
Processing Continuous Range Queries on Mobile Objects
in Location-Based Services

Dragan H. Stojanovic and Slobodanka J. Djordjevic-Kajan

Faculty of Electronic Engineering, University of Nis
Beogradska 14, 18000 Nis, Serbia and Montenegro
Email: dragans@elfak.ni.ac.yu *

Abstract. In this paper we address the problem of processing continuous range
queries on mobile objects. In contrast to regular queries that are evaluated once,
a continuous query remains active over period of time and has to be continu-
ously evaluated during this time to provide up to date answers. The continuous
range query processing we base on the mobile object data management frame-
work, ARGONAUT, which represents an implementation of the object-oriented
data model and the query language for mobile objects. For the purpose of query
processing, we assume an available 2D indexing scheme in the underlying
DBMS and focus on the refinement stage of the processing. We propose the
pre-refinement step, as well as the data structures and the query classes for effi-
cient reevaluation of range queries.

1 Introduction

Advances in wireless communication technologies, Internet-enabled mobile devices
and mobile positioning, have given rise to a new class of location-based applications
and services. Location-based services (LBS) deliver geographic information and geo-
processing power to the mobile/static users in accordance with their current location
and preferences, or locations of the static/mobile objects of their interests. LBS are
specialized, multi-tiered, component Web GIS applications, which can be published,
located and invoked across the wired/wireless Web [7]. Such services, like automatic
vehicle location, fleet management, tourist services, transport management, traffic
control and digital battlefield, are all based on mobile objects and the management of
their continuously changing locations. Mobile objects can report their locations to the
LBS server through a wireless interface, or their locations can be obtained through the
ground-based radars or satellites. LBS applications require database and application
support to model and manage mobile objects in both database and application domain
and to support querying on the motion properties of the objects [8, 9]. The main prob-
lem and challenge in location-based services development is handling different types
of queries on mobile objects. The most prevalent types of location-dependent queries
in LBS are range and k-nearest neighbor queries.

* This research was supported in part by Ministry of Science, Technology and Development,

Republic of Serbia, and Municipality of Niš, under the project “Geographic Information Sys-
tem for Local Authorities based on Internet/WWW Technologies”, Contract No.
IT.1.23.0249A.

 281

In this paper we address the problem of processing continuous range queries on
mobile objects. In such queries the range can represent the user-selected area, the map
window, the polygonal feature, or the area specified by the distance from a point of
interest. In contrast to regular queries that are evaluated only once, a continuous query
remains active over a period of time and has to be continuously evaluated during this
time to provide up to date answers. Such queries may also represent triggers that en-
able event notification to the registered users. At any time there will be several con-
tinuous queries running at the server. Each of this queries needs to be re-evaluated as
the objects move. A major challenge for this problem is repeatedly processing all que-
ries within reasonable amount of time as the numbers of objects being tracked and
continuous queries increases.

2 Mobile Objects in LBS

LBS are multi-tiered, Internet GIS applications whose architecture is presented in Fig
1. The location of the mobile devices can be determined by using GPS or mobile net-
work triangulation. Such devices can report their locations to the LBS server through
a wireless interface, or their locations can be obtained through ground-based radars or
satellites. At the LBS server, the data is processed and services, based on such data,
are provided to the users. Mobile users may also represent mobile objects of interest
to other users of the same or other LBS. Mobile objects in LBS are characterized by
point geometry and always move along a path in a network [1]. Vehicles, trains, boats
and passengers move following a particular network (roads, railways, rivers, pedes-
trian tracks). Air traffic also follows a (3-D) network of air corridors. Mobile objects
often use fast and/or shortest paths to their destination, depending on the cost criteria
(time and/or distance).

The application scenario for LBS that involves mobile objects both as the users of
the service and as the tracked objects is as follows [8]. The mobile object registers for
the certain location-based service connecting to the LBS server by sending the start-
ing location (coordinates of the starting point or address), starting time, ending loca-
tion and eventually the set of points of interest that it is going to visit along its route
and duration of the stay at each stop. The road network database accessed and man-
aged by the LBS information server stores a network which is the layer supporting the
objects trajectories. Such road network database contains geometry for each road
segment, attributes used for geocoding, as well as attributes needed for computing
travel time and travel distance for that road segment, such as average speed or typical
drive time [13]. Road network database can be updated by using real-time traffic in-
formation about accidents, roadwork, traffic congestions, etc [12].

Given the starting motion parameters, LBS server calculates the shortest cost (dis-
tance or travel-time) path in a road network and expected trajectory of the mobile
object [13]. The expected trajectory is stored in the mobile object database and re-
trieved and stored in a LBS client on the mobile computer. The LBS server also sends
to the client an uncertainty threshold value. The trajectory of the mobile object is a
polyline in three-dimensional space (two-dimensional space and time) represented as
a sequence of points (xi, yi, ti). Such trajectory is only an approximation because the

 282

object does not move in straight lines at constant speed. The number of points along
the trajectory is proportional to the accuracy of such approximation. An additional
parameter mti for every point defines the type of motion during period [ti, ti+1]. The
three motion types are defined: punctual - the mobile object isn't tracked and its loca-
tion isn't defined during certain time period; stepwise - the mobile object does not
move during the time period; linear - the mobile object move along the straight line
from (xi, yi) to (xi+1, yi+1), and at constant speed. When a mobile object moves along
the curve segments with variable speed, the fourth motion type, interpolated, must be
defined to represents the motion by an interpolation function.

LBS application server

GSM
GPS

Communication
&

Location Data
Acquisition

Mobile Object Database
(Mobile extension to OGC SF SQL)

General GIS components and services
(Querying, Mapping, Analysis)

Web server
(XSLT engine, XSL style-sheets)

Geographic Database
(OGC SF SQL)

Mobile object

GML,SVG, WML

GML

GML

GML

 Wired/Wireless Web

Mobile object management components & services
(Real-time tracking, Mobile and Continuous Querying,

Dynamic Visualization, Route Analysis, etc.)

LBS Information Server

LBS clients

Fig. 1. The LBS Architecture

Based on the expected trajectory of the mobile object, at any point in time t (past or
future) between the start and end times of the trip, both the LBS server and the LBS
client can compute the expected location of the mobile object at time t. The uncer-
tainty threshold specifies the responsibility of the mobile object to send the location
update to the LBS server if its current location is deviated from its expected location
by defined uncertainty threshold. With every location update, the expected trajectory
of the mobile object from that location to the destination must be updated by ∆t = ± ut
/ v, where ut is uncertainty threshold and v is the average speed for the current road
segment. To enable prediction of a mobile object location in the (near) future when
the travel attributes aren’t available in a road network database, with every location
update the mobile object must send to LBS server its current speed. Again, the mobile
object has to send the location update to the LBS server if its current location is devi-

 283

ated from its expected location by defined uncertainty threshold. When the route of
the mobile object isn’t known a priori, because of, for example, the unknown destina-
tion, besides the location and the speed, one additional attribute, the direction, must be
specified. It enables LBS server to associate the mobile object to the road segment of
the underlying network, and define and store a new part of the object’s trajectory from
the last registered location, according to the shortest cost path between these two loca-
tions.

3 Modeling and Querying Mobile Objects in the Argonaut
 Framework

For the purpose of modeling and management of mobile object location data we have
developed the standard-based component framework, named Argonaut [9]. The foun-
dational data model of the Argonaut framework was developed to support conceptual
modeling and querying of discretely and continuously changeable properties of geo-
graphic features. The Argonaut data model is extensible, object-oriented, and speci-
fied using UML class diagram notation. We base our modeling approach on the com-
prehensive framework of data types and rich algebra of operators defined in [3], but
extending their approach to the object-oriented modeling paradigm, and representa-
tion of the past, current, as well as the future motion of the mobile objects, moving on
the transportation network [1, 8].

The ARGONAUT data model is based on the extension of the OGC Simple Features
model, also adopted by ISO TC 211 [4]. The standard defines the abstract Geometry
class, and its hierarchy of the specialized geometric classes (Point, LineString, Poly-
gon, MultiPoint, etc.). The attributes and operations defined within the geometry
classes support specification of topological relations, direction relations, metric opera-
tions and operations that support spatial analysis (point-set operations) on appropriate
geometry types. The time dimension of the mobile object is specified through the
TimeObject class hierarchy, defined in accordance with ISO TC 211 Temporal
Schema [5] (TimeInstant, TimePeriod TimeDuration, MultiTimeInstant etc.). The
TimeObject class includes the attributes and the operations for specifying topological
relations, metric operations and point set operations on time dimension.

The base class for introducing mobility of features and continuous change of their
geometric properties is an abstract MobileGeometry class, as the root of the extensible
hierarchy of classes for specifying mobile geometries (Fig 2). For every class in the
Geometry class hierarchy an appropriate class for the representation of the mobile
geometry is defined (MobilePoint, MobileLineString, MobilePolygon, MobileMulti-
Point, etc.). Any of these classes appropriately restrict the Geometry class aggregated
within the MotionSlice class (<<restriction>> stereotype). Being a specialization of
the Geometry class, a MobileGeometry and its specialized classes can be treated in the
same way as any other geometric object, i.e. it can represent the geometric property of
any feature which is dynamic in nature and participate in all geometric operations and
relations. An instance of the MotionSlice class, aggregated by the MobileGeometry
class with multiplicity 0..n, represents the registered location of a mobile geometry,
by containing a geometry value (instance of Geometry class), the valid time of such

 284

value (instance of the TimeInstant class) and the motion type (value of enumeration
type MotionType), which describes the way geometry changes between two succes-
sively registered geometries. The ARGONAUT data model provides four enumerated
values for motion types, and those are: Punctual, Stepwise, Linear and Interpolated.
The first three motion types don’t require any additional information to be included in
the data model, but for the Interpolated motion type, the reference to the Interpolation
class, with defined interpolation parameters, must be specified. The motion of the
mobile object also causes continuous change of its non-spatial properties like distance
from some static or a mobile object or topological relation between two mobile ob-
jects, as elaborated in [2]. Using the same approach, the ARGONAUT data model de-
fines MobileBoolean and MobileDouble classes, by inheritance from Boolean and
Double base classes respectively and aggregation of appropriate MotionBoolSlices or
MotionDoubleSlices classes.

Geometry

M obi leGeom etry

equa ls(g eo : Geom et ry) : Boolean
to uche s(geo : Ge om etry) : Bool ea n
con tai ns(g eo : Geom et ry) : Boolean
.. .()
Geom et ryAt() : Geom etry
Geom et ryDurin g(t : T im eObject) : M ob i leGeo me try
When(m b : M obi le Boolean) : T im eObject
Equa ls(g eo : Geom et ry) : M ob il eBo ole an
T ouc hes(ge o : Geom et ry) : M ob il eBo ole an
Cont ains(ge o : Geom etry) : M ob i leBoo lea n
Within(geo : Geo me try) : M obi leB oolean
Cro sses(geo : Geom etry) : M obi leBoo lea n
Disjoin t(geo : Ge om etry) : M obi leBool ean
Overlaps(ge o : Geom etry) : M ob i leBoo lea n
In tersects(geo : Ge om etry) : M obi leBool ean
North (ge o : Geom et ry) : M ob i leBoo le an
East(geo : Ge om etry) : M obi le Bool ean
Distance (ge o : Geom et ry) : M ob il eNu mb er
In tersectio n(g eo : Geom e try) : Mo bi leGe om etry
T ra je ctory () : M otion Sli ce Array
Li feS pan() : T i m eObj ect
M oti on Sli ceN th(ind : Inte ger) : M ot ionSl ic e
Num OfSli ces() : Integer
.. .()

T im eInstant Interpolation

M otionSl ice
m t : M otionT ype

1

+location

1
0..n

+m otion
0..n

1+tinstant 1
0..10..1

M obi lePoint
{Geom etry = Point}
speed : Single
di rection : Single

Route() : L ineString
Enters(geo : Geom etry) : Boolean
Leaves(geo : Geom etry) : Boolean
Crosses(geo : Geom etry) : Boolean
Bypasses(geo : Geom etry) : Boolean

<<restricted>>

Fig. 2. The foundation of the ARGONAUT data model

The ARGONAUT data model overrides the topological relations, the direction rela-
tions, the metric operations and the spatial analysis operations inherited from the base
Geometry class [4]. These relations and operations take the mobile or non-mobile
geometry argument and generate non-mobile results (Boolean, Double, Geometry,
etc.). Specialized topological and direction relations, like touches and contains, have
single argument of the Geometry type (which could also be the MobileGeometry) and
return the Boolean true value indicating that such relations are satisfied during the

 285

lifespan of the MobileGeometry argument(s) according to temporal aggregation de-
fined in [2]. Such operations correspond to spatio-temporal predicates. Metric and
spatial analysis overridden operations can not be considered as predicates, and for the
MobileGeometry argument operation is delegated by default to the geometry value at
the current time instant defined using GeometryAt(Now) operation. The ARGONAUT
data model also defines mobile variants of mentioned non-mobile relations and opera-
tions, named with starting capital letter in Fig 2. Such operations correspond to the
temporally lifted operations that handle non-mobile or mobile geometry arguments
and generate mobile result, since for mobile argument(s) different results are gener-
ated in the course of time. The motion type associated with the mobile result depends
on the operator or relation. In general, it is not sufficient to inherit the motion type of
the mobile argument. For example, for mobile points characterized by the linear mo-
tion type, the quadratic interpolation method is needed to represent the mobile result
of the distance operation.

To support the querying of mobile objects following operations are defined. The
Lifespan operation returns time object defining the whole life span of the mobile ob-
ject. The aforementioned GeometryAt operation returns geometry value at specific
time instant. In order to restrict the sequence of motion slices of a mobile object ac-
cording to specific time object, GeometryDuring operation is defined. That operation
restricts the mobile object to only those motion slices from the sequence that belong
to the specified time object given as an argument. The When operation returns the
time object during which the mobile object satisfies the criteria specified by a mobile
Boolean argument. The Route operation returns Geometry result representing the path
traversed by the mobile geometry. All these operations are overridden in specific mo-
bile classes inherited from the MobileGeometry class. To support manipulation of
mobile properties of type MobileBoolean and MobileDouble, predicates and opera-
tions (and, not, max, add, lt, etc) and their temporally lifted counterparts (And, Not,
Max, Add, Lt, etc.), are defined accordingly [9].

Modeling mobile point objects that move continuously over a predefined network
infrastructure, as existed in LBS, are provided by the MobilePoint class (Fig 2). The
MobilePoint class inherits the MobileGeometry class and thus inherits and overrides
aforementioned spatio-temporal operations and relations. Two attributes, speed and
direction, are defined when road network data don’t contain travel attributes (average
speed, travel time, etc), or the route of the mobile object is not predefined (e.g. the
destination isn’t known beforehand). The Route operation defined in MobileGeometry
class is redefined in inherited classes, because for different mobile geometry types,
the trajectory operation returns specific geometric result. Such operation applied to
mobile line string object yields Polygon object as result, and for mobile point object
with linear motion type returns a LineString geometric object.

The model defines relations arisen from the motion of mobile point over mobile or
static polygonal area, such as Enters, Leaves, Crosses, Bypasses, etc. as proposed in
[2] (Fig 3). We define those relations for the mobile/static point and the polyline ob-
jects using the same semantics and definitions given in [2] for the mobile point and
the polygon. Those operations are particularly useful in querying mobile points mov-
ing on the network paths. Such relations can be defined by the successive application
of the several basic mobile relations and enable examination of changing spatial rela-
tions over time by simply sequencing basic spatio-temporal predicates. Thus mobile

 286

object enters in the area of the static or mobile polygonal object during the given time
period, if it was outside of the polygon at the beginning of the period (Disjoint rela-
tion), then at certain time instant was at the border of the polygon (touches relation)
and is within the region to the rest of the time period (Within relation). Similar defini-
tions hold for Leaves (inverse of Enters), Crosses and Bypasses predicates.

The implementation of the proposed mobile object data model in an object-
oriented LBS application and a mobile objects database is straightforward using de-
fined UML class diagrams. The data model and the operators can be fully imple-
mented on top “off the shelf” existing Object-Relational DBMS especially those sup-
porting OGC Simple Features for SQL specification [6]. If the LBS information
server is based on a relational DBMS, support for mobile object data management is
implemented within the LBS application components. Whatever the implementation
is, those operators are used to query the mobile object database, and to set triggers (or
alerts) that are fired when interesting conditions are satisfied by the database during
the objects motion. They can be incorporated into the traditional SQL query language
that has been widely adopted by commercial database systems.

Having defined user-defined data types and operations related to mobile objects,
the following feature types could be defined:

CREATE TYPE Ambulance AS OBJECT
(ID NUMBER, name CHAR(64), driver CHAR(64), type CHAR(256), loca-
tions MobilePoint);

CREATE TYPE Taxicab AS OBJECT
(ID NUMBER, company CHAR(64), driver CHAR(64), type CHAR(256), lo-
cations MobilePoint);

CREATE TYPE Street AS OBJECT
(ID NUMBER, name CHAR(64), centerLineOf LineString);

Based on them, the LBS client could define and specify the following queries:

1. Select ambulances that are within 2 km around of my current position:
select amb.id, amb.name, amb.driver
from Ambulance amb
where (amb.locations.GeometryAt(NOW)).distance(Point(xref,yref)) <=
2000

2. Select all taxicabs that are currently in “Vozdova” street:
select tcab.id, tcab.name, tcab.driver
from Taxicab tcab, Street s
where (tcab.locations.GeometryAt(NOW)).within(s.centerLineOf) and
s.name=”Vozdova”

3. Return the position of a taxicab “Banker-17” if it enters the “Cara Dusana” street in
last 5 minutes:

select t.locations.GeometryAt(NOW)
from Taxicab t, Street s
where t.name = “Banker-17” and s.name=” Cara Dusana” and
(t.locations.GeometryDuring(TimePeriod(NOW-
300,NOW))).Enters(s.centerLineOf))

4. Select all ambulances that were in “Niska Banja” municipality today between 5 and
6 AM.

 287

select amb.id, amb.name, amb.driver
from Ambulance amb, Municipality m
where (amb.locations.GeometryDuring(TimePeriod(5, 6))).within(m.area)
and m.name = “Niska Banja”

All these queries, except the third one, are range queries, as the most prevalent type
of queries in LBS. Therefore, the next section propose algorithms and data structures
for processing of continuous range queries.

4 Processing Continuous Range Queries

The main problem and the challenge in the location-based services development is
how to handle different types of queries over mobile objects. According to the mobil-
ity of clients and the data objects to be queried by the clients, such queries can be fur-
ther classified into three types:
� Mobile objects querying static objects (tourist services, m-commerce, etc.)
� Stationary clients querying mobile objects (fleet management, traffic control, etc.)
� Mobile clients querying mobile objects (tourist services, digital battlefield, etc.)

The most prevalent types of location-dependent queries in LBS are range queries.
In such queries the range can represent a user-selected area, a map window, a polygo-
nal feature or an area containing points within specified distance from a point of in-
terest. Since the motion of the mobile object is constrained by the road network, the
range can also represent the part of the road segment. In contrast to regular queries
that are evaluated once, a continuous query remains active over period of time and has
to be continuously evaluated during this time to provide up to date answers. Such que-
ries may also represent triggers that enable event notification to the registered users.
At any time there will be several continuous queries running at the LBS server. Each
of this queries needs to be re-evaluated as the objects move. A major challenge for
this problem is repeatedly processing all queries within reasonable amount of time as
the numbers of objects being tracked and continuous queries increases. We base our
approach on the application scenario appropriate in LBS for tourist and business guid-
ing, where mobile client’s destination is known when he/she registers to the service,
and also the underlying road network contains data specifying average speed and
travel time on certain road segments.

The processing of the continuous range queries on mobile objects we base on the
ARGONAUT, mobile object data management framework. We focus on the first and
second types of queries, since the research on the third type can be based on solutions
to the first two types. For the purpose of query processing, instead of 3D indexing
scheme (3D R-tree) similar to the ones proposed in the literature [7], which requires
frequent updating as the objects’ move, we assume an available 2D indexing scheme
in the underlying DBMS. The insertion of a mobile object’s trajectory is done by en-
closing every segment of the object’s route in a Minimal Bounding Rectangle (MBR)
and the same is done for the query range MBR. During the filtering stage the query
engine retrieves the routes, which have a MBR that intersects with query range MBR.
By exclusion of time in the indexing scheme we avoid the frequent index update,
which occurs in the 3D indexing scheme. However, our filter stage as the result gives
more objects that will cause false selections. In our work we focus on the refinement

 288

stage of the processing and propose main-memory data structures for efficient query
processing.

Continuous range query has to be continuously evaluated during specified time pe-
riod, i.e. it has to be repeatedly and periodically processed. The shorten this period is,
the more accurate is the query answer, but processing requires more time and comput-
ing power. In continuous query processing the filter stage is performed only once for
initial query evaluation, but for every periodical evaluation the refinement stage must
be performed. In order to shorten the refinement stage, which occurs repeatedly dur-
ing the lifespan of the continuous query, we propose the pre-refinement step, which
has to be performed just after the initial filter stage. Such pre-refinement step enables
significant reduction of the refinement processing, by using expected trajectory of the
mobile object and constructs the set of mobile objects that satisfies the query condi-
tion but possibly at different times during the period of the query time span.

The query issued by stationary client querying mobile objects we model by the
SMRangeQuery class (fig 3).

MSRangeQuery
timespan : TimeObject
resultset : Map<Feature*,TimeObject*>
currentset : FeatureSet
center : MobilePoint
distance : Double

Update(f : Feature, dt : TimeDuration)
Evaluate(ti : TimeInstant)

SMRangeQuery
range : Polygon
timespan : TimeObject
resultset : Map<Feature *, TimeObject *>
currentset : FeatureSet

Update(f : Feature, dt : TimeDuration)
Evaluate(ti : TimeInstant)

RangeQuery

Fig. 3. Classes for range queries

The main attributes of that class are the range of the type of Polygon class, the
timespan of the TimePeriod class representing the validity period of the continuous
query, and the resultset of the Map class. The Map class represents the hash table that
maps keys to values (e.g. map template class in STL, and CMap class in MFC). The
key in the resultset attribute is a reference to the mobile object (Feature class with
mobile geometry), and the value is the time object during which that mobile object
satisfies the query condition. The currentset represents the set of features satisfying
the query at the current (the time of evaluation) time instant. The algorithm for pre-
refinement step assumes that the filterset contains the list of the mobile features se-
lected by the filter stage, and is given by the following (Remark: Algorithms are given
using C++ syntax and using MFC collection classes):

Algorithm 1 - The pre-refinement step for stationary clients querying mobile objects
POSITION pos = filterset.GetHeadPosition()
while (pos != NULL)
{
Feature *f = filterset.GetNext(pos);

 289

MobilePoint *mp = (MobilePoint *) f->Geometry();
if(mp->Route()->interests(query.range))
{
 TimeObject *to = mp->When(mp->Within(query.range));
 query.resultest.SetAt(f, to);
}
}

For every mobile object in the filterset, this algorithm examines the predicate inter-
sects between the route of the mobile object and the query range and, if the predicate
is satisfied, inserts the new (key, value) pair to the query resulset, where the key
represents the reference to the mobile feature, and the value is the time object (time
period or multi time period) during which the feature satisfies the query condition.
The refinement step of such continuous range query is preformed periodically on pre-
defined time interval, and at each evaluation generates the current result set valid till
the next evaluation. It is implemented as the Evaluate operation in the
SMRangeQuery class.

Algorithm 2. The Evaluate operation and the refinement step at time instant te
POSITION pos = resultset.GetStartPosition()
while (pos != NULL)
{
resultset.GetNextAssoc(pos, f, to);
if(to->Contains(te))
 currentset.Add(f);
}

The refinement step iterates through all the elements in the result set, and adds to
the current result set only those features whose time value contains time of the evalua-
tion. Every mobile object has a reference to the set of continuous range queries in
which it is involved (queryset). At every location update, the future trajectory of the
mobile object must be updated by ∆t - the time duration of its advance or delay re-
lated to the predicted trajectory (as noted in section 2). Also, the continuous query
result sets in which that object is included must be updated accordingly. The follow-
ing algorithm describes such an update:

Algorithm 3. Update of the query resultset’s time object for all the queries in the que-
ryset

POSITION pos = queryset.GetHeadPosition();
while (pos != NULL)
{
 SMRangeQuery *rq = (SMRangeQuery *)queryset.GetNext(pos);
 rq->Update(f, dt);
}

The Update operation of the SMRangeQuery class is defined as:
SMRangeQuery::Update(Feature *f, TimeDuration dt)
{
if(Lookup(f, tobject))
 SetAt(f, tobject->Add(dt));
}

Similar algorithms are implemented for the queries issued by mobile client query-
ing stationary objects (points of interest) by using MSRangeQuery class (Fig. 3).

 290

Since the mobile range in LBS is usually defined by the extent around the mobile ob-
ject, it is represented by the mobile point (the attribute center) and the distance (the
attribute distance) around it. The three other attributes, timespan, resultset and cur-
rentset have the same meaning as in the SMRangeQuery class. The pre-refinement
step of such query is given by the following, assuming that the filter set contains all
points of interest that are contained in the MBR of the query range:

Algorithm 4 - The pre-refinement step for mobile-static query
POSITION pos = filterset.GetHeadPosition()
while (pos != NULL)
{
Feature *f = filterset.GetNext(pos);
Point *p = (Point *) f->Geometry();
LineString *r = query.center->Route();
Polygon *area = r->buffer(query.distance);
if(area.contains(p))
{
TimeObject *to = rcenter->When(rcenter->Distance(p)-
>Lt(query.distance));
 query.resultset.SetAt(f, to);
}
}

This algorithm calculates the buffer around the center point’s route on the specified
distance and examines the predicate contains between that polygonal buffer and the
point from the filter set. If the predicate is satisfied it inserts the new (key, value) pair
to the query result set, where the key represents the reference to the static feature, and
the value is the time object (time period or multi time period) during which the feature
satisfies the query condition. Algorithms 2 and 3 are also related to this type of query;
only instead of the SMRangeQuery class, the MSRangeQuery class is used.

Fig. 4. Processing of continuous range query in the ARGONAUT prototype application

 291

We’ve implemented proposed classes and data structures for continuous range
query processing within the ARGONAUT framework. Using mobile objects’ data gen-
erated by our Mobile Object Simulator [10], we are currently evaluating proposed
continuous query processing algorithms, for a large number of mobile and stationary
objects and compare their performance with general approach that rest on 3D index-
ing scheme and does not include the pre-refinement step. The processing of continu-
ous range query, that from the set of all vehicles (red circles) selects only those (filled
red circles) that are within the distance of 200 m around the specified point of interest
(green rectangle) during specified time period, is shown in Figure 4.

5 Conclusions

In this paper we address the problem of processing continuous range queries on mo-
bile objects. In contrast to regular queries that are evaluated once, a continuous query
remains active over period of time and has to be continuously evaluated during this
time to provide up to date answers. Such queries may also represent triggers that en-
able event notification to the users issuing them. At any time there will be several
continuous queries running at the server. Each of these queries needs to be re-
evaluated periodically as the objects move. A major challenge for this problem is re-
peatedly processing all queries within reasonable amount of time as the numbers of
objects being tracked and continuous queries increases.

The processing of the continuous range queries on mobile objects we base on the
mobile object data management framework, ARGONAUT, which represents an imple-
mentation of the object-oriented data model and the query language for mobile ob-
jects. We assume an available 2D indexing scheme in the underlying DBMS, and fo-
cus on the refinement stage of the processing proposing the pre-refinement step, algo-
rithms and data structures which reduce computing time and complexity associated
with periodical refinement procedure. The future research direction include improve-
ments of the continuous query processing for the k-nearest neighbor queries, as well
as practical evaluation of proposed query processing methodologies in the prototype
LBS application for tourist and business guiding based on the ARGONAUT component
framework.

References

1. Brinkhoff T.: A Framework for Generating Network-Based Moving Objects. GeoInfor-
matica Journal, 6(2):153-180 (2002)

2. Erwig M., Schneider M.: Spatio-Temporal Predicates. IEEE Transactions on Knowledge
and Data Engineering, 14(4):881-901 (2002)

3. Gueting R.H., Boehlen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Schneider M.,
Vazirgiannis M.: A Foundation for Representing and Querying Moving Objects. ACM
Transactions on Database Systems, 25(1):1-42 (2000)

4. ISO/ TC 211 Geographic Information/Geomatics: ISO 19125 - Geographic information -
Simple feature access. (2000)

5. ISO/ TC 211 Geographic Information/Geomatics: ISO 19108 - Temporal Schema. (2000)

 292

6. Oracle 9i Enterprise Edition: Oracle Documentation Library. Oracle Corporation,
http://technet.oracle.com, (2002)

7. Pfoser D., Theodoridis Y., Jensen C.S.: Novel Approaches in Query Processing for Mov-
ing Object Trajectories. Proceedings 26th VLDB Conference, (2000) 395–406

8. Stojanovic D., Djordjevic-Kajan S.: Location-based Web service for Tracking and Visual
Route Analysis of Mobile Objects (in Serbian). Proceeding Yu INFO Conference,
Kopaonik, (2002)

9. Stojanović D., Djordjevic-Kajan S.: Extending Database Technology to Support Location-
Based Service Applications. Proceedings ICEST Conference, Sofia, Bulgaria (2003)

10. Stojanovic D., Djordjevic-Kajan S.: Generating Motion Data for Mobile Objects on Trans-
portation Network (in Serbian). Proceeding Yu INFO Conference, Kopaonik (2003)

11. Trajcevski G., Wolfson O., Zhang F., Chamberlain S.: The Geometry of Uncertainty in
Moving Objects Databases. Proceeding EDBT Conference, (2002) 233-250

12. Trajcevski G., Wolfson O., Xu B., Nelson P.: Real-Time Traffic Updates in Moving Ob-
jects Databases. Proceedings DEXA Conference (2002)

13. Wolfson O.: Moving Objects Information Management: the Database Challenge. Proceed-
ing 5th Workshop on Next Generation Information Technologies and Systems (NGITS), Is-
rael (2002)

