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Abstract. An approach in modeling collaborative and metacognitive data is 
presented in this paper. The proposed scheme, namely Collaboration/ Metacog-
nition–Adaptive Network-based Fuzzy Inference System (C/M-ANFIS), uses 
neurofuzzy structure to adaptively infer on the relation between the above data 
in a meaningful way. More specifically, the collaborative and metacognitive 
data refer to the participant’s collaborative skills and his/her beliefs on the qual-
ity of his/her collaboration respectively, during sessions of collaboration. The 
C/M-ANFIS allows the intense analysis of these empirical data facilitating a 
microgenetic look at how change in collaborative and metacognitive activity 
occurs across the sessions of collaboration. Moreover, through training proce-
dures, the C/M-ANFIS model manages to estimate the processes that give rise 
to this change. Furthermore, based on the estimated relationship, the model may 
predict forthcoming values of a feedback indicator (quality of collaborative ac-
tivity). This information, combined with coaching messages, may be presented 
to the users as an enhanced feedback.  

1 Introduction 

Artificial intelligence technologies play an important role in network collaboration, 
due to its advanced features and adaptive functionality. It contributes to proper sup-
port to the users by allowing adaptive modeling of their collaborative interactions in 
order to successfully track their individual skills and beliefs. 

To this purpose, empirical data based models (EDM), which are mined from the 
large amount of data that are logged by the system during the computer-mediated 
interactions, may be used. The EDM rely on the fact that the intrinsic features of the 
observed interactions and their mutual interrelations can be learned from the data 
using a great number of simultaneously co-operating simple processing units or op-
erations. This approach allows the extraction of information (knowledge) from these 
low-level data into other forms that might be more abstract [1]. Works in the area of 
EDM include the analysis of the quality of peers’ interactions [2], and the modeling of 
the sequence of productive interactions [3]. 

When the analysis of interactions employs inference abilities to provide predictive 
utterances, the supporting system becomes even more enhanced. Examples include 
the use of a two-parameter regression model [4], and Bayesian networks [5]. Yet, 
system modeling based on conventional mathematical formulation, is not well suited 
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for dealing with uncertain systems, such as human behavior. In contrast, EDM that 
make use of fuzzy inference system (FIS), utilizing fuzzy logic, combine numerical 
and linguistic data to model the qualitative aspects of human knowledge and reason-
ing processes without employing precise quantitative analysis [6]. For enhanced per-
formance, FIS could be combined with adaptive networks. The latter are network 
structures consisting of nodes and directional links through which the nodes are con-
nected. Part or all of the nodes are adaptive; hence, each output of these nodes de-
pends on the parameters pertaining to this node. The learning rule specifies how these 
parameters should be changed to minimize a prescribed error measure [7]. By embed-
ding the FIS into the framework of adaptive networks, we obtain the neurofuzzy-
model structure that adaptively maximizes the performance index through Adaptive 
Network-based FIS (ANFIS) [8]. 

In this paper, an adaptive neurofuzzy EDM, namely Collaboration/Metacognition–
ANFIS (C/M-ANFIS) model is proposed, to efficiently model the collaborators’ skills 
and beliefs. In particular, the C/M-ANFIS model combines ANFIS with sets of col-
laborative and metacognitive data, acquired with a suitable Internet-based collabora-
tion tool [9,10], during peers’ computer-mediated collaboration. The collaborative 
and metacognitive data refer to peers’ collaborative activity and to their beliefs on the 
quality of their collaboration, respectively. Based on these data the C/M-ANFIS 
model manages, through training procedures, to extract the collaborative strategy 
adopted by the peers, independently of the task-content. When adequately trained, the 
model manages to generalize on each peer’s collaborative behavior, thus provide 
predictions on his/her collaborative activity in a forthcoming collaborative session. 
Based on this modeling, individual support could be provided to each peer that could 
contribute to improve his/her collaboration management. Materialization of the C/M-
ANFIS model based upon experimental data from the collaboration of distant pairs of 
students in environmental engineering education proves the feasibility of the proposed 
approach. 

The remainder of this paper is organized as follows. In Section 2, information re-
garding the empirical data of interest is provided. In Section 3, the structure of the 
proposed C/M-ANFIS model is presented. Model development issues and results are 
presented and discussed in Sections 4 and 5 respectively. Finally, Section 6 concludes 
the work. 

2 Empirical Data of Interest 

The proposed EDM approach models information that is hidden in the peers’ interac-
tions during computer mediated collaboration. In the following subsections the type 
of these empirical data and their acquisition procedure are described. 

2.1 Types of data 

The activity that takes place during the collaboration involves a variety of interac-
tions. This work focuses on data that result from collaborative and metacognitive 
interactions, briefly described as follows. 
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During collaboration two or more people, sharing the same objective, are engaged 
in a common activity in order to transform the objective to an outcome. In order this 
transformation to be achieved, the construction and maintenance of effective collabo-
rative activities is fundamental [11]. To do so, in a computer-mediated environment, a 
communication model is established, to challenge certain types of interactions that are 
expected to promote a more effective collaborative activity. Such collaborative inter-
actions include creative conflict, productive argumentation, knowledge sharing, and 
critique provision [11] and are differentiated through button clicks on predefined 
areas of the interfaces. The system logs this activity and these raw data are further 
elaborated by means of intermediate collaborative variables that can be empirically 
and theoretically related to the conditions of collaboration and to the particular out-
come [11]. In this way, a new series of data are produced, namely collaborative data. 

Metacognition includes individual’s awareness of his/her own knowledge, actions, 
and emotional situation, along with the ability to monitor and consciously adjust them 
during a learning procedure (e.g. collaboration) [12, 13]. The use of metacognition 
may significantly improve the individual’s collaborative performance [14]. Hence, 
adopting metacognitive strategies upon a collaborative procedure the individual is 
able to consciously monitor his/her collaborative interactions and adjust them in order 
to enhance the effectiveness of his/her collaborative activity. The metacognitive activ-
ity is conscious and countable [15], therefore it is translatable through metacognitive 
interactions. These interactions are also captured by means of a communication model 
and properly designed interfaces. Such metacognitive interactions include explain-
ing/self-explaining one’s own thinking and describing planned actions according to 
the individual’s beliefs. Similarly to the collaborative interactions, intermediate meta-
cognitive variables, which can be used in the quantitative interpretation of metacogni-
tive interactions, could be defined, leading to a series of elaborated data, namely 
metacognitive data. 

As it has been made clear from the analysis so far, the aim of this work is to model 
cognitive and metacognitive interactions using data derived from the peer’s collabora-
tion monitoring, focusing on his/her collaborative activity, rather than on his/her per-
formance at the task level. In the proposed work, these data are acquired through a 
collaboration environment, namely Lin2k [9, 10], which monitors the peer’s collabo-
ration activity. By employing a FIS the Lin2k elaborates the peer’s collaboration and 
metacognition activity providing the appropriate collaborative and metacognitive 
input/output data for the proposed C/M-ANFIS model. A brief description of the 
Lin2k follows. 

2.2 Data Acquisition 

Lin2k is a computer-mediated environment that supports the collaboration between 
two distant peers in an asynchronous written mode [9, 10]. The collaboration is de-
veloped in a step-by-step approach of a case study, and the peers communicate 
through the Internet using semi-structured interfaces [9]. These interfaces facilitate 
the peers in performing the collaborative interactions. By the end of each step, each 
peer is challenged to perform reflection on his/her preceded collaborative activity and 
to plan the improvement of his/her collaborative activity during the next step. Again 
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by means of interfaces dedicated to this purpose, each peer performs these metacogni-
tive interactions. Both collaborative and metacognitive interactions are logged by the 
system as raw empirical data at each step. During the collaborative/metacognitive 
activity, intermediate collaborative and metacognitive variables are fired. These in-
termediate variables are quantified by the system through weighting of the raw data 
and are archived in a peer’s activity database. The acquired values of the intermediate 
collaborative variables are used for the estimation of the quality of the collaborative 
activity. The term quality refers to the domain-expert’s knowledge of ‘proper’ col-
laboration [9, 10]. Similarly, the acquired values of the intermediate metacognitive 
variables are used for the estimation of the peer’s intention of improvement during the 
collaborative activity [9, 10]. The intention of improvement reflects the user’s meta-
cognitive awareness of the quality of his/her collaborative-activity and beliefs for 
further improvement [9, 16]. The Lin2k employs FIS, i.e., Collaboration/ Metacogni-
tion-FIS (C/M-FIS), to provide a quantitative estimation of the collaboration quality 
and the intention of improvement. Using appropriate IF-THEN fuzzy rules and mem-
bership functions based on expert’s knowledge [9,10], the Lin2k combines the ac-
quired values of the intermediate variables to infer two crisp values at each step of the 
case study, i.e., )( pC s

n  and ),( pM s
n  where BAn ,=  denotes the student, Np ,...,1=  

the pair, and Ls ,...1=  the step of the case study. The )( pC s
n  and )( pM s

n  values are 
used as measures of the collaboration quality and the intention of improvement, re-
spectively. The collaborative and metacognitive data, )( pC s

n  and )( pM s
n  respec-

tively, define the input signal of the proposed C/M-ANFIS model. 

3 The Structure of the Proposed Model 

The C/M-ANFIS model is expected to estimate the peer’s collaborative activity of the 
next step )(~ 1 pC s

n
+ , prior to the concrete collaborative experience, when presented 

with current )( pC s
n  and )( pM s

n  values. To infer the )(~ 1 pC s
n
+  value, the C/M-ANFIS 

model is trained to evaluate the relation between the forthcoming collaborative activ-
ity with the current collaborative and metacognitive activity. However, this initially 
unknown relation is hidden within the empirical data that are obtained from the 
Lin2k. Therefore, C/M-ANFIS training is an equivalent procedure to learning from 
empirical data. This coincides with ANFIS structure [7] and motivated its use in the 
present study. In fact, C/M-ANFIS is based on an ANFIS five-layer feed-forward 
network structure, as depicted in Figure 1. During training, at each level, the param-
eterized nodes perform specific functions of the incoming signal, as follows. 

Suppose for simplicity, that the C/M-ANFIS rule-base contains two rules of 
Sugeno type [8]: 

R1: IF )( pC s
n  is 1A  AND )( pM s

n  is 1B  THEN 1111 )()( rpMqpCpf s
n

s
n ++=  

ELSE,  
R2: IF )( pC s

n  is 2A  OR )( pM s
n  is 2B  THEN 2222 )()( rpMqpCpf s

n
s
n ++= ,  
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Fig. 1. The use of the ANFIS architecture [7] in the C/M-ANFIS model structure.  

The graph refers to the s step of the collaborative case study 

where ii BA , and ,,, iii rqp  with ,2,1=i  are linguistic variables and constants, 
respectively [8]. The ith  node function of the first layer performs fuzzyfication of the 
incoming signal as follows (see also Figure 1):  

))(()),(( 11 pMOpCO s
nBM

s
nAC iiii

µµ == , ,2,1=i  (1) 

where 
ii BA µµ ,  denote the membership functions that specify the degree to which 

)( pC s
n  and )( pM s

n  belong to the corresponding linguistic variables iA  and ,iB  re-

spectively. 1
iCO  and 1

iMO  describe the collaborative and metacognitive activity, re-
spectively, using fuzzy values (i.e., low or good collaboration; low or satisfactory 
metacognition). The shape of the continuous and piecewise differentiable membership 
functions is described by parameters. These are the premise parameters and are ad-
justed by using the learning algorithm. Each node of the second layer 2

iO  presents 
the firing strength of a rule, estimated by multiplying the incoming membership val-
ues of the previous layer: 

2,1,112 =⋅== iOOwO MiCiii . (2) 

The ith  node of the third layer 
3

iO  normalizes the firing strength of the rules: 

.2,1,
21

3 =
+

== i
ww

w
wO i

ii  
(3) 

The node function at the fourth level is of the form: 

))()((4
i

s
ni

s
niiiii rpMqpCpwfwO ++== , ,2,1=i  (4) 

where { }iii rqp ,,  are the consequent parameters. A single node constitutes the fifth 
layer, which computes the overall crisp output: 
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The overall development of the C/M-ANFIS model requires the following primary 
procedures: 
1. Data acquisition. The Lin2k collaborative environment provides the data of inter-

est. Let the following vectors:  
TL
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L
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C NZZZ K=w  (9) 

are defined respectively. 
2. Definition of the Training and Testing Data Set. From the overall input/output data, 

75% are normally used for the training procedure, while the rest 25% for model 
testing, as described below. 

3. Training procedure. The input/output pairs are all presented to the system during 
the C/M-ANFIS model training. Learning is implemented in epochs in order to de-
fine the values of the premise and consequent parameters by minimizing, with a 
predefined accuracy, the Root Mean-Squared Error ),(RMSE   

( ) ,
1)1(2

)~(~

−−
−−

=
NL

RMSE
T wwww  

(10) 

where w~  denotes the estimated value of w . Each epoch foresees two passes: a 
forward pass of the signal, where the premise parameters are kept fixed and the 
consequent parameters are calculated by the least squares method, and a backward 
pass, where the consequent parameters are kept fixed and the premise parameters 
are updated by the gradient descent method [7, 8]. 

4. Testing procedure. The testing data set is presented to the model and the equivalent 
RMSE is calculated. When this value is within a predefined accuracy, the generali-
zation ability of the model is verified. Such generalization equals to prediction of 
the quality of the peer’s collaborative activity in a forthcoming collaborative ses-
sion, which may ground the provision of advanced individualized feedback, to-
wards self-improvement. 
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4 Development of the Proposed Model  

An experimental use of Lin2k provided the empirical data for the development of the 
C/M-ANFIS model. The overall data set was obtained from the distant collaboration 
of 44 pairs of civil engineering students (7th semester) at the Department of Civil 
Engineering, Aristotle University of Thessaloniki, Greece. They were randomly se-
lected, and they collaborated on two case studies, which were set in the course of 
environmental technology concerning everyday problems. The aim of the peers’ col-
laboration was to incrementally produce a written technical report on those problems, 
at six successive steps of collaboration. In this way, the two-input one-output training 
vectors that were obtained were the ones described by (8) and (9), respectively, with 
L=6 and N=44. The overall empirical data were 88 input-output vectors. In order not 
only to train but also to test the training of the C/M-ANFIS model, 75% of the empiri-
cal data was used for the training procedure while the rest 25% for model testing. 

During the C/M-ANFIS training, the training set up foresaw the analytical forms of 
prod and probor operators for the connectors AND and OR, respectively, the min for 
the IF-THEN implication and the max for the ELSE aggregation (see linguistic terms 
in the aforementioned rules R1 and R2), and the defuzzification method wtaver pro-
duced the crisp output [17]. The whole procedure was implemented on a Pentium III 
650 MHz, using Matlab 5.3 (Mathworks Inc., Natick, MA) [18]. 

Input Variable )( pC s
n  Input Variable )( pM s

n  
 

1sig  1c  2sig  2c  1sig  1c  2sig  2c  
1 0.01887 0.03333 0.02244 0.03483 0.01887 0.03333 0.01887 0.03333 
2 0.01772 0.07832 0.01619 0.14240 0.01887 0.07778 0.01887 0.14440 
3 0.02236 0.18670 0.01891 0.25560 0.01887 0.18890 0.02024 0.25600 
4 0.02228 0.29890 0.01672 0.36600 0.01887 0.30000 0.01651 0.36490 
5 0.01824 0.41160 0.01863 0.47760 0.01824 0.41050 0.01977 0.47820 
6 0.01893 0.52220 0.01887 0.58890 0.01899 0.52230 0.01899 0.59030 
7 0.01887 0.63330 0.01887 0.70000 0.01606 0.63580 0.01862 0.69950 
8 0.01887 0.74440 0.01887 0.81110 0.02131 0.74290 0.02333 0.81290 
9 0.01887 0.85560 0.01887 0.92220 0.01885 0.85560 0.01887 0.92220 

10 0.01887 0.96670 0.01887 1.03300 0.02278 0.96470 0.01887 1.03300 

Table 1. Vectors that define the membership functions of the best-trained version of the  
C/M-ANFIS model 

The C/M-ANFIS model training aimed at selecting the premise and consequent pa-
rameters by minimizing, with an accuracy of 0.01, the RMSE. Different set up [18] 
were tested during the training procedure, resulting in the best-trained version of the 
C/M-ANFIS model within 3 epochs. This version resulted in Training RMSEs  
0.11436, Testing RMSEs  0.088495 and ten membership functions assigned to each 
input variable, )( pC s

n  and ),( pM s
n  respectively. The shape of each membership 

function is of the Gauss2mf (Gaussian combination) type and is defined by a vector of 
four parameters listed in the order of [ 1sig , 1c , 2sig , 2c ] (where combinations of 
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sig  and c , determine the shape of the left-most and right-most curve, respectively 
[17]). The vectors, which define the membership functions, are presented in Table 1.  

Moreover, 100 rules resulted in the best-trained version of the C/M-ANFIS model. 
This quite high number of rules is due to its effort to model the unknown relation 
between )( pC s

n  and )( pM s
n  data. 

5 Discussion 

This work presents the use neurofuzzy modeling to generalize from empirical data 
and reveal the rules that govern the outcome of peers’ collaborative and metacogni-
tive activities, during computer-mediated collaboration. In particular the proposed 
approach contributes to modeling the correlation of the peer’s cognitive and metacog-
nitive activity or otherwise the peer’s skills and beliefs during a collaborative activity, 
introducing another level of abstraction for the realization and interpretation of hidden 
and complex relations in human interactions. 

 Based on this knowledge, efficient and individual support could be provided to 
each collaborator. More specifically, the adaptive character of the C/M-ANFIS model 
by inferring on collaborative and metacognitive data foresees the status of collabora-
tion in the next step (estimated )(~ 1 pC s

n
+ value) and thus, may ground early support to 

the peers to improve their collaborative activity in the forthcoming step of collabora-
tion.  

The above approach materializes a noteworthy characteristic of the C/M-ANFIS 
model i.e., its microgenetic design [19], which calls for a closer look at how change in 
behavior occurs as individuals go through a learning experience [20]. In particular, 
the C/M-ANFIS model observes the changes of the individual collaborative behavior 
during a period of time. Moreover, the observed behaviors are intensively analyzed 
[19], through the neurofuzzy methodology with the goal of identifying the processes 
that give rise to the change. 

The C/M-ANFIS model, through the aforementioned microgenetic design, elicits 
from empirical observations and makes explicit the behavioral patterns of change of 
the peer’s cognitive and metacognitive activity, during incremented sessions of col-
laboration. However, the approach to observe and realize behavioral change calls for 
not only a meticulous observation of how the change occurs, but also the possibility 
of an impetus for change [21]. A planned change at the micro-level of interactions 
may give rise to new patterns of the collaborative behavior at the macro-level [20], 
i.e., to provoke overall collaborative skills improvement. The C/M-ANFIS model 
contributes to the occurrence and acceleration of this change by providing new mean-
ingful information at the micro-level [20]. More specifically, by presenting to the 
individual, at successive intervals of the micro-level (end of each step of the case 
study), the estimated value of the forthcoming collaborative activity )(~ 1 pC s

n
+ , it 

highly increases the possibilities to cause the desired change. Consequently, the C/M-
ANFIS may contribute to a formatively improvement of the peer’s collaborative be-
havior. 
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6 Conclusions and Future Work 

A new approach in modeling empirical data during computer-mediated collaboration 
is presented in this paper. The proposed C/M-ANFIS model, when embedded in an 
Internet-based collaborative environment, such as Lin2k, uses neurofuzzy structure to 
adaptively infer on the relation between skills (collaborative data) and beliefs (meta-
cognitive data) of the collaborator, as far as his/her collaborative performance is con-
cerned. Moreover, it manages to generalize on this relation and provide estimations of 
his/her collaborative performance in a forthcoming session of collaboration. This 
information may provoke creative changes in the micro- and macro-level of peers’ 
collaborative activity, thus significantly contributing to the enhancement of the pro-
vided support. Training and testing results from the materialization of the C/M-
ANFIS model, using empirical collaborative data from the environmental education 
field, prove its fast convergence to minimum error, its ability to accurately generalize 
from data, and its predictive performance. 

Like all EDM, the C/M-ANFIS needs sufficient amount of data in order to enhance 
its performance, i.e., to increase its generalization ability with simultaneous minimi-
zation of its training error, which constitutes the direction of future work. Neverthe-
less, its low computational complexity, its modular character, and its task-content 
independence, enables it to be easily integrated into other collaboration environments, 
similar to Lin2k, applied in a variety of collaborative case studies.  
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