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Abstract. In this paper, a new technique called Adaptive Representation Evo-
lutionary Algorithm (AREA) is proposed. AREA involves dynamic alphabets
for encoding solutions. The proposed adaptive representation is more compact
than binary representation. Genetic operators are usually more aggressive when
higher alphabets are used. Therefore the proposed encoding ensures an efficient
exploration of the search space. This technique may be used for single and mul-
tiobjective optimization. We treat the case of single optimization problems in
this paper. An algorithm for single objective optimization by using the AREA
technique is presented. Despite its simplicity the AREA algorithm is able to
generate a population converging towards optimal solutions. Numerical exper-
iments indicate that the AREA algorithm performs better than other single
objective evolutionary algorithms on the considered test functions.

1 Introduction

Adaptive Representation Evolutionary Algorithm (AREA) is similar to Evolution Strat-
egy (ES) technique [12, 13] as it uses a population of individuals which are modified
by mutation. Whereas the ES individuals have a fixed representation (binary or real),
the AREA individuals use a dynamic representation that may be changed during (and
without halting) the search process.

ES employs a special mechanism for adapting the mutation parameter. For instance
standard ES tries to adapt the standard deviation parameter when the Gaussian per-
turbation is used. These adaptations are of very little help. It is so because the function
to be optimized is usually very intricate and the optimal parameter setting for a certain
region of the search space may not be optimal for a neighboring region, at least.

Moreover, an incorrect setting for the value of the mutation parameter may lead
to poor results. For instance, if the mutations are rare, the population could (and
often will) converge to a local optimal point. If the mutations occur too often, the
evolutionary process has a random search character. Facing these two problems, AREA
employs a new way of searching through the solution space.

Many examples from nature can be found to sustain AREA. The first example
resides in human DNA which is, roughly speaking, a string of nucleotides over the
alphabet {T (thymine), C (cytosine), G (guanine), A (adenine)}. By contrast, standard
evolutionary algorithms use strings over the alphabet {0, 1} which consists of only two
values. The four-nucleotides system has been developed under the specific conditions of
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the Earth environment. Had different conditions been on Earth, maybe a ten-nucleotide
system could have developed. Lately, the entire evolution was based on this alphabet
made up of only four symbols.

If we take a look at the history of the Earth we can see that the species evolved very
slowly. Billions of years were needed to develop the diversity and perfection of life we
know today. The entire evolution (of the complex structure) is based on reproduction
by recombination and mutation. Recombination ensures the perpetuation of life. Mu-
tation is responsible for maintaining diversity and for exploring new functional ways
to combine the nucleotides.

If only two-nucleotide systems would have been used, the length of the human DNA
(that encodes the same diversity) would probably have been very large. A mutation on
this chromosome would probably be too small to produce a significant change. But, too
many mutations would produce dramatic changes and the obtained individual would
not survive.

If ten-nucleotides systems had been used, the length of the human DNA (that
encodes the same diversity) would have (probably) been very small. A mutation on
this chromosome would have produced a significant change and the species diversity
would have been greater.

AREA is essentially a technique that works with higher alphabets. Each AREA
individual consists of a pair (x, B) where z is a string encoding object variables and
B specifies the alphabet used for encoding z. Binary encoded strings are a particular
case of AREA.

Had only one alphabet been used the gain of AREA over standard ES would have
been minimal. Thus, the AREA individuals use a dynamic system of alphabets that
may be changed during (and without halting) the search process. If an individual
gets stuck in a local optimum - from where it is not able to ”jump”- , the individual
representation is changed, hoping that this new representation will help the individual
to escape from the current position and to explore farther and more efficiently the
search space.

The similarities between the AREA behavior and the behavior of other species from
nature are also numerous. For instance, the chameleon which is able to chance the color
of its skin depending on the place. The AREA individuals possess the same ability to
change their looks as the chameleon. From this point of view AREA may be considered
as an interesting case of chameleonic programming.

Taking into account the No Free Lunch Theorems (NFL) [17] we cannot say that
AREA is better than other evolutionary algorithms for all the test problems. Indeed,
several cases where other evolutionary algorithms used for comparison are better than
AREA have been successfully identified. However, AREA significantly outperforms
the standard evolutionary algorithms on the well-known difficult (multimodal) test
functions. This advantage of AREA makes it very suitable for real-world applications
where we have to deal with highly multi-modal functions.

Like Genetic Algorithms, AREA is also subject to a debate concerning the benefit
of the genome-phenome systems over the genome only systems. As stated in many
papers there is a question whether the maintaining of multiple, different genomes that
encode the same phenotype should be beneficial. AREA maintains multiple different
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genomes (strings encoded over different alphabets) that encode the same phenotype
(points in the search space) and this ability seems to be very beneficial.

AREA relies mainly on Dynamic Representation (DR) proposed in [11]. Both AREA
and DR use higher alphabets for encoding solutions and a special mutation operator
that changes the encoding alphabet during the search process. Whereas DR alphabets
changing are blind, AREA employs an efficient strategy for changing the encoding
alphabets.

The problems of adapting individual representation and the parameters of an evo-
lutionary algorithm are difficult. They have been studied since the birth of genetic
algorithms and evolutionary strategies. Some aspects of that study are described in
[1,2,3,4,6,9, 14, 15, 16].

Several numerical experiments with AREA are performed. The test functions are
well-known benchmarking problems used to asses the performances of evolutionary al-
gorithms. Most of these functions are highly multimodal employing different difficulties
of the search space.

2 AREA Technique

The main idea of this technique is to allow each solution be encoded over a different
alphabet [5, 11]. Moreover, the representation of a particular solution is not fixed.
Solution representation is adaptive and may be changed during the search process as
an effect of the mutation operator.

2.1 Solution Representation

Each AREA individual consists of a pair (z, B) where z is a string encoding object
variables and B specifies the alphabet used for encoding z. B is an integer number,
B > 2, and z is a string of symbols from the alphabet {0, 1, ..., B1}. If B = 2, the
standard binary encoding is obtained.

Each solution has its own encoding alphabet. The alphabet over which x is encoded
may change during the search process.

When no ambiguity arises we will use B to denote the alphabet B = {0, 1,...B1}.

An example of an AREA chromosome is the following:

C = (301453, 6).

Remark: The genes of x may be separated by comma if required. For instance the
comma separator is always needed when B > 10.

2.2 Mutation

Mutation can modify object variables as well as the last position (specifying the rep-
resentation alphabet).
When the changing gene belongs to the object variable substring (x - part of the
chromosome) the mutated gene is a randomly chosen symbol from the same alphabet.
Consider the chromosome C' represented over the alphabet B = 8:
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C = (631751, 8).

Consider a mutation occurs on position 3 in z and the mutated value of the gene
is 4. Then the mutated chromosome is:

Cy = (634751, 8).

If the position specifying B is changed, then the object variables will be represented
by using symbols over the new alphabet, corresponding to the mutated value of B.
Consider the chromosome C' represented over the alphabet B = &:

C = (631751, 8).

Consider a mutation occurs on the last position and the mutated value is By = 10.
Then the mutated chromosome is:

Cy = (209897, 10).

C and C5 encode the same value over two different alphabets (B = 8, By = 10).
Remark: A mutation generating an offspring worse than its parent is called a harmjful
mutation.

A chromosome encoded over a higher alphabet has a shorter length than a chro-
mosome encoding the same value (point in the search space) and the same precision
but over a lower alphabet. For instance if we encode real numbers in the interval [0,
1] with the precision 10~ we have to use strings of length 30 over the alphabet {0, 1}
and strings of only 7 digits if we use the alphabet 30.

The alphabet part of a chromosome C' it is not affected by normal mutation in
our evolutionary model. The string x of the chromosome is the only one modified
by normal mutation. The alphabet part of the chromosome is changed only when a
predefined (consecutive) number of mutations of a solution do not improve the quality
of the considered individual. However, one may consider mutations which affect the
alphabet part of the individual in a standard way.

2.3 The Evolutionary Model

During the initialization stage each AREA individual (solution) is encoded over a
randomly chosen alphabet. Each solution is then selected for mutation. If the offspring
obtained by mutation is better than its parents, then the offspring enters the new
population.

If the number of successive harmful mutations for an individual exceeds a pre-
scribed threshold (denoted by MAX_HARMFUL_MUTATIONS), then the individual
representation (alphabet part) is changed and it enters the new population with this
new representation. Otherwise the individual (the parent) enters unchanged the next
generation.

The reason behind this mechanism is to dynamically change the individual repre-
sentation whenever necessary. If a particular representation has no potential for further
exploring the search space, then the representation is changed. It is hoped that in this
way the search space will be explored more efficiently.

The basic parameters of AREA are:
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(¢) The population size;
(i) MAX_HARMFUL_MUTATIONS;
(131) The alphabets over which an individual may be represented;
The sets of alphabets used in the experiments performed in this paper are {{0, 1},
{0, 1, 2}, ..., {0, 1, 2,..., 31}}.

(iv) The representation precision which is taken into account when the individual al-
phabet is changed into a new value;

(v) Mutation probability p,, which is usually fixed (for instance 1 / mutations). Note
that if the alphabet is changed the p,, is changed. For instance, if the alphabet
is B = 2 and the chromosome length is 30, the mutation probability is 1 / 30 =
0.033. If the used alphabet is 32 the chromosome encoding the same value is made
of only 6 digits and p,, =1 / 6 = 0.66.

2.4 The AREA Algorithm

The AREA algorithm [5] may be depicted as follows:
begin
Set t = 0;
Random initializes chromosome population P (0);
Set to zero the number of harmful mutations for each individual in P(0);
while (¢ | number of generations) do

begin

P(t+1) = 0;

for k = 1 to PopSize do
begin

Mutate the k** chromosome from P (t). An offspring is obtained.

Set to zero the number of harmful mutations for offspring;

if the offspring is better than the parent

then the offspring is added to P(t+1);

else begin

Increase the number of harmful mutations for current individual;

if the number of harmful mutations for the current individual = MAX_HARMFUL_MUTATIONS

then begin

Change the individual representation;

Set to zero the number of harmful mutations for the current individual;
Add individual to P(t+1);

end

else Add current individual (the parent) to P(t+1);
endif

endif

endfor;

Sett =1t + 1;

endwhile;

end
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3 Numerical Experiments

In this section several experiments with AREA technique are performed. In the first
experiment the relationship between the number of iterations and the average of the
best individual value in the last generation is analyzed. The result obtained by AREA
is compared to the results obtained by two others algorithms. Both of them were in-
troduced in [11]. One of them is called Seasonal Model Evolution Strategy (SMES).
In this algorithm the alphabet representation of the solution is changed after a fixed
number of generations. The other algorithm is called Dynamic Representation Evolu-
tion Strategy (DRES). In that algorithm the alphabet of encoding solution is changed
at the end of each generation with a fixed probability.

Test functions used in these experiments are well known benchmarking problems
used for assessing and comparing the performances of the search algorithms. Due to the
space limitations only the results for two test functions taken from [18] are presented
in this paper.

Each test function has one or more global optimal solutions and multiple local
optimal solutions.

The test functions f; and f, are described in what follow. We denote by n the
number of space variable, by © = (x;) =1, a solution over the search space and by
z° the global optimal solution.

Test function f; is the following:

file) = —a-e”

where a = 20, b = 0.2, ¢ = 2. The domain of definition is [-32,32]™.

The function is also known as Ackley’s Path [18] and is a widely used multimodal
test function. The global minimum of this function is #° = (0,0,...,0) and the function’s
value in this point in f(z%) = 0.

Test function f» is the following:

—e n +a+e,

f2(z) =10-n + Xn:(a:f —10-cos(2 -7 - x;)).
i=1

The domain of definition is [-2,2]™.

Test function f» is also known as Rastrigin’s function and is based on unimodal
function with the addition of cosine modulation to produce many local minima. Thus,
the test function is highly multimodal. However, the locations of the minima are reg-
ularly distributed. The global optimum point is z° = (0,0,...,0) and the value of the
function in this point is f(z°) = 0.

The number of space dimension was set to 30 for each test function. Each algorithm
is run 100 times for each test function in each experiment and with any considered
parameters. Because individuals do not interact one with each other, populations with
a single individual are used in all the experiments. Using larger populations should
bring an increase of the performances. The representation precision was chosen in such
way to have 30 digits for each space dimension when binary encoding is used. During
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the initialization stage (at the beginning of the search process) all AREA individuals
are encoded over the alphabet {0, 1} (binary strings). One may initializes all the AREA
individuals over a randomly chosen alphabet.

Representation precision for first test function is considered 0.0000001 and for the
second function is considered 0.000000007.

3.1 Experiment 1

In this experiment the relationship between the number of iterations and the average
of the best individual value in the last generation is analyzed. The results are aver-
aged over 100 runs. The parameters used for AREA are: Number of alphabets = 31;
MAX_HARMFUL_MUTATION = 50 and Number of mutation / chromosome = 2.
DRES and SMES use the same parameters as AREA uses. The probability of changing
an alphabet in DRES is 0.02. The number of generations after the passing of which
SMES changes the alphabet is 50.

In Fig. 1 the results of this experiment are depicted.
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Fig. 1. The relationship between the number of iterations and the average of the best individ-
ual value in the last generation over 100 runs. The number of generation varies between 1000
and 10.000. The picture (a) corresponds to the test function f; and the picture (b) corresponds
to the test function fo..

AREA significantly outperforms DRES and SMES algorithms. AREA has the best
speed of convergence. From this picture we can see the supremacy of Adaptive Repre-
sentation system over the Dynamic Representation systems.



352

3.2 Experiment 2

The relationship between the number of alphabets used for chromosome encoding
and the average of the best individual values in the last population is analyzed in
this experiment. The results are averaged over 100 runs. Parameters used for AREA
are: Number of mutations / chromosome = 2; Number of generations = 5000 and
MAX_HARMFUL_MUTATION = 3. For speed purposes, the test functions are ana-
lyzed for 10 dimensions.

In Fig. 2 the results of this experiment are depicted.
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Fig. 2. The relationship between the number of alphabets used to encode chromosomes en-
coding and the average of the best individual values in the last population over 100 runs. The
number of alphabets is varied between 2 and 32. The used alphabets are {0, 1}, {0, 1, 2},

.., {0, 1, 2,..., 31}. The picture (a) corresponds to the test function f; and the picture (b)
corresponds to the test function fo.

From this picture we can see the supremacy of the multi-alphabet system over the
single — alphabet system. Using multiple alphabets for solutions encoding significantly
improves the search quality. For most of the considered test problems using more than
5 alphabets seems to be enough. Using more alphabets (more than 20, let’s say) does
not significantly improve the solution.

3.3 Experiment 3

In this experiment the relationship between the MAX_HARMFUL_MUTATIONS pa-
rameter and the average of the best individual values in the last population is analyzed.
The results are averaged over 100 runs. Parameters used for AREA are: Number of al-

phabets = 31; Number of mutations / chromosome = 2 and Number of generations =
5000.
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In Fig. 3 the results of this experiment are depicted.
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Fig.3. The relationship between the MAX_HARMFUL_MUTATIONS parameter and
the average of the best individual values in the last population over 100 runs. The
MAX_HARMFUL_MUTATIONS parameter is varied between 1 and 20. The picture (a) cor-
responds to the test function fi and the picture (b) corresponds to the test function fo.

From this picture we can see that it is difficult to answer to the question ” Which
is the optimal value for the MAX_ HARMFUL MUTATIONS parameter?”. It seems
that none of the considered values for this parameter is the best for all the test
functions. But if the value of this parameter is big the number of alphabets chang-
ing is small. In these cases the process behaves like an (1 + 1) ES. If the value for
MAX_HARMFUL_MUTATIONS is equal or larger than the number of generations the
initial alphabet will never be changed and the search will be as previously described
(14+1) ES process.

4 Discussions

Several important issues regarding the AREA representation are discussed in this sec-
tion.

The unanimously accepted way of applying the mutation operator to chromosomes
represented as string of genes is by traversing the chromosome gene by gene and mu-
tating each of these with a mutation probability p,,.

The AREA chromosome is shorter when higher alphabets are used. For instance,
a 30 bits chromosome has only 6 digits when the alphabet 32 is used. Thus, when
performing mutation by traversing the chromosome, the time AREA takes, using the
alphabet 32, is one fifth of the time required for the mutation of a bit string chromo-
some. That is a rather important way of speeding-up.
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Binary bits are grouped in undivided sequences by using higher alphabets. For
instance when the alphabet 32 is used, bit sequences of length 5 are represented as
a single digit (between 0 and 31). Mutating a digit of such an AREA chromosome
actually means mutating the corresponding 5 bits sequence. In that case the mutations,
rather numerous (maximum 5 mutations / chromosome as many — if one mutation /
chromosome is used when the chromosome is represented over the alphabet 32) are
not homogenously distributed over the entire chromosome. They would be so if the
mutation operator were applied over the bit string. Thus the good results obtained by
using AREA may be connected to this way of applying the mutation operator.

This kind of mutation is in full agreement to process from nature (if a DNA nu-
cleotide is affected by mutation (by radiation, for instance) the neighbouring nucleotides
have an increased probability of being mutated.

At first sight, AREA seems to be a special case of dynamic changing of the mutation
probability parameter (but AREA is more than this). The AREA mutation probability
is fixed (i.e. one mutation / chromosome) but changing the representation to a higher
alphabet generates greater changes as if the mutation probability were changed. In
these conditions it is interesting to compare AREA with others techniques that change
/ adapt the mutation probability during the search process.

5 Conclusion and Further Work

A new and efficient evolutionary technique has been proposed in this paper. The AREA
individuals are string of genes represented over an alphabet that may be changed during
the search process.

The numerical experiments proved that the ability of changing the alphabets when
needed is essential. The blind alphabets changes employed by SMES and DRES have a
considerable lower ability of converging towards the optimal solution when compared to
AREA. Therefore the proposed encoding ensures an efficient exploration of the search
space.

The AREA technique could be adopted for other evolutionary techniques such as
EP [18], GP [10] and GA [7, 8]. Further efforts will be dedicated to the embedding of
the AREA representation into others standard evolutionary algorithms.
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