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Abstract. In this paper we address the problem of processing continuous range 
queries on mobile objects. In contrast to regular queries that are evaluated once, 
a continuous query remains active over period of time and has to be continu-
ously evaluated during this time to provide up to date answers. The continuous 
range query processing we base on the mobile object data management frame-
work, ARGONAUT, which represents an implementation of the object-oriented 
data model and the query language for mobile objects. For the purpose of query 
processing, we assume an available 2D indexing scheme in the underlying 
DBMS and focus on the refinement stage of the processing. We propose the 
pre-refinement step, as well as the data structures and the query classes for effi-
cient reevaluation of range queries. 

1 Introduction 

Advances in wireless communication technologies, Internet-enabled mobile devices 
and mobile positioning, have given rise to a new class of location-based applications 
and services. Location-based services (LBS) deliver geographic information and geo-
processing power to the mobile/static users in accordance with their current location 
and preferences, or locations of the static/mobile objects of their interests. LBS are 
specialized, multi-tiered, component Web GIS applications, which can be published, 
located and invoked across the wired/wireless Web [7]. Such services, like automatic 
vehicle location, fleet management, tourist services, transport management, traffic 
control and digital battlefield, are all based on mobile objects and the management of 
their continuously changing locations. Mobile objects can report their locations to the 
LBS server through a wireless interface, or their locations can be obtained through the 
ground-based radars or satellites. LBS applications require database and application 
support to model and manage mobile objects in both database and application domain 
and to support querying on the motion properties of the objects [8, 9]. The main prob-
lem and challenge in location-based services development is handling different types 
of queries on mobile objects. The most prevalent types of location-dependent queries 
in LBS are range and k-nearest neighbor queries.  
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In this paper we address the problem of processing continuous range queries on 
mobile objects. In such queries the range can represent the user-selected area, the map 
window, the polygonal feature, or the area specified by the distance from a point of 
interest. In contrast to regular queries that are evaluated only once, a continuous query 
remains active over a period of time and has to be continuously evaluated during this 
time to provide up to date answers. Such queries may also represent triggers that en-
able event notification to the registered users. At any time there will be several con-
tinuous queries running at the server. Each of this queries needs to be re-evaluated as 
the objects move. A major challenge for this problem is repeatedly processing all que-
ries within reasonable amount of time as the numbers of objects being tracked and 
continuous queries increases. 

2 Mobile Objects in LBS 

LBS are multi-tiered, Internet GIS applications whose architecture is presented in Fig 
1. The location of the mobile devices can be determined by using GPS or mobile net-
work triangulation. Such devices can report their locations to the LBS server through 
a wireless interface, or their locations can be obtained through ground-based radars or 
satellites. At the LBS server, the data is processed and services, based on such data, 
are provided to the users.  Mobile users may also represent mobile objects of interest 
to other users of the same or other LBS. Mobile objects in LBS are characterized by 
point geometry and always move along a path in a network [1]. Vehicles, trains, boats 
and passengers move following a particular network (roads, railways, rivers, pedes-
trian tracks). Air traffic also follows a (3-D) network of air corridors. Mobile objects 
often use fast and/or shortest paths to their destination, depending on the cost criteria 
(time and/or distance).  

The application scenario for LBS that involves mobile objects both as the users of 
the service and as the tracked objects is as follows [8]. The mobile object registers for 
the certain location-based service connecting to the LBS server by sending the start-
ing location (coordinates of the starting point or address), starting time, ending loca-
tion and eventually the set of points of interest that it is going to visit along its route 
and duration of the stay at each stop. The road network database accessed and man-
aged by the LBS information server stores a network which is the layer supporting the 
objects trajectories. Such road network database contains geometry for each road 
segment, attributes used for geocoding, as well as attributes needed for computing 
travel time and travel distance for that road segment, such as average speed or typical 
drive time [13]. Road network database can be updated by using real-time traffic in-
formation about accidents, roadwork, traffic congestions, etc [12]. 

Given the starting motion parameters, LBS server calculates the shortest cost (dis-
tance or travel-time) path in a road network and expected trajectory of the mobile 
object [13]. The expected trajectory is stored in the mobile object database and re-
trieved and stored in a LBS client on the mobile computer. The LBS server also sends 
to the client an uncertainty threshold value. The trajectory of the mobile object is a 
polyline in three-dimensional space (two-dimensional space and time) represented as 
a sequence of points (xi, yi, ti). Such trajectory is only an approximation because the 
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object does not move in straight lines at constant speed. The number of points along 
the trajectory is proportional to the accuracy of such approximation. An additional 
parameter mti for every point defines the type of motion during period [ti, ti+1]. The 
three motion types are defined: punctual - the mobile object isn't tracked and its loca-
tion isn't defined during certain time period; stepwise - the mobile object does not 
move during the time period; linear - the mobile object move along the straight line 
from (xi, yi) to (xi+1, yi+1), and at constant speed. When a mobile object moves along 
the curve segments with variable speed, the fourth motion type, interpolated, must be 
defined to represents the motion by an interpolation function. 
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Fig. 1. The LBS Architecture 

Based on the expected trajectory of the mobile object, at any point in time t (past or 
future) between the start and end times of the trip, both the LBS server and the LBS 
client can compute the expected location of the mobile object at time t. The uncer-
tainty threshold specifies the responsibility of the mobile object to send the location 
update to the LBS server if its current location is deviated from its expected location 
by defined uncertainty threshold. With every location update, the expected trajectory 
of the mobile object from that location to the destination must be updated by ∆t = ± ut 
/ v, where ut is uncertainty threshold and v is the average speed for the current road 
segment. To enable prediction of a mobile object location in the (near) future when 
the travel attributes aren’t available in a road network database, with every location 
update the mobile object must send to LBS server its current speed. Again, the mobile 
object has to send the location update to the LBS server if its current location is devi-
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ated from its expected location by defined uncertainty threshold. When the route of 
the mobile object isn’t known a priori, because of, for example, the unknown destina-
tion, besides the location and the speed, one additional attribute, the direction, must be 
specified. It enables LBS server to associate the mobile object to the road segment of 
the underlying network, and define and store a new part of the object’s trajectory from 
the last registered location, according to the shortest cost path between these two loca-
tions. 

3 Modeling and Querying Mobile Objects in the Argonaut 
 Framework 

For the purpose of modeling and management of mobile object location data we have 
developed the standard-based component framework, named Argonaut [9]. The foun-
dational data model of the Argonaut framework was developed to support conceptual 
modeling and querying of discretely and continuously changeable properties of geo-
graphic features. The Argonaut data model is extensible, object-oriented, and speci-
fied using UML class diagram notation. We base our modeling approach on the com-
prehensive framework of data types and rich algebra of operators defined in [3], but 
extending their approach to the object-oriented modeling paradigm, and representa-
tion of the past, current, as well as the future motion of the mobile objects, moving on 
the transportation network [1, 8]. 

The ARGONAUT data model is based on the extension of the OGC Simple Features 
model, also adopted by ISO TC 211 [4]. The standard defines the abstract Geometry 
class, and its hierarchy of the specialized geometric classes (Point, LineString, Poly-
gon, MultiPoint, etc.). The attributes and operations defined within the geometry 
classes support specification of topological relations, direction relations, metric opera-
tions and operations that support spatial analysis (point-set operations) on appropriate 
geometry types. The time dimension of the mobile object is specified through the 
TimeObject class hierarchy, defined in accordance with ISO TC 211 Temporal 
Schema [5] (TimeInstant, TimePeriod TimeDuration, MultiTimeInstant etc.). The 
TimeObject class includes the attributes and the operations for specifying topological 
relations, metric operations and point set operations on time dimension. 

The base class for introducing mobility of features and continuous change of their 
geometric properties is an abstract MobileGeometry class, as the root of the extensible 
hierarchy of classes for specifying mobile geometries (Fig 2). For every class in the 
Geometry class hierarchy an appropriate class for the representation of the mobile 
geometry is defined (MobilePoint, MobileLineString, MobilePolygon, MobileMulti-
Point, etc.). Any of these classes appropriately restrict the Geometry class aggregated 
within the MotionSlice class (<<restriction>> stereotype). Being a specialization of 
the Geometry class, a MobileGeometry and its specialized classes can be treated in the 
same way as any other geometric object, i.e. it can represent the geometric property of 
any feature which is dynamic in nature and participate in all geometric operations and 
relations. An instance of the MotionSlice class, aggregated by the MobileGeometry 
class with multiplicity 0..n, represents the registered location of a mobile geometry, 
by containing a geometry value (instance of Geometry class), the valid time of such 
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value (instance of the TimeInstant class) and the motion type (value of enumeration 
type MotionType), which describes the way geometry changes between two succes-
sively registered geometries. The ARGONAUT data model provides four enumerated 
values for motion types, and those are: Punctual, Stepwise, Linear and Interpolated. 
The first three motion types don’t require any additional information to be included in 
the data model, but for the Interpolated motion type, the reference to the Interpolation 
class, with defined interpolation parameters, must be specified. The motion of the 
mobile object also causes continuous change of its non-spatial properties like distance 
from some static or a mobile object or topological relation between two mobile ob-
jects, as elaborated in [2]. Using the same approach, the ARGONAUT data model de-
fines MobileBoolean and MobileDouble classes, by inheritance from Boolean and 
Double base classes respectively and aggregation of appropriate MotionBoolSlices or 
MotionDoubleSlices classes. 

Geometry
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equa ls(g eo : Geom et ry) :  Boolean
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Fig. 2. The foundation of the ARGONAUT data model 

The ARGONAUT data model overrides the topological relations, the direction rela-
tions, the metric operations and the spatial analysis operations inherited from the base 
Geometry class [4]. These relations and operations take the mobile or non-mobile 
geometry argument and generate non-mobile results (Boolean, Double, Geometry, 
etc.). Specialized topological and direction relations, like touches and contains, have 
single argument of the Geometry type (which could also be the MobileGeometry) and 
return the Boolean true value indicating that such relations are satisfied during the 
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lifespan of the MobileGeometry argument(s) according to temporal aggregation de-
fined in [2]. Such operations correspond to spatio-temporal predicates. Metric and 
spatial analysis overridden operations can not be considered as predicates, and for the 
MobileGeometry argument operation is delegated by default to the geometry value at 
the current time instant defined using GeometryAt(Now) operation. The ARGONAUT 
data model also defines mobile variants of mentioned non-mobile relations and opera-
tions, named with starting capital letter in Fig 2. Such operations correspond to the 
temporally lifted operations that handle non-mobile or mobile geometry arguments 
and generate mobile result, since for mobile argument(s) different results are gener-
ated in the course of time. The motion type associated with the mobile result depends 
on the operator or relation. In general, it is not sufficient to inherit the motion type of 
the mobile argument. For example, for mobile points characterized by the linear mo-
tion type, the quadratic interpolation method is needed to represent the mobile result 
of the distance operation.  

To support the querying of mobile objects following operations are defined. The 
Lifespan operation returns time object defining the whole life span of the mobile ob-
ject. The aforementioned GeometryAt operation returns geometry value at specific 
time instant. In order to restrict the sequence of motion slices of a mobile object ac-
cording to specific time object, GeometryDuring operation is defined. That operation 
restricts the mobile object to only those motion slices from the sequence that belong 
to the specified time object given as an argument. The When operation returns the 
time object during which the mobile object satisfies the criteria specified by a mobile 
Boolean argument. The Route operation returns Geometry result representing the path 
traversed by the mobile geometry. All these operations are overridden in specific mo-
bile classes inherited from the MobileGeometry class. To support manipulation of 
mobile properties of type MobileBoolean and MobileDouble, predicates and opera-
tions (and, not, max, add, lt, etc) and their temporally lifted counterparts (And, Not, 
Max, Add, Lt, etc.), are defined accordingly [9]. 

Modeling mobile point objects that move continuously over a predefined network 
infrastructure, as existed in LBS, are provided by the MobilePoint class (Fig 2). The 
MobilePoint class inherits the MobileGeometry class and thus inherits and overrides 
aforementioned spatio-temporal operations and relations. Two attributes, speed and 
direction, are defined when road network data don’t contain travel attributes (average 
speed, travel time, etc), or the route of the mobile object is not predefined (e.g. the 
destination isn’t known beforehand). The Route operation defined in MobileGeometry 
class is redefined in inherited classes, because for different mobile geometry types, 
the trajectory operation returns specific geometric result. Such operation applied to 
mobile line string object yields Polygon object as result, and for mobile point object 
with linear motion type returns a LineString geometric object.  

The model defines relations arisen from the motion of mobile point over mobile or 
static polygonal area, such as Enters, Leaves, Crosses, Bypasses, etc. as proposed in 
[2] (Fig 3). We define those relations for the mobile/static point and the polyline ob-
jects using the same semantics and definitions given in [2] for the mobile point and 
the polygon. Those operations are particularly useful in querying mobile points mov-
ing on the network paths. Such relations can be defined by the successive application 
of the several basic mobile relations and enable examination of changing spatial rela-
tions over time by simply sequencing basic spatio-temporal predicates. Thus mobile 
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object enters in the area of the static or mobile polygonal object during the given time 
period, if it was outside of the polygon at the beginning of the period (Disjoint rela-
tion), then at certain time instant was at the border of the polygon (touches relation) 
and is within the region to the rest of the time period (Within relation). Similar defini-
tions hold for Leaves (inverse of Enters), Crosses and Bypasses predicates. 

The implementation of the proposed mobile object data model in an object-
oriented LBS application and a mobile objects database is straightforward using de-
fined UML class diagrams. The data model and the operators can be fully imple-
mented on top “off the shelf” existing Object-Relational DBMS especially those sup-
porting OGC Simple Features for SQL specification [6]. If the LBS information 
server is based on a relational DBMS, support for mobile object data management is 
implemented within the LBS application components. Whatever the implementation 
is, those operators are used to query the mobile object database, and to set triggers (or 
alerts) that are fired when interesting conditions are satisfied by the database during 
the objects motion. They can be incorporated into the traditional SQL query language 
that has been widely adopted by commercial database systems. 

Having defined user-defined data types and operations related to mobile objects, 
the following feature types could be defined: 

CREATE TYPE Ambulance AS OBJECT 
(ID NUMBER, name  CHAR(64), driver  CHAR(64), type  CHAR(256), loca-
tions MobilePoint); 

CREATE TYPE Taxicab AS OBJECT 
(ID NUMBER, company  CHAR(64), driver  CHAR(64), type  CHAR(256), lo-
cations MobilePoint); 

CREATE TYPE Street AS OBJECT 
(ID NUMBER, name CHAR(64), centerLineOf LineString); 

Based on them, the LBS client could define and specify the following queries: 

1. Select ambulances that are within 2 km around of my current position: 
select amb.id, amb.name, amb.driver  
from Ambulance amb 
where (amb.locations.GeometryAt(NOW)).distance(Point(xref,yref)) <= 
2000 

2. Select all taxicabs that are currently in “Vozdova” street: 
select tcab.id, tcab.name, tcab.driver  
from Taxicab tcab, Street s 
where (tcab.locations.GeometryAt(NOW)).within(s.centerLineOf) and 
s.name=”Vozdova” 

3. Return the position of a taxicab “Banker-17” if it enters the “Cara Dusana” street in 
last 5 minutes: 

select t.locations.GeometryAt(NOW) 
from Taxicab t, Street s 
where t.name = “Banker-17” and s.name=” Cara Dusana” and  
(t.locations.GeometryDuring(TimePeriod(NOW-
300,NOW))).Enters(s.centerLineOf)) 

4. Select all ambulances that were in “Niska Banja” municipality today between 5 and 
6 AM. 
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select amb.id, amb.name, amb.driver  
from Ambulance amb, Municipality m 
where (amb.locations.GeometryDuring(TimePeriod(5, 6))).within(m.area) 
and m.name = “Niska Banja” 

All these queries, except the third one, are range queries, as the most prevalent type 
of queries in LBS. Therefore, the next section propose algorithms and data structures 
for processing of continuous range queries. 

4 Processing Continuous Range Queries 

The main problem and the challenge in the location-based services development is 
how to handle different types of queries over mobile objects. According to the mobil-
ity of clients and the data objects to be queried by the clients, such queries can be fur-
ther classified into three types: 
� Mobile objects querying static objects (tourist services, m-commerce, etc.) 
� Stationary clients querying mobile objects (fleet management, traffic control, etc.) 
� Mobile clients querying mobile objects (tourist services, digital battlefield, etc.) 

The most prevalent types of location-dependent queries in LBS are range queries. 
In such queries the range can represent a user-selected area, a map window, a polygo-
nal feature or an area containing points within specified distance from a point of in-
terest. Since the motion of the mobile object is constrained by the road network, the 
range can also represent the part of the road segment. In contrast to regular queries 
that are evaluated once, a continuous query remains active over period of time and has 
to be continuously evaluated during this time to provide up to date answers. Such que-
ries may also represent triggers that enable event notification to the registered users. 
At any time there will be several continuous queries running at the LBS server. Each 
of this queries needs to be re-evaluated as the objects move. A major challenge for 
this problem is repeatedly processing all queries within reasonable amount of time as 
the numbers of objects being tracked and continuous queries increases. We base our 
approach on the application scenario appropriate in LBS for tourist and business guid-
ing, where mobile client’s destination is known when he/she registers to the service, 
and also the underlying road network contains data specifying average speed and 
travel time on certain road segments. 

The processing of the continuous range queries on mobile objects we base on the 
ARGONAUT, mobile object data management framework. We focus on the first and 
second types of queries, since the research on the third type can be based on solutions 
to the first two types. For the purpose of query processing, instead of 3D indexing 
scheme (3D R-tree) similar to the ones proposed in the literature [7], which requires 
frequent updating as the objects’ move,  we assume an available 2D indexing scheme 
in the underlying DBMS. The insertion of a mobile object’s trajectory is done by en-
closing every segment of the object’s route in a Minimal Bounding Rectangle (MBR) 
and the same is done for the query range MBR. During the filtering stage the query 
engine retrieves the routes, which have a MBR that intersects with query range MBR. 
By exclusion of time in the indexing scheme we avoid the frequent index update, 
which occurs in the 3D indexing scheme. However, our filter stage as the result gives 
more objects that will cause false selections. In our work we focus on the refinement 
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stage of the processing and propose main-memory data structures for efficient query 
processing. 

Continuous range query has to be continuously evaluated during specified time pe-
riod, i.e. it has to be repeatedly and periodically processed. The shorten this period is, 
the more accurate is the query answer, but processing requires more time and comput-
ing power. In continuous query processing the filter stage is performed only once for 
initial query evaluation, but for every periodical evaluation the refinement stage must 
be performed. In order to shorten the refinement stage, which occurs repeatedly dur-
ing the lifespan of the continuous query, we propose the pre-refinement step, which 
has to be performed just after the initial filter stage. Such pre-refinement step enables 
significant reduction of the refinement processing, by using expected trajectory of the 
mobile object and constructs the set of mobile objects that satisfies the query condi-
tion but possibly at different times during the period of the query time span. 

The query issued by stationary client querying mobile objects we model by the 
SMRangeQuery class (fig 3).  

MSRangeQuery
timespan : TimeObject
resultset : Map<Feature*,TimeObject*>
currentset : FeatureSet
center : MobilePoint
distance : Double

Update(f : Feature, dt : TimeDuration)
Evaluate(ti : TimeInstant)

SMRangeQuery
range : Polygon
timespan : TimeObject
resultset : Map<Feature *, TimeObject *>
currentset : FeatureSet

Update(f : Feature, dt : TimeDuration)
Evaluate(ti : TimeInstant)

RangeQuery

 

Fig. 3. Classes for range queries 

The main attributes of that class are the range of the type of Polygon class, the 
timespan of the TimePeriod class representing the validity period of the continuous 
query, and the resultset of the Map class. The Map class represents the hash table that 
maps keys to values (e.g. map template class in STL, and CMap class in MFC). The 
key in the resultset attribute is a reference to the mobile object (Feature class with 
mobile geometry), and the value is the time object during which that mobile object 
satisfies the query condition. The currentset represents the set of features satisfying 
the query at the current (the time of evaluation) time instant. The algorithm for pre-
refinement step assumes that the filterset contains the list of the mobile features se-
lected by the filter stage, and is given by the following (Remark: Algorithms are given 
using C++ syntax and using MFC collection classes): 

Algorithm 1 - The pre-refinement step for stationary clients querying mobile objects 
POSITION pos = filterset.GetHeadPosition() 
while (pos != NULL) 
{ 
Feature *f = filterset.GetNext(pos); 
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MobilePoint *mp = (MobilePoint *) f->Geometry(); 
if(mp->Route()->interests(query.range)) 
{ 
 TimeObject *to = mp->When(mp->Within(query.range)); 
 query.resultest.SetAt(f, to); 
} 
} 

For every mobile object in the filterset, this algorithm examines the predicate inter-
sects between the route of the mobile object and the query range and, if the predicate 
is satisfied, inserts the new (key, value) pair to the query resulset, where the key 
represents the reference to the mobile feature, and the value is the time object (time 
period or multi time period) during which the feature satisfies the query condition. 
The refinement step of such continuous range query is preformed periodically on pre-
defined time interval, and at each evaluation generates the current result set valid till 
the next evaluation. It is implemented as the Evaluate operation in the 
SMRangeQuery class. 

Algorithm 2. The Evaluate operation and the refinement step at time instant te 
POSITION pos = resultset.GetStartPosition() 
while (pos != NULL) 
{ 
resultset.GetNextAssoc(pos, f, to); 
if(to->Contains(te)) 
 currentset.Add(f); 
} 

The refinement step iterates through all the elements in the result set, and adds to 
the current result set only those features whose time value contains time of the evalua-
tion. Every mobile object has a reference to the set of continuous range queries in 
which it is involved (queryset). At every location update, the future trajectory of the 
mobile object must be updated by ∆t - the time duration of its advance or delay re-
lated to the predicted trajectory (as noted in section 2). Also, the continuous query 
result sets in which that object is included must be updated accordingly. The follow-
ing algorithm describes such an update: 

Algorithm 3. Update of the query resultset’s time object for all the queries in the que-
ryset 

POSITION pos = queryset.GetHeadPosition(); 
while (pos != NULL) 
{ 
 SMRangeQuery *rq = (SMRangeQuery *)queryset.GetNext(pos); 
 rq->Update(f,  dt); 
} 

The Update operation of the SMRangeQuery class is defined as: 
SMRangeQuery::Update(Feature *f, TimeDuration dt) 
{ 
if(Lookup(f, tobject)) 
  SetAt(f, tobject->Add(dt)); 
} 

Similar algorithms are implemented for the queries issued by mobile client query-
ing stationary objects (points of interest) by using MSRangeQuery class (Fig. 3). 
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Since the mobile range in LBS is usually defined by the extent around the mobile ob-
ject, it is represented by the mobile point (the attribute center) and the distance (the 
attribute distance) around it. The three other attributes, timespan, resultset and cur-
rentset have the same meaning as in the SMRangeQuery class. The pre-refinement 
step of such query is given by the following, assuming that the filter set contains all 
points of interest that are contained in the MBR of the query range: 

Algorithm 4 - The pre-refinement step for mobile-static query 
POSITION pos = filterset.GetHeadPosition() 
while (pos != NULL) 
{ 
Feature *f = filterset.GetNext(pos); 
Point *p = (Point *) f->Geometry(); 
LineString *r = query.center->Route(); 
Polygon *area = r->buffer(query.distance); 
if(area.contains(p)) 
{ 
TimeObject *to = rcenter->When(rcenter->Distance(p)-
>Lt(query.distance) ); 
 query.resultset.SetAt(f, to); 
} 
} 

This algorithm calculates the buffer around the center point’s route on the specified 
distance and examines the predicate contains between that polygonal buffer and the 
point from the filter set. If the predicate is satisfied it inserts the new (key, value) pair 
to the query result set, where the key represents the reference to the static feature, and 
the value is the time object (time period or multi time period) during which the feature 
satisfies the query condition. Algorithms 2 and 3 are also related to this type of query; 
only instead of the SMRangeQuery class, the MSRangeQuery class is used.  

 

Fig. 4. Processing of continuous range query in the ARGONAUT prototype application 



 291

We’ve implemented proposed classes and data structures for continuous range 
query processing within the ARGONAUT framework. Using mobile objects’ data gen-
erated by our Mobile Object Simulator [10], we are currently evaluating proposed 
continuous query processing algorithms, for a large number of mobile and stationary 
objects and compare their performance with general approach that rest on 3D index-
ing scheme and does not include the pre-refinement step. The processing of continu-
ous range query, that from the set of all vehicles (red circles) selects only those (filled 
red circles) that are within the distance of 200 m around the specified point of interest 
(green rectangle) during specified time period, is shown in Figure 4. 

5 Conclusions 

In this paper we address the problem of processing continuous range queries on mo-
bile objects. In contrast to regular queries that are evaluated once, a continuous query 
remains active over period of time and has to be continuously evaluated during this 
time to provide up to date answers. Such queries may also represent triggers that en-
able event notification to the users issuing them. At any time there will be several 
continuous queries running at the server. Each of these queries needs to be re-
evaluated periodically as the objects move. A major challenge for this problem is re-
peatedly processing all queries within reasonable amount of time as the numbers of 
objects being tracked and continuous queries increases. 

The processing of the continuous range queries on mobile objects we base on the 
mobile object data management framework, ARGONAUT, which represents an imple-
mentation of the object-oriented data model and the query language for mobile ob-
jects. We assume an available 2D indexing scheme in the underlying DBMS, and fo-
cus on the refinement stage of the processing proposing the pre-refinement step, algo-
rithms and data structures which reduce computing time and complexity associated 
with periodical refinement procedure. The future research direction include improve-
ments of the continuous query processing for the k-nearest neighbor queries, as well 
as practical evaluation of proposed query processing methodologies in the prototype 
LBS application for tourist and business guiding based on the ARGONAUT component 
framework. 
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