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Abstract. The K Closest Pairs Query (K-CPQ) discovers the K pairs of objects
formed from two different datasets that have the K smallest distances between
them. This kind of distance-based query is a new database operation which
appears in spatial applications. Recently, branch-and-bound algorithms based
on R-trees have been developed in order to answer efficiently K-CPQs. Cost
models are needed to estimate the selectivity of a specific query in order to
be able to compare execution costs of alternative processing strategies during
query optimizations. In this paper, we combine techniques that have been used
for the analysis of nearest neighbor and join queries and derive the performance
cost (in terms of disk accesses) of K-CPQs using R-trees.

1 Introduction

The role of spatial databases is continuously increasing in many modern applications
during last years. Mapping, urban planning, transportation planning, resource man-
agement, geomarketing, archeology and environmental modeling are just some of these
applications. The key characteristic that makes a spatial database a powerful tool is
its ability to manipulate spatial data, rather than simply to store and represent them.
The most basic form of such a manipulation is answering queries related to the spatial
properties of data. Some typical spatial queries are the following:

— a Point Location Query seeks for the spatial objects that fall on a given point.

— a Range Query seeks for the spatial objects that are contained within a given region
(usually expressed as a rectangle).

— a Join Query may take many forms. It involves two or more spatial data sets and
discovers pairs (or tuples, in case of more than two data sets) of spatial objects
that satisfy a given predicate. For example, a join query that acts on two data sets,
may discover all pairs of spatial objects that intersect each other.

— Finally, a very common spatial query is the Nearest Neighbor Query that seeks for
the spatial objects residing more closely to a given object. In its simplest form,
it discovers one such object (the Nearest Neighbor). Its generalization discovers K
such objects (K Nearest Neighbors), for a given K.
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In this paper, the cost of a spatial query that combines join and nearest neighbor
queries is studied. It is called K Closest Pairs Query (K-CPQ). Given two different
datasets S; and S of Ng; and Ng» points, respectively, a K-CPQ retrieves the 1 <K <
Ng1*Ngo different pairs of points from S; xSs with the K smallest distances between all
possible pairs of points that can be formed by choosing one point of S; and one point
of S,. Like a join query, all pairs of objects are candidates for the result. Like a nearest
neighbor query, the K nearest neighbor property is the basis for the final ordering. In
the degenerate case of K = 1, the closest pair of spatial objects is discovered. Consider,
for instance, a spatial database where the datasets represent the cultural landmarks
and the populated places of North America. A K-CPQ will discover the K closest pairs
of cities and cultural landmarks.

Tree-based algorithms for K-closest pair search follow branch-and-bound techniques
that aim at finding quickly a good set of pairs, in order to prune the search space as
early as possible. The first K-CPQ algorithms were proposed in [9, 10] for R-trees [16],
although they can be modified for any data-partition index. In such an algorithm, the
MINMINDIST metric is applied for pruning the search space effectively: MINMINDIST
is a generalization of the minimum distance between points and MBRs. MINMINDIST
can be applied to pairs of any kind of elements (i.e. MBRs or points) stored in R-trees
during the computation of branch-and-bound algorithms for the K-CPQ. In addition,
the distance-based plane-sweep technique is applied for reducing the response time of
the K-CPQ algorithms.

A very important and interesting research direction is the query-cost modeling.
Cost models are used in practice by the optimizer of a DBMS to rank and select the
promising processing strategies, given a spatial query and spatial datasets. Cost models
are needed to estimate the selectivity of spatial search and join operations during the
comparison of execution costs of alternative processing strategies for spatial operations
during query optimizations. Several cost models have been proposed to estimate, in
terms of node accesses, the performance of nearest-neighbors and join queries in the
context of the R-trees, but more work is needed [26].

The analysis of query performance in spatial access methods is important for query
optimization (during the operation of a DBMS) and for evaluating access method
designs (by researchers working in this area). Most I/O cost models unrealistically
assume uniformity and independence to make the analysis tractable. However, real
data overwhelmingly disobey these assumptions; they are typically skewed and often
have dependences between dimensions. In thispaper, we derive formulae to estimate
the number of disk accesses for K closest pairs query between two R-trees, for real
datasets. These formulae depend on several input parameters, highlighting the capacity
dimension (Dy), the correlation exponent (p) and number of pairs in the final result (K).
Moreover, our analysis provides a cost model of a typical (non-uniform) workload using
the so-called biased query model [21], which assumes that queries are more probable in
high-density areas of the address space.

The rest of the paper is organized as follows. Section 2 surveys Previous work on cost
models for nearest neighbors and join queries over R-trees. In section 3, we review the
R-tree family as spatial data structure and describe the branch-and-bound algorithms
for K-CPQ. Section 4 presents our cost model and the formulae that estimate the K-
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CPQ performance. Finally, section 5 presents the conclusion of this research and gives
directions for future work.

2 Related Work

The first attempt to provide an analysis for R-tree index structures appeared in [13],
where a model that estimates the performance of R-trees and R*-trees for selection
queries was proposed. Later, [20] and [23], independently, presented a formula that
calculates the average number of page accesses in an R-tree accessed by a query window
as a function of the average node size and the query window size. Due to the high impact
of similarity queries (mainly of the nearest neighbor query), a considerable number of
different algorithms using R-trees and the respective cost models for estimating the
number of page accesses have already been proposed in the last years. Moreover, most
related work on join processing using multidimensional access methods is based on
spatial intersect joins using R-trees. In this section, we are going to review the most
representative research efforts on analytical performance studies for nearest neighbor
and spatial intersect join queries using R-trees.

2.1 Cost Models for Nearest Neighbor Queries Using R-trees

To the best of our knowledge, [22] and [21] are the most representative papers for
analysis based on fractals of nearest-neighbor queries on R-trees. In [22] results for
estimating data page accesses of R-trees when processing nearest neighbor queries in a
Euclidean space were reported. Since it is difficult to determine accesses of pages with
rectangular regions for spherical queries, the authors approximate query spheres by
minimum bounding and maximum enclosed cubes and thus determine lower- and upper-
bound average-case formulae for the number of page accesses for 1-nearest-neighbor
search. These bounds diverge rapidly with the increase of fractal dimensions. In [21],
closed-form formulae for K-nearest-neighbor queries, for arbitrary K were proposed.
Moreover, such formulae can be simplified and, thus, lead to fundamental observations
that deflate the “dimensionality curse”.

In [2], a cost model for query processing in high-dimensional data spaces was pre-
sented. It provides accurate estimations for nearest neighbor queries and range queries
using the Euclidean distance, and assumptions of independence are implicit in the
formulae. This paper introduces the concept of the Minkowski sum to determine the
access probability of a rectangular page for spherical queries (i.e. range queries and
nearest neighbor queries). The Minkowski sum can be used to determine the index
selectivity of distance-based join operations. In [11] the cost model of [2] has been
adapted to estimate the page accesses of different access methods (like the M-tree, an
index structure for data spaces which are metric spaces but not vector spaces, i.e. only
the distances between the objects are known, but not their explicit positions). Finally,
in [7] an excellent study that provides accurate estimations of the number of pages
accesses for range queries and nearest neighbor queries under Euclidean and maximum
metrics was presented. The boundary effects are considered and the concept of fractal
dimension is used to take into account the effects of correlated data.
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2.2 Cost Models for Join Queries Using R-trees

Considering join queries, in [1], analytical formulae for cost and selectivity, based on
the R-tree analysis of [20], were proposed. The basic idea of [1] was the consideration
of one of the datasets as the underlying database and the other dataset as a source for
query windows in order to estimate the cost of a spatial join query based on the cost of
range queries. Experimental results showing the accuracy of the selectivity estimation
formula were also presented in that paper.

In [17], a cost model for spatial joins using R-trees was proposed. It was the first
attempt to provide an efficient formula for join performance by distinguishing two
cases: considering either zero or nonzero buffer management. Using the analysis of [20]
and assuming knowledge of R-tree properties, this paper provides two formulae, one
for each of the above cases. The efficiency of the proposed formulae was demonstrated
by comparing analytical estimations with experimental results for varying buffer sizes
(with the relative error being around 10-20 percent).

In [28], a model that predicts the performance of R-tree-based structures for selec-
tion (point or range) queries and an extension of this model for supporting join queries
(overlap operator between spatial objects, although any other spatial operator could be
used instead) were presented. The proposed cost formulae are functions of data prop-
erties only, namely, the cardinality and the density in the workspace, and, therefore,
can be used without any knowledge of the R-tree index properties. They are applicable
to point or non-point datasets and, although they make use of the uniformity assump-
tion, they are also adaptive to non-uniform distributions, which usually appear in real
applications, by reducing its effect from global to local level (i.e., maintaining a density
surface and assuming uniformity on a small subarea of the workspace). Experimental
results on both synthetic and real datasets showed that the proposed analytical model
was very accurate, with the relative error being usually around 10-15 percent when the
analytical estimate is compared to cost measurements using the R*-tree. In addition,
for join query processing, a path buffer was considered and the analytical formula was
adapted to support it. The performance saving due to the existence of such a buffering
mechanism was highly affected by the sizes (and height) of the underlying indices and
reached up to 50 percent for two-dimensional datasets. The proposed formulae and
guidelines could be useful tools for spatial query processing and optimization purposes,
especially when complex spatial queries are involved.

Recently, in [8], an analytical model and a performance study of the similarity join
operation on indexes were presented. In this context, the optimization conflict between
CPU and I/O optimization was discovered. To solve this conflict, a complex index
architecture (Multipage Index, MuX) and join algorithm (MuX-join), which allows a
separate optimization of the CPU time and the I/O time, was presented. This archi-
tecture (MuX) utilized large primary pages, which are subject to I/O processing and
optimized for this purpose. The primary pages accommodate a secondary search struc-
ture to reduce the computational effort. The experimental evaluation using the join
algorithm (MuX-join) over the index architecture (MuX) showed a good performance.
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3 Algorithms for K-CPQ Using R-trees

3.1 R-trees

An R-tree [16] is a hierarchical, height balanced multidimensional data structure, de-
signed to be used in secondary storage and it is a generalization of B-trees for multidi-
mensional data spaces. It is used for the dynamic organization of a set of d-dimensional
objects represented by their d-dimensional MBRs. These MBRs are characterized by
“min” and “max” points of hyper-rectangles with faces parallel to the coordinate axes.
Using the MBR instead of the exact geometrical representation of the object, its rep-
resentational complexity is reduced to two points, where the most important object
features (position and extension) are maintained. Consequently, the MBR, is an ap-
proximation widely employed.

The rules obeyed by an R-tree are as follows: leaves reside on the same level; each leaf
contains entries of the form (MBR, Oid), such that MBR, is the minimum bounding
rectangle that encloses the object determined by the identifier Oid; internal nodes
contain entries of the form (MBR, Addr), where Addr is the address of the child node
and MBR is the minimum bounding

rectangle that en-closes MBRs of all entries in that child node; nodes (except pos-
sibly for the root) of an R-tree of class (Cynin, Ciaz) contain between C,pipn and Cppan
entries, where Cpin < [Chaz/2] (Craz and Cpyp, are also called maximum and min-
imum branching factors or fan-out); the root contains at least two entries, if it is not
a leaf.

Many variations of R-trees have appeared in the literature (an exhaustive survey
can be found in [15]). One of the most popular and efficient variations is the R*-
tree [5]. The R*-tree added two major enhancements to the R-tree, in case that a node
overflows. First, rather than just considering the area, the node-splitting algorithm in
the R*-tree also minimized the perimeter and overlap enlargement of the minimum
bounding rectangles. It tends to reduce the number of subtrees to follow for search
operations. Second, the R*-tree introduced the notion of forced reinsertion

to make the tree shape less dependent to the insertion order. When a node overflows,
it is not split immediately, but a portion of entries of the node is reinserted from the
tree root. With these two enhancements, the R*-tree generally outperforms original
R-tree. It is commonly accepted that the R*-tree is one of the most efficient R-tree
variants.

3.2 Algorithms for K-CPQ

If we assume that the datasets are indexed on any tree-like structure belonging to
the R-tree family, then the main objective while answering this type of distance-based
query is to reduce the search space. In [9], a generalization of the function that calcu-
lates the minimum distance between points and MBRs (MINMINDIST) was presented.
MINMINDIST(M;, M) calculates the minimum distance between two MBRs M; and
M,. If any of the two (both) MBRs degenerates (degenerate) to a point (two points),
then we obtain the minimum distance between a point and an MBR [24] (between two
points).
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Definition. MINMINDIST (M, M)
Given two MBRs M; = (a, b) and My = (c, d), in E(? (d-dimensional Euclidean space)
M; = (a, b), where a = (aq, as, ..., ag) and b = (b, ba, ..., by) such that a; <b;, ¥
1<i<d
M,y = (c, d), where ¢ = (cq, ca, ..., ¢q) and d = (dy, ds, ..., dg) such that ¢; < d;, V
1<i<d
we define MINMINDIST(M 1, M>) as follows:

P ci — b, if c; > b;
MINMINDIST (M, M) = y?, such that y; = < a; — d;, if a; > d;
i=1

0, otherwise

MINMINDIST(M;, Ms) serves as lower bound function of the Euclidean distance from
the K closest pairs of objects enclosed by the MBRs M; and M (lower-bounding prop-
erty). An important property that relates MINMINDIST(M;, M2) and the minimum
distance between two objects Oy and O, in E(® (](01, O2)|]) and serves as the basis for
the pruning heuristic is the following. Given two MBRs M; and M, in E(?), enclosing
two set of objects SO1 = {O1;: 1 <1i < Ni} and SOz = {O2;: 1 < j < Ny}, respec-
tively, for all pairs of objects (O1;, O2;) belonging to SO1 xSO2: MINMINDIST (M,
Mz) < [[(O1i; Og5)]]-

The general pruning heuristic for K-CPQs over R-trees is the following: if MIN-
MINDIST(M 1, M>) > z, then the pair of MBRs (M1, M>) will be discarded, where z is
the distance value of the K-th closest pair that has been found so far.

In order to design an efficient algorithm that retrieves the 1 < K < Ng;*Ng2
different pairs of points from S;xSs (where both point datasets are indexed by R-
trees), the concept of synchronous tree traversals following a Depth-First or Best-First
search can be applied for query processing [9]. Since Best-First search is I/O optimal (in
absence of buffers, it only visits the necessary nodes for obtaining the query result [2])
and Depth-First search accesses more partitions than actually necessary, we are going
to choose the first searching strategy for the K-CPQ algorithm that will guide our cost
analysis.

The Best-First K-CPQ algorithm needs to keep a minimum binary heap (Main-
heap) with the references to pairs of nodes (characterized by their MBRs) accessed
so far from the two different R-trees and their minimum distance (<MINMINDIST,
Addrg;, Addrgs >). It visits the pair of MBRs (nodes) with the minimum MIN-
MINDIST in the Main-heap, until it becomes empty or the MINMINDIST value of the
pair of MBRs located in the root of Main-heap is larger than the distance value of the
K-th closest pair that has been found so far (z). To keep track of z, we also need an ad-
ditional data structure that stores the K closest pairs discovered during the processing
of the algorithm. This data structure is organized as a maximum binary heap (K-heap)
and will hold pairs of objects according to their minimum distance (the pair with the
largest distance resides in the root). In the implementation of K-CPQ algorithm we
must consider the following cases: (1) initially the K-heap is empty (z is initialized to
00), (2) the pairs of objects reached at the leaf level are inserted in the K-heap until it
gets full (z keeps the value of 00), (3) if the distance of a new pair of objects discovered
at the leaf level is smaller than the distance of the pair residing in the K-heap root,
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then the root is extracted and the new pair is inserted in the K-heap, updating this
data structure and z (distance of the pair of objects residing in the K-heap root).

4 A Cost Model for K-CPQ using R-trees

The K-CPQ is a combination of spatial join and K-nearest neighbor queries. Like a
spatial join query, all pairs of objects are candidates for the final result. Like a K-
nearest neighbor query, proximity metrics form the basis for pruning heuristic and the
final ordering. Therefore, a combination of both cost models would be reasonable to
adopt in order to propose a cost model for the K-CPQ.

4.1 Preliminaries

According to the analysis of R-tree joins in [21,28] and assuming (without loss of
generality) that the search space is a normalized d-dimensional unit hypercube [0, 1]¢,
we will consider the symbols shown in Table 1 for the analysis of the cost model.

Symbol |Definition

d number of dimensions (1 < k < d), i.e. embedding dimension

Do,ri capacity dimension (Hausdorff fractal dimension) of points indexed in
the R-tree R;

p correlation exponent of two points datasets (pair-count exponent)

Si point datasets that are indexed in the R-tree R; with cardinality Ng;
Crmaz,ri |maximum number of objects per node (maximum branching factor,
M) in the R-tree R;

Uavg,Ri average node utilization in the R-tree R;

fri effective R-tree node capacity or average R-tree node fan-out in the
R-tree R;

hRi height of the R-tree R;

Nrg; number of points indexed in the R-tree R; (cardinality of S;, Ng; =
Nri)

Nri,l average number of R-tree nodes in the R-tree R; at level [ (Ngs,root =
Nrio = 1)

SRi, Lk average extent of node MBRs of the R-tree R; at level [ on dimension

k (1 € k < d). In other words, it is the average side length of node
MBRs of R; at level | on dimension k

distep (K) |distance of the K-th closest pair

o(K) K-CPQ index selectivity

NA.,(K) |average number of pages retrieved by a K-CPQ query

Table 1. List of symbols

Under the following two assumptions:

— Squaredness assumption. We consider square node MBRs (hypercubes), since this
is a reasonable property for “good” R-trees [20]. We make this assumption in order
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to make modeling manageable. R-tree-like structures as the R*-tree and the X-tree
try to produce such node MBRs.

— Biased query model. We assume that queries are more probable in high-density
areas of the address space and that the anchor points are allowed to land only on
data points. Thus, high-density areas attract more candidates for the query result.

fri, hri, Ngi;y and sg; 1 r can be estimated as follows [12,28]:
fRi = CmaX,Ri * U‘“’!LRH hRi =1+ |—10ngi (NRi/fRi)-|7 NRi,l = NRi/ (fRi)hRi 7l,
Moreover, taking into account the squaredness assumption in the biased model, we
have D
()l 100
Ng, ’
where !l =0,1,..., hg; — 1

SR; I,k = SR;,l = <

(the root is assumed at level [ = 0 and leaves at [ = hg; — 1).

4.2 Estimating the Number of Node Accesses

Formally, the problem of R-tree cost analysis for spatial join queries is defined as fol-
lows [28]: Let d be the dimensionality of the normalized d-dimensional unit space [0,
l]d. Let us assume two spatial datasets of cardinality Ng; and Ngo, with the corre-
sponding MBR approximations of spatial data being stored in two R-tree indices Ry
and Res, respectively. The goal of the cost analysis is a formula that would efficiently
estimate the average number of nodes accessed (NA) in order to process a join query
between the two datasets, based on the knowledge of the data properties and extracting
information from the corresponding R-tree structures.

Let the heights of the R-trees Ry and Ry, be hgy and hgs, respectively. Assume that
both R-tree root nodes are stored in main memory. At each level [;, 0 < [; < hg; — 1,
R; contains Ng; ;; nodes of average size sg; i, on each dimension k£ (1 < k < d). The
overall estimation of the total cost in terms of R-tree node accesses for the spatial join
operation (when the spatial predicate is overlap) is defined by the following formula [28]
(without loss of generality, it is assumed that hra < hpgy):

th—l
NAgpatialjoin (R1, R2) = Z (NA(Ry, R2,1l1) + NA(Rs, Ry,12))
11=0
_ ll - (th - hR2)7 th - hR2 S ll S hR1 -1
where, l5 = {0, 0< b < h, — hn,

The cost of the previous formula at each level is the sum of two factors which
correspond to the costs for the two R-trees, namely NA (R, Ro,l;) and NA(R2, Ry, 12),
respectively. For the upper hg; — 1 levels of the two R-trees:

d
NA(Ry, Ry, 1) = NA(Ry, Ry, ly) = Ny 1o % Ny iy * [[ (SRuitsk + SRt k)
k=1
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where hry — hrs < li < hgy —1and 0 <y < hpy — 1. We can see that the term

d

11 Grotik + 5Rato)
k=1

corresponds to the join index selectivity, and it equals the probability that a random
pair of nodes from two R-trees at levels [; and [2 is accessed (i.e. the number of node
pairs at levels [y and Iy to be processed divided by the theoretically possible node
pairs). When we use indexes, the only gain using algorithms for query processing is the
indez selectivity, i.e. not all pairs of nodes must be accessed and not all pairs of objects
must be compared.

The above formula can be applied for obtaining the cost of the K-CPQ, using an
appropriately defined K-CPQ index selectivity (o) (it depends mainly on the charac-
teristics of the index and on the distance parameter dist., (), the distance of the K-th
closest pair of the K-CPQ).

The K-CPQ index selectivity (o) can be obtained by using the concept of Minkowski
sum [2]. The Minkowski sum of two geometric objects A and B, each seen as an infinite
number of vectors (points) in the d-dimensional data space (e.g. A = {ay, ap, ...} and
B = {by, ba, ...}), is defined as the set of vector sum of all combinations between
vectors in A and B: A @ B={a+ b:a€ A, be B} ={a; + by, a1 + by, an +
by, ...}. For the cost modeling we are only interested in the volume of the Minkowski
sum, V 24 p. The simplest case is both spatial objects to be d-dimensional MBRs, M;
and M, with side length rj, and s (1 < k < d), respectively. In this case, the volume
Varigae of the Minkowski sum of two MBRs is the MBR with side length t, where
each ty corresponds to the sum of rj and s; (note the likeness with the expression of
join index selectivity):

d
VMl@MQ((T17r27 ...,Td), (817827 "'7Sd)) = H (’I"k + Sk)
k=1

In [8] for the similarity join operation (two datasets of multidimensional points are
combined in such a way that the result contains all pairs of points where the distance
does not exceed a given distance ¢), the volume of the Minkowski sum of three objects
(two MBRs and a e-sphere) was given by the following binomial formula:

VMlsBM2EBSE((7“1,7“2, s Td), (81,82, .., 84),€) =

L ((d B Vi
= (<k> et m)

k=0
where I'(x) is the gamma function obeying the recursive definition I'(x + 1) = x *
I'(z), I'(1) =1, I'(1/2) = /7, which may be approximated by I'(z + 1) = (z/e)® *
V2%xT .
In our case (the K-CPQ), for the Euclidean distance, a pair of R-tree nodes is
processed whenever the minimum distance between their two MBRs does not exceed
the dist.p(K) distance value. In order to determine the probability of this event, we
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enlarge the MBR of one node so that this MBR. touches any point of the MBR of the
other node (Minkowski sum of two MBRs is an MBR, with added side lengths). This
new MBR is enlarged even more by a sphere of radius dist.,(K) whose center point is
drawn over the perimeter of the enlarged MBR. The 2-dimensional Minkowski sum of
two MBRs and a z-sphere (z = dist.,(K)) is shown in the Figure 1.

SRI11,1

SR2,12,1
<>
z

Fig. 1. The 2-dimensional Minkowski sum of two MBRs and a z-sphere (z = dist.,(K)).

SRI.11,2

Sri11,2 1 SR2.122

The volume of the Minkowski sum of two MBRs of two level I; R-tree nodes (1
< l; <hpg;—1) from two R-trees Ry and Ry with heights hgs < hg; and one sphere of
radius dist.p(K), divided by the data space volume (the volume of the d-dimensional
unit space [0, 1] which is equal to 1), expresses the access probability (K-CPQ index
selectivity, o (K)) of the corresponding nodes and it is given by the following binomial
formula (note that R; contains Ng;;; nodes of average side lengths sg; i r on each
dimension k£, 1 < k < d, with minimum distance between them smaller than or equal
to distep(K)) :

d /2 4 (dis 5 p/d
0= (35 (1) o o+ (a0

k=0

ll - (th - th)) th - th S ll S th - ]-
0, 0<li <hgr, —hr,

Although, the Minkowski sum is used in [8] for uniform and independent data only,
the interested reader may study [7] (especially Section 6) to see why we can use this
method for the calculation of o (K) for large classes of real data. Moreover, the use of
the exponent p/d for the whole sum in the above formula is explained in [3,4].

Finally, the overall estimation of the total cost in terms of R-tree node accesses for
K-CPQ is given by the following formula (without loss of generality, it is assumed that
hr2 < hgi, and that both root R-tree nodes are stored in main memory):

where, l5 = {

hR1—1
NAcp(Ry, Ry, K) = NAp(K) =25 > (Ng,, * N, 1, % 0(K)) (1)

[1=0
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ll - (th - hRQ)) th - hR2 S ll S th - ]-

where, 12 = {0, 0 S ll S hR1 - hR2

4.3 Estimation of the Distance of the K-th Closest Pair, dist.,(K)

We are interested in the estimation of dist.,(K) under the Euclidean distance for ar-
bitrary object distributions. Real datasets show a clear divergence from the uniformity
and independence assumptions [12] and, hence, it is better to consider the uniformity
as a special case. Our analysis uses the following result from [3]: Given a set of points
S1 with finite cardinality Ng; embedded in a unit hypercube of dimension d and its
correlation dimension Ds, the average number of neighbors nb(e, ‘d-shape’) of a point
within a region of regular shape and radius ¢ is given by nb(e, ‘d-shape’) = (Ng; -
1) * Vol(e, ‘d-shape’)P?/?, where Vol(e, ‘d-shape’) is the volume of a shape (e.g. cube,
sphere) of radius e.

If we extend this result to two points datasets (S; and Ss) with finite cardinali-
ties Ng1 and Ngo (in a similar way used for spatial join selectivity Seljin(€) in [3]),
embedded in a unit hypercube of dimension d (embedding dimension) and consider
their correlation exponent p, then we can obtain the average number of closest pairs
within regular shape characterized by a distance r, using the following formula: ep(r,
‘d-shape’) = (N g1 * Nga) * Vol(r, ‘d-shape’)?/®, where Vol(r, ‘d-shape’) is the volume
of a d-dimensional regular shape characterized by a distance r > 0.

We can use the previous formula to estimate the average distance of K-th closest
pair under the Euclidean distance, using a similar procedure used in [21] to get the
K-th nearest neighbor for K-NNQ:

e @2 ) K\
distep(K) = NG * <NR1 *NR2>

4.4 Estimation of the Correlation Exponent (p)

The pair-count law [14] governs the distribution of pair-wise distance between

two real, d-dimensional point datasets. The exponent of the pair count law, so-called
pair-count exponent p (correlation exponent), can be calculated using a box-counting
algorithm based on the concept of boz-occupancy-product-sum (BOPS) [14]. This is an
interesting extension of the algorithm proposed in [4] for computing D, (generalized
fractal dimension).

Definition. Pair-count function, PC(r) [14]

For two point datasets, S; and S», and a given distance r > 0, the pair-count function,
PC(r), counts the number of pairs within a Euclidean distance smaller than or equal
to r. PC(r) = count((a;, bj): dist(a;, bj) < r), such that a; € S; and b; € S,.

Definition. Correlation function, C(r).
For two point datasets, S; and Sy, with finite cardinalities Ng; and Ngo, and a given
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distance r > 0, the correlation function, C(r), represents the probability that the Eu-
clidean distance between two different d-dimensional points from two different point
datasets is less than or equal to r.

_ Number of Pairs of Points Separated by less than r  PC(r)

c
(r) Total Number of Pairs of Points Ng, * Ng,
1 NRl NR2
C(r) = N s N Z Z O(r — dist(ai, bj))
1 2 =1 j=1

where a; € Sq, b; € Sy, the closest pairs are counted through an indicator function:
O(x) =1for x > 0 and O(x) = 0 for x < 0, and dist is the Euclidean distance.

Law. Power law for correlation function (follows from Law 1 of [14])

The correlation function, C(r), follows a power law C(r) o< r?, where p is the correlation
exponent and o stands for ‘proportional’; i.e. C(r) = 8 * r?, where 3 is a proportionality
constant.

Definition. Correlation exponent, p.
The exponent of the power law, called correlation exponent p, is defined as

9(log(C(r)))
9(log(r))

In order to obtain C(r), we can use the box-counting algorithm based on the concept
of boz-occupancy-product-sum (BOPS) and C(r) o« BOPS(r) [14]. In order to calcu-
late the correlation exponent p, it is useful to plot log(BOPS(r)) as a function of
log(r) and measure the slope of the linear part of the obtained curve by performing
a linear interpolation (this slope corresponds to the correlation exponent, p); hence
p = 6(log(BOPS(r)) / d(log(r)). Intuitively, p shows how the average number of closest
pairs from two different pints datasets grows, as the distance r increases.

Definition. Box-Occupancy-Produce-Sum, BOPS(r).
The BOPS of a grid with cell size r is defined as the sum of products of occupancies as

N(r)
BOPS(T') = Z pi,5'1 *pi752

i=1

where, N(r) is the number of grid cells with side r that are occupied by the two
point datasets; p; 51 and p; g2 are the percentage of points of the datasets S; and Ss,
respectively, which fall inside the i-th cell with side r.

A consequence of this definition is that BOPS(r) oc 7# [14], in a similar sense that
the sum of squared occupancies, S2(r) = X'p? is proportional to the correlation fractal
dimension Dy (Sa(r) o rP2) [4].

Having a method for the calculation of p from the involved datasets, we have com-
pleted our cost model: we are able to evaluate the total cost of the K-CPQ for various
values of K, d and Dy using formula (1).
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5 Conclusions and Ideas for Future Extensions

In this paper, we presented an I/O cost model for the K Closest Pairs Query (K-
CPQ) using R-trees. The development of our model was based on previous analytical
results for nearest neighbor and spatial intersect join queries. We did not follow the
unrealistic assumptions of uniformity and independence. On the contrary, the formulae
we developed correspond to real data and depend mainly on the capacity dimension
(Do), the correlation exponent (p) and number of pairs in the final result (K). Our
analysis assumes a typical (non-uniform) workload where queries are more probable in
high-density areas of the address space. The cost model we developed can be used for the
estimation of selectivity of a specific query which is needed during query optimizations
(during the comparison of execution costs of alternative processing strategies that is
performed by the optimizer of a DBMS) and/or for the evaluation of access method
designs by the research community.
Future work may include:

— Experimentation with high-dimensional points datasets, taking into account an
upper and lower bound of the average number of query sensitive anchors (based on
Euclidean and maximum metrics) rather than the exact values [21].

— Study of the effect of buffering, extending the previous analysis if we use a path-
buffer for each underlying R-tree [28] and a global LRU buffer to both R-trees [17].

— A theoretic proof of the fact that the correlation exponent (p) has several interesting
properties [14]: it is invariant to the used L;-distance and it includes the correlation
fractal dimension, D, as a special case.

— Generalization of our study for non-points spatial objects.
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