A Query Evaluation System for
Multidimensional Semi-Structured Data

Antonis Efandis', Kostis Pristouris', and Yannis Stavrakas'-2

! Knowledge & Database Systems Laboratory
National Technical University of Athens (NTUA), 15773 Athens, Greece
2 Institute of Informatics & Telecommunications,
National Center for Scientific Research (N.C.S.R.) ‘Demokritos’,
15310 Aghia Paraskevi, Greece

Email: {aefan,kprist}@freemail.gr ystavr@iit.demokritos.gr

Abstract. Multidimensional semi-structured data (MSSD for short) are semi-
structured data where information entities may present different facets under
different conterts. Context is expressed using variables called dimensions and
represents a set of alternative worlds, under which data obtain a substance. In
previous work, a graph data model for MSSD called Multidimensional OEM
(MOEM for short) has been proposed, which is an extension of OEM that in-
corporates the notion of context and supports multifaceted entities. Moreover, a
query language for MOEM called Multidimensional Query Language (MQL for
short) has been defined, which treats context as first class citizen and is able to
formulate cross-world queries. In this paper, we present an MQL query evalua-
tion system, which is part of a more general platform for managing MSSD. We
describe the system architecture and discuss its modules in detail. We demon-
strate the operation of the system by following an MQL query example through
its evaluation steps. The evaluation process is based on representing MOEM
graphs as OEM graphs and translating MQL queries to equivalent Lorel queries
which are subsequently evaluated by Lore. This allows a comparison between
the expressiveness of the above query languages and data models when context-
driven queries are involved.

1 Introduction

The diversity of Web users has raised new issues [1] to be considered by the database
research community. Web users may have different perception of the same entities,
therefore different variants of the same information may become relevant in different
situations. Information providers have to take into consideration this diversity and
maintain different variations of their services. This raises the need for data models
that support different facets of the same information entity, whose contents can vary
in structure and value, as well as for ways to query such models.

To deal with those issues, multidimensional semi-structured data [2] (MSSD for
short) have been proposed, which are semi-structured data [3] that present different
facets under different contexrts. The main difference between conventional and mul-
tidimensional semi-structured data is the introduction of context specifiers. Context

218

specifiers are syntactic constructs that are used to qualify pieces of semi-structured
data and specify sets of worlds under which those pieces hold. In this way, it is possible
to have at the same time variants of the same information entity, each holding under a
different set of worlds. An information entity that encompasses a number of variants is
called multidimensional entity, and its variants are called facets of the entity. Each facet
is associated with a context that defines the conditions under which the facet becomes
a holding facet of the multidimensional entity. Multidimensional Query Language [4]
(MQL for short) treats context as first-class citizen, and can express context-driven
queries on MSSD, queries in which context is important for selecting the right data.
MQL is based on key concepts of Lorel [5], and its data model is Multidimensional
OEM (MOEM for short), an extension of OEM [3] that is suitable for MSSD. Context-
aware data models and query languages like MOEM and MQL can be applied on a
variety of cases and domains; in [6, 7] we show how MOEM and MQL can be used to
represent and query histories of OEM databases.

In this paper we present a prototype system for MQL query evaluation. The archi-
tecture of the system is presented in detail, as well as the way that its various modules
cooperate in order to carry out the query evaluation. Part of this process involves the
transformation of MOEM to OEM databases and the translation of MQL to Lorel
queries. This allows a direct comparison between the two data models and the two
query languages. The increased complexity of the OEM model, introduced to support
context, information, shows the benefits of MOEM. Moreover, the comparison of two
equivalent queries, one in Lorel and one in MQL, demonstrates the increased syntactic
complexity of the former and the elegance and expressiveness of the latter.

This paper is structured as follows: Section 2 reviews preliminary material on MSSD,
MOEM, and MQL. Section 3 presents the architecture of the system and describes
each module. In Section 4, a step by step example of the evaluation process of an
MQL query is presented. Section 5 deals with general implementation issues. Finally,
Section 6 concludes the paper.

2 Multidimensional Semi-Structured Data

The notion of world is fundamental in MSSD. A world represents an environment
under which data obtain a substance. In the following definition, we specify the notion
of world using a set of parameters called dimensions.

Definition 1. Let D be a nonempty set of dimension names and for each d € D, let
V4 be the domain of d, with V4 # 0. A world w with respect to D is a set of pairs (d,v),
where d € D and v € V4, such that for every d € D exactly one (d,v) belongs to w.

In MSSD, sets of worlds are represented by context specifiers (contexts for short),
which can be seen as constraints on dimension values. A simple context specifier exam-
ple is [year=1979], which represents the worlds for which the dimension year has the
value 1979. The context specifier [language=greek, format in {html,pdf}] corre-
sponds to those worlds where language is greek and format is either html or pdf. The
context, specifier [season=summer | season=spring, daytime=noon] is more com-
plex, and represents the worlds where season is summer, together with the worlds
where season is spring and daytime is noon.

219

The context specifier [] is a universal context specifier and represents the set of all
possible worlds with respect to any set of dimensions D, while [-] is an empty context
specifier, and represents the empty set of worlds with respect to any set of dimensions
D. [2] defines operations on context specifiers, such as context intersection and context
union, that correspond to the conventional set operations of intersection and union on
the related sets of worlds. In addition, comparison operations like context equality and
context subset have been defined, as well as the transformation of a context specifier to
the set of worlds that it represents with respect to a set of dimensions D.

2.1 Multidimensional OEM

Multidimensional Data Graph (MDG) is an extension of Object Exchange Model (OEM)
[5], suitable for representing multidimensional semi-structured data. Multidimensional
Data Graph extends OEM with two new basic elements:

— Multidimensional nodes represent multidimensional entities, and are used to group
together nodes that constitute facets of the entities. Graphically, multidimensional
nodes have a rectangular shape to distinguish them from conventional circular
nodes.

— Context edges are directed labelled edges that connect multidimensional nodes to
their facets. The label of a context edge pointing to a facet, is a context specifier
defining the set of worlds under which that facet may hold. Context edges are drawn
as thick lines, to distinguish them from conventional (thin-lined) OEM edges.

In MDG, the conventional circular nodes of OEM are called context nodes, while
conventional OEM edges (thin-lined) are called entity edges and define relationships
between objects. All nodes are considered objects, and have unique object identifiers
(0ids). Context objects are divided into complex objects and atomic objects. Atomic
objects have a value from one of the basic types, e.g. integer, real, strings, etc. A
context edge cannot start from a context node, and an entity edge cannot start from
a multidimensional node. Those two are the only constraints on the morphology of
MDG.

The Multidimensional Data Graph shown in Figure 1 represents a “multidimen-
sional” club. This club operates on different addresses during the summer period and
the winter period, a fact that is represented in the graph by the multidimensional node
with oid &4, that has two facets (oids &5 and &6), depending on the value for the period
dimension. Moreover, reviews for the club are provided in two languages, through nodes
&13 and &14 of the graph. These nodes constitute facets for the multidimensional node
&12 and may hold under the contexts [lang=gr] and [lang=en], respectively.

Two fundamental concepts related to MDGs are explicit context and inherited con-
text [2]. The explicit context of a context edge is the context specifier assigned to that
edge, while the explicit context of an entity edge is considered to be the universal con-
text specifier [1. The explicit context can be considered as the effective context only
within the boundaries of a single multidimensional entity. When entities are connected
together in a graph, the explicit context of an edge is not the effective context, in the
sense that it does not alone determine the worlds under which the destination node

220

club

@ review,
name

address Parking &10

“Club 227 [period=summer]
[period=winter]
[period=summer] &12

[period=winter] [period=winter] @

@ J [period=summer] llang=gr] [lang=en]
7

) 4) 4

10 et (2 ® © ©
189, Poseidonos . @ @

“22, Vouliagmenis” 150

“Kalo” “ "
300 alo Good

Fig. 1. A multidimensional club

holds. The reason for this is that, when an entity es is part of (pointed by through an
edge) another entity ey, then es can have substance only under the worlds that e; has
substance. This can be conceived as if the context under which e; holds is inherited to
e2. The context propagated in that way is combined with (constraint by) the explicit
context of each edge to give the inherited context for that edge.

In MDGs leaves are not restricted to atomic nodes, and can be complex or multidi-
mensional nodes as well. This raises the question under which worlds does a path lead
to a leaf that is an atomic node. Those worlds are given by context coverage, which
is symmetric to inherited context, but propagates to the opposite direction: from the
leaves up to the root of the graph. For every node or edge, the context intersection of
its inherited context and its context coverage gives the inherited coverage of that node
or edge. The inherited coverage is therefore the effective context under which a node
or edge holds [4]. A related concept is path inherited coverage, which is given by the
context intersection of the inherited coverages of all edges in a path, and represents
the worlds under which a complete path holds.

Every Multidimensional Data Graph can be transformed to a canonical form, which
is a graph that contains the same information as the original, however it exhibits
certain additional properties. In the canonical form of a graph a context edge can
only point to context nodes, while an entity edge can only point to multidimensional
nodes. Therefore, every possible path in a graph that is in canonical form is formed by
a repeated succession of one entity edge and one context edge.

The graph in Figure 2 is the canonical form of the graph in Figure 1. Notice the
insertion of the multidimensional node with oid &53, and of the context edge with

221

—club,

852
[
&2 review,
name——
i address parking
[period=winter] [perlod summer, lang=en]
[perlod summer] [period=summer] [period=summer, lang=gr]
[period=winter] [period=winter]
G2z @)
“Good”
“189, Poseidonos” @ 300 “Kalo”

150
“22, Vouliagmenis”

Fig. 2. Canonical form of the MDG in Figure 1

explicit context [](universal context) after the entity edge labelled name. Moreover,
the two consecutive multidimensional nodes with oids &£10 and &12 have been merged
into a single node (oid &54) and the respective context specifiers have been adjusted
accordingly.

A context-deterministic Multidimensional Data Graph is a Multidimensional Data
Graph in which context nodes are accessible from a multidimensional node under mu-
tually exclusive inherited coverages (hold under disjoint sets of worlds). A Multidimen-
sional OEM graph, or MOEM for short, is a context-deterministic Multidimensional
Data Graph whose every node and edge has a non-empty inherited coverage. In an
MOEM graph all nodes and edges hold under at least one world, and all leaves are
atomic nodes. The Multidimensional Data Graphs in Figures 1 and 2 are MOEM
graphs.

2.2 Multidimensional Query Language

Multidimensional Query Language [4], or MQL for short, is a query language specifically
designed for MOEM databases. MQL is based on a “core language” for semi-structured
data described in [8], and is effectively an extension of Lorel [5].

An essential feature of MQL is context path expressions, which are path expressions
qualified by context specifiers and context variables. Context variables bind to the path
inherited coverage of the path to which they apply. Context path expressions take
advantage of the canonical form of Multidimensional Data Graphs, and are formed by
a number of entity parts and facet parts succeeding one another. Entity parts start with

222

¢.7 (except for the entity edge pointing to the root) and are matched against entity
edges, while facet parts start with ¢::’> and are matched against context edges.

[period=winter]club::[-].address::[-] Z

In the context path expression above, club and .address are entity parts, while
the two expressions containing empty context specifiers : : [-] are facet parts. A facet
part matches a corresponding context edge, if it is subset of the explicit context of the
edge, in other words, if every world it defines is covered by the explicit context of the
edge. Consequently, a facet part with the empty context ::[-] matches any context
edge. The context specifier [period=winter] is an inherited coverage qualifier and is
matched against the path inherited coverage of the club::[-].address::[-] path.
For a path to match an inherited coverage qualifier, it must hold under every world
specified by the qualifier. An inherited coverage qualifier may precede any entity part or
facet part in a context path expression. Facet parts can often be omitted, implying the
empty context [-]. Therefore, the above context path expression can also be written
as:

[period=winter]club.address Z

Evaluated on the graph of Figure 2, this context path expression causes the context
object variable Z to bind to node &6.

Example 1. The following MQL query returns the name and summer address of a club
whose winter address is known:

select name: N, summer_address: Y

from [Plclub.address Y,
[period=winter]club.address Z,
club.name N

where Z = "22, Vouliagmenis"

within [P]*[period=summer] != [-]

In the query of Example 1, the from clause is the first to be considered during eval-
uation. This clause contains context path expressions that result in bindings of object
variables Y, Z, and N and of the context variable [P]. Tuples of variable bindings are fil-
tered in the where clause, which requires that Z has the value ¢ €22, Vouliagmenis’’.

Context path expression [P]club.address contains the context variable [P], which
is subsequently used in the condition [P]*[period=summer] != [-] in the within
clause of the query. The within clause is used in MQL to express conditions on contexts;
in this case, it requires that the context intersection of context [period=summer] with
the path inherited coverage bound to [P] must result in a non-empty set.

3 System Architecture

In this section we present the architecture of our prototype MQL query evaluation
system, which is in fact the query subsystem of an infrastructure for manipulating

223

MSSD [2,9]. This infrastructure saves and loads MSSD in a number of formats, sup-
ports the graphical creation of MOEM models, and provides a number of functions
that perform context operations. The graphical interface that gives access to this in-
frastructure is called MSSDesigner.

The query evaluation system presented here uses the data structures and the API of
this infrastructure for implementing the operations required for query evaluation. Apart
from that, it integrates with and extends MSSDesigner with options for submitting
queries and presenting results.

Graphical MaL

User
Interface QUERY

A

DATA MODEL TRANSFORMER QUERY TRANSLATOR
DATABASE INITIALIZATION RESULT HREPARATION
v

MQL QUERY
PARSER

A
CONTEXT
ENCODING

MOEM CANONICAL
FORM

MOEM TO OEM

OEM TO MOEM
MOEM FORM
SIMPLIFICATION

A 4
CONTEXT
DECODING

LOREL QUERY
GENERATOR
(REQUEST) ()
PREPARATION RESPONSE HANDLER

CLIENT COMMUNICATION MNGR

90
{ NETWORK >
N

WEB SERVER
CW) (W)
HANDLER PREPARATION

| LORE INTERFACE |

iz

| LORE |

Fig. 3. Architecture of a query system for MOEM data.

224

3.1 Overall Architecture

The system is developed on top of Lore [10], which is a DBMS for semi-structured data
that uses OEM [5] as a data model and Lorel [5] as a query language. Since MOEM is an
extension of OEM and MQL is based on Lorel, it was sensible to develop a mechanism
for transforming MOEM graphs into corresponding OEM graphs and translate MQL
queries to “equivalent” Lorel queries.

As depicted in Figure 3, the system runs over a network in order to achieve plat-
form independence between the Server Side and the Client Side. Communication is
performed through HTTP requests. The following reside on the Server Side: a web
server for HTTP request handling, a module that interfaces with Lore, and Lore itself.
The Client Side consists of modules that comprise the query subsystem of the MSSD
infrastructure, as well as the GUI extension to MSSDesigner.

3.2 System Modules

Figure 3 shows all the modules of the system, and the sequence they are used during
the principal system operations. Important operations include database initialization,
submission and evaluation of an MQL query, and results construction and presentation.
The following provide a description of the modules and their role in the system.

The Server Side consists of Lore, the Lore interface, and the Web Server modules.

Lore: Lore provides a generic user interface for database creation and management,
as well as an API for application development. Multiple OEM databases can be man-
aged simultaneously, which are provided as input in some textual representation. Lorel
queries can be submitted programmatically or through a generic user interface, and
the results are returned either in some textual format, or as a data structure residing
in the system memory.

Lore Interface: This module constitutes the interface through which our system
uses Lore. It includes: a) a method for creating an OEM database, b) a method for
dropping the current Lore database, ¢) methods for connecting to the Lore database
and for query submission, and d) a method for the retrieval of the OEM result graph
in XML format, after the evaluation of a Lorel query.

Web Server: This module accepts HTTP requests and sends back HTTP responses. It
implements methods specific to the query system, which decode the requests accepted
by the client and encode the responses, so that they can be utilized accordingly by the
appropriate Client Side modules.

The Client Side consists of the Client Communication Manager, the Data Model
Transformer and the Query Translator modules.

225

Client Communication Manager: This module is responsible for communicating
with the Web Server module. Through the Request Preparation and the Response Han-
dler, requests are formed and transmitted to the Web Server, and responses are received
and decoded. Together with the Web server, this module makes up the communication
channel between the Client Side modules and the Lore Interface. In this way, the Client
Side modules can submit commands (db creation, db destruction, query submission)
to Lore, and receive the appropriate results.

Data Model Transformer: The Data Model Transformer is responsible for trans-
forming an MOEM database to a corresponding OEM graph, and for the reverse process
of transforming OEM results back to MOEM. The MOEM to OEM transformation is
carried out during database initialization. The produced OEM is saved in a suitable
textual format and is sent through an HTTP request at the Server Side for loading into
Lore. The reverse process of OEM to MOEM transformation is carried out on OEM
results that are sent back by the server.

Query Translator: This module consists of the MQL Query Parser and the Lorel
Query Generator. The input is an MQL query submitted by the user. After the syn-
tactical analysis the equivalent Lorel query is produced and submitted to the Client
Communication Manager.

As implied by the flow of arrows in Figure 3, the above modules are involved in three
main processes: database initialization, query evaluation, and presentation of results.
Those processes are explained in the next section by using an example MQL query
evaluated on a sample MOEM database.

4 A Comprehensive Example of MQL Query Evaluation

This section provides a walk-through in the evaluation of a sample MQL query by the
system. We present the intermediate data that is generated by the system during this
process, and associate this data with the modules that produce or consume it.

As a sample database we will consider the MOEM database in Figure 1.

4.1 MOEM Database Initialization

As described in Section 3, before the system can perform any query evaluation op-
erations, the database needs to be initialized. The first step of this procedure is the
construction of the canonical form of the current MOEM database. This canonical form,
which is depicted in Figure 2, is subsequently transformed to a corresponding OEM,
which will become the database of Lore. All operations that regard this transformation
are handled by the Data Model Transformer module.

Context information is represented in this OEM graph using integer values that are
mapped to every possible world. Table 1 lists the encoding of possible worlds for the
MOEM database in Figure 1.

226

World specifier Code

[lang=gr, period=summer] 0

[lang=gr, period=winter]

[lang=en, period=summer]

W N —

[lang=en, period=winter]

Table 1. Encoding worlds

The OEM graph that corresponds to the MOEM graph of Figure 2 is too complex
to be presented in its entirety, however in Figure 4 we illustrate a portion of the MOEM
graph, together with the corresponding portion of the OEM graph. Note that before
this transformation can take place, the inherited coverage of all the edges in the MOEM
graph needs to be calculated.

The entity edge (&2, address, &4) in the MOEM graph of Figure 4(a) is repre-
sented in the corresponding OEM graph of Figure 4(b) by two successive edges and a
new intermediate node (hub node) with oid &65. The first edge starts from the same
node and has the same label as the original edge, but points to the hub node, whereas
the second edge (labelled _ett to state that the respective MOEM edge is an entity
edge) starts from the hub node and points to the destination node of the original
MOEM edge. This construct provides a means to represent the inherited coverage of
the edge in the OEM model. This is achieved by introducing nodes with integer values
from Table 1 that uniquely identify worlds (world nodes). Edges labelled _icw connect
the hub node with the world nodes that constitute the inherited coverage of the original
MOEM entity edge. For the entity edge in question, hub node(oid &65) is connected to
world nodes &w0, &w1l, &w2, &w3, since the inherited coverage of the edge is the universal
context.

Similar constructs are used to represent context edges as well, e.g. edge (&4,
[period=summer], &5). In this case, the edges connecting to the hub node are la-
belled _facet and _cxt, and the hub nodes are connected to the world nodes not only
by _icw edges (inherited coverage), but also by _ecw edges that are used to represent the
explicit context of the edge (entity edges also have explicit context, but by definition
it is always the universal context [1).

4.2 Query Translation and Evaluation

After database initialization, the system can receive and evaluate MQL queries. The
sample query used in this section is the one of Example 1. With the submission of
this MQL query, the Query Translator module of the system uses the correspondence
denoted in Table 1, to construct the equivalent Lorel query that follows.

© 00 N U WN -

=
= O

12
13
14
15

227

(a)

club

&52

5

address iow

[period=summer] [period=winter]

“189, Poseidonos” “22, Vouliagmenis” “189, Poseidonos” “22, Vouliagmenis”

Fig.4. MOEM to OEM conversion example

select name: N, summer_address: Y
from club. ett._facet _YOcxt, _YOcxt._cxt YO,
Y0.address _Yett, _Yett._ett. facet _Ycxt, _Ycxt._cxt Y,
club. ett._facet _ZOcxt, _ZOcxt._cxt ZO,
Z0.address _Zett, _Zett._ ett._facet _Zcxt, _Zcxt._cxt Z,
club. _ett._facet _NOcxt, _NOcxt._cxt NO,
NO.name _Nett, _Nett._ett._facet _Ncxt, Ncxt._cxt N
where (Z = "22, Vouliagmenis")
and (_ZOcxt._icw W1 = "1" and _ZOcxt._icw W3 = "3")
and (Zcxt. icw{ Wi} = "1" and _Zcxt._icw{W3} = "3")
and (Zett. icw{ Wi} = "1" and _Zett._icw{W3} = "3")
and (exists(((_YOcxt._icw) intersect (_Ycxt._icw)
intersect (_Yett._icw))
intersect (select W from guide._icw W
where W="0" or W="2")))

228

The primary goal is to express context operations appearing in MQL queries in a
way that Lorel can handle and process. Each one of the context path expressions in
the from clause of the MQL query is translated to a number of Lorel path expres-
sions. The context path expression [period=winter]club.address Z can be broken
down to two simpler context path expressions: [period=winter]club::[-] Z0 and
Z0. [period=winter]address::[-] Z.

The first expression corresponds to the path club. _ett. facet._cxt of the graph in
Figure 4. It is translated in line 4 of the Lorel query to a series of path expressions that
form its equivalent OEM path. These expressions bind to variable Z0, that corresponds
to the root node of the original graph (oid &2). The path expressions in line 5 of the
Lorel query are equivalent to ZO. [period=winter]address: : [-] Z. These expressions
form the path Z0.address. ett._facet._cxt that binds to variable Z (corresponding
to oids &5 and &6). The three additionally declared variables of lines 4, and 5 correspond
to the hub nodes of the paths: _ZOcxt to oid &64, _Zett to oid &65, and _Zcxt to oids &66
and &67. These three variables are included in the where clause of the Lorel query, in
order to express the restrictions on context posed by the MQL context path expression.

In this case, it is required that the path inherited coverage be superset of the
context [period = winter]. This condition translates into Lorel using the expressions
in lines 9-11. The expression (_Zett._icw{ W2} = "1" and _Zett._.icw{W3} = "3"
) states that two distinct objects (variables W1 and _W3) must exist with values "1"
and "3". These objects must be connected to the hub node (_Zett) via _icw labelled
edges, as they are in fact the world nodes with oids &wl and &w3. Consequently, they
constitute the context defined by the inherited coverage qualifier [period=winter].
The effect of this expression is therefore to determine whether the inherited coverage
of the address entity edge of the MOEM graph is a subset or not of the given context.
A similar expression is used for variables _ZOcxt and _Zett, that correspond to the two
context, edges of the path. In this way, variable Z binds to oid &6. This node satisfies
the additional restriction (Z = "22, Vouliagmenis") in line 8, so the binding of the
variable is successful.

In the case of the expression [P]club.address Y in the MQL query, the from clause
of the Lorel query declares the appropriate variables similarly to the previous example,
while the where clause of the same query contains in lines 12-15 the translation of the
MQL within condition [P]#*[period=summer] !'= [-]. The Lorel expression select
W from club._ icw W where W="0" or W="2" evaluates to the set of the world nodes
corresponding to [period=summer], that is nodes &w0 and &w2. This set is intersected
with the sets of world nodes connected to the hub nodes (-YOcxt, Yett, and _Ycxt)
of the three edges in the path. Variable _Yett binds to node &65, whereas _Ycxt to
nodes &66 and &67. The intersection is nonempty only when node &66 is considered,
therefore variable Y binds only to node &5.

The club.name context path expression evaluates to node &3, where variable N
binds. None of the hub nodes defined during the translation of this context path ex-
pression is present in the where clause of the Lorel query, because it does not include
any restrictions on context. Since the select clause of the MQL query states that
variables Y and N be returned, the result expected from the system is the set of nodes
&5 and &3.

229

4.3 Results Presentation

The translated Lorel query is sent by the Client Communication Manager to the Web
Server as depicted in Figure 3. It is then submitted to Lore through the Lore Interface,
and the result is returned to the Client Side in the form of an OEM graph. Using the
reverse process of that described in Section 4.1, the OEM graph is transformed by the
Data Model Transformer module to the MOEM that constitutes the answer. The final
result of the query is presented to the user through the graphical interface of the client
application. In the case of our example, the answer returned is depicted in Figure 5,
and is an MOEM that happens to have only context nodes and entity edges.

Answer
Vg

row

name summer_address

{ ¥
o O

“Club 227 “189, Poseidonos”

Fig. 5. Query result as an MOEM graph

5 Implementation

The programming language used for the development of all the Client Side components
in Figure 3 as well as the Web Server is Java. The Lore Interface module was developed
in C++, as it uses the C++ API of Lore, which runs exclusively on Linux. The client-
server architecture offers to the query evaluation system cross-platform operability,
since the client side runs on any operating system supporting Java, and is not obliged
to run on Linux like Lore.

Figure 6 displays a screenshot of the Query Interface of MSSDesigner. Through the
“Query System” menu, the user is able to initialize the database for query submission,
as described in Section 4.1. After successful initialization the user can submit queries to
the system through the window “MQL Query”, that for each submitted query displays
in the bottom the equivalent Lorel query that is sent for evaluation to Lore. The result
returned is displayed in a separate window entitled “Query Result”.

230

8 MssD
File Edt View Operations Settings Window Help
@@@ @@ @ls Initialize DB

[J Show C. F. i
[0 Show Equivalent OEM (T 5 i
0:0- lang=gr,period=summer]

¥ Show Context Codin
g 1:1- lang=gr,period=winter]

AL Gy 2:2- lang=en period=summer]
Close DB 3:3- [lang=en, petiod=winter]

M

[moL query

select name: M, summer_address: Y
rom [Plclub.address ¥,
[period=winter]club.address Z,
club.name M
here Z="22 Vouliagmenis"
ithin [P]*[period=summer] I= }];

Submit | | Lorel equivalent ‘

Show Result

select name: M, summer_address: ¥
torm club._ett_facet __YOcx,

22 Vouliagmenis

| Blnormanseam.. || | Fresutingoe.. |

-- REFORT Graph's inherited context calculated.
-- REFORT OEM conversion completed

-- REFORT Export completed

-- REFORT Open completed

Fig. 6. Evaluating an MQL query through MSSDesigner.

6 Conclusions

In this paper, we presented an MQL query evaluation system, which is part of a platform
for managing MSSD. We described the system architecture and discussed its modules
in detail. Using a sample MOEM database, we demonstrated the operation of the sys-
tem modules by following an MQL query example through its evaluation steps. MQL
directly support cross-world queries, which have no counterpart in context-unaware
query languages. By utilizing the Lore DBMS and the Lorel query language for eval-
uating MQL queries, we were able to intuitively compare the expressiveness of these
data models and query languages when context-driven queries are involved. In future
work we plan to re-implement MQL from scratch, and investigate performance and
optimization issues.

231

References

1.

10.

P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina,
J. Gray, J. Held, J. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. Naughton,
H. Pirahesh, M. Stonebraker, J. Ullman. The Asilomar Report on Database Re-
search. ACM SIGMOD Record, 27(4): 74-80, (1998)

Y. Stavrakas, M. Gergatsoulis. Multidimensional Semistructured Data: Represent-
ing Context-Dependent Information on the Web. Proceedings 14th International
Conference on Advanced Information Systems Engineering (CAiSE), Toronto,
Canada, (2002)

D. Suciu. An Overview of Semistructured Data. ACM SIGACT News, 29(4):28-38,
(1998)

Y. Stavrakas. Multidimensional Semistructured Data: Representing and Querying
Context-Dependent Multifaceted Information on the Web. Ph.D. Dissertation, De-
partment of Electrical and Computer Engineering, National Technical University
of Athens, Greece, (2003)

S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. L. Wiener. The Lorel Query
Language for Semistructured Data. International Journal on Digital Libraries,
1(1):68-88, (1997)

Y. Stavrakas, M. Gergatsoulis, C. Doulkeridis, V. Zafeiris. Accomodating Changes
in Semistructured Databases Using Multidimensional OEM. Proceedings 6th East
European Conference on Advances in Databases and Information Systems (AD-
BIS), Bratislava, Slovakia, (2002)

Y. Stavrakas, M. Gergatsoulis, C. Doulkeridis, V. Zafeiris. Representing and
Querying Histories of Semistructured Databases Using Multidimensional OEM.
Information Systems, in print.

S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, (2000)

V. Zafeiris, C. Doulkeridis, Y. Stavrakas, M. Gergatsoulis. An Infrastructure for
Manipulating Multidimensional Semistructured Data. Proceedings 1st Hellenic
Data Management Symposium (HDMS), Athens, Greece, (2002)

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom. Lore: a Database
Management System for Semistructured Data. ACM SIGMOD Record, 26(3):54-
66, (1997)

