2,1 −= ki , 

kk uuuvvvf ...)...( 2121/ =  
where 

111 / vau = , 11 / ++ = iii vvu , 1,...,2,1 −= ki . 
 

3. The pseudo-message is extended with the leader a1 and the first row of 
the quasigroup as follows: 
 

message to encrypt = 
leader 1a  + 1st  row of the quasigroup + pseudo-message 

 
Then the actual encryption takes place with any known algorithm. The 

pseudo-message is a little longer than the original one since it is extended with the 
256 elements of the 1st row of the quasigroup and the leader needed for the initial step 
of the conversion, but this isn't important since the total cost is 257 bytes of added 
information. 

Based on the previous paragraph, the communication between two parties is the 
following: 
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SENDER:  
— Creates the quasigroup randomly as described in Section 3. 
— Converts the message into the pseudo-message with the help of the leader. 
— Creates the actual pseudo-message as defined previously, adding the neces-

sary information for obtaining the message. 
— Performs the actual encryption using any of the well-known algorithms. 
— Transmits the cipher. 

 
RECEIVER:  
— Receives the cipher and decrypts it. 
— Obtains the pseudo-message, which contains the "key-information" to con-

vert it to the actual message. 
— Obtains by the first byte the leader while the rest 256 bytes comprise the first 

row of the quasigroup. Then creates the pair of quasigroups. 
— Converts the rest of the pseudo-message and gets the actual message, with 

the help of the leader and the dual operation of the quasigroup. 
 
Example 2.  
Let m be the original message to be 
encrypted and transmitted. The sender 
creates randomly the quasigroup. We 
will use the one already created in 
Example 1. For simplicity we will use 
quasigroup of order 6 and numbers 
instead of characters. Note that one 
byte is 8 bits, so we use 8-bit blocks. 
 
SENDER: 
Let 256334254611344=m  be the message for transmission. 
We choose the leader 41 =a  randomly. The conversion of the message is the follow-
ing:  

342414611451222=′m  
and the pseudo-message is: 

4114512223424352164461=′′m  

The message above is ready for encryption with any known algorithm. 
 
RECEIVER: 
The received message is decrypted and the retrieved pseudo-message is: 

4114512223424352164461=′′m  

The receiver obtains the leader 41 =a  (first byte of the message) 
The quasigroup is obtained from the following 8 bytes. With the use of the relation: 

* 1 2 3 4 5 6 
1 3 5 2 1 6 4 
2 6 3 4 2 5 1 
3 2 1 6 3 4 5 
4 5 6 1 4 3 2 
5 1 4 3 5 2 6 
6 4 2 5 6 1 3 
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yyxx =∗ )/( ,   yyxx =∗ )/(  

the receiver obtains the binary operation : 
 

/ 1 2 3 4 5 6 
1 4 3 1 6 2 5 
2 6 4 2 3 5 1 
3 2 1 4 5 6 3 
4 3 6 5 4 1 2 
5 1 5 3 2 4 6 
6 5 2 6 1 3 4 

 
Using the leader 41 =a , the quasigroup above and Definition 4 the message 

256334254611344=m  it can be easily recovered from 342414611451222=′m .  

5    Conclusions 

In this paper, a bridge was held between the AON encryption mode and encryption 
with Quasigroups. Our objective was to preserve the advantages of the use of 
block-ciphers since sometimes it is preferable to gain as much security as is possible, 
rather than introduce something completely new, as that would automatically make 
existing cryptographic hardware useless. Our suggestion preserves the advantage of 
all-or-nothing encryption mode, the pre-processing mode, which is responsible for the 
increased security. The penalty for that according to [7] is the extra time needed for 
that stage, which is the main withdraw. Thus, we have thought to use a fast encryption 
method in order to reduce that time. The encryption with quasigroups is suitable for 
online communications, so its main characteristic is the converting speed. It seemed 
to us that even if we didn't take full advantage of the encryption strength of qua-
sigroups, the result of using the method, as a pre-processing stage, would improve 
all-or-nothing transforms at least in time.  

Of course the improvement of time is crucial, as nowadays is very important to 
spend as less time as possible, but also to preserve an acceptable level of security. For 
example a transaction with a smart card should be as fast as possible and of course as 
secure as possible. But since there are limitations in hardware (processing power, 
memory, storage capability, etc) and the number of daily transactions could be high, it 
is important to suggest methods that would make everyday life easier, emphasizing on 
security. 

Our method is different from the ones suggested until now. Our future plans in-
clude comparisons with some already known methods, in order to get results for the 
level of security and especially for the processing speed.  
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