
Recognition of Human Mitochondrial Sequences  
Using SVM 

Ana Madevska-Bogdanova1, Dragan Nikolik2 and Leopold Curfs3 

1Faculty of Natural Sciences and Mathematics, 1000 Skopje, FYRO Macedonia 
E-mail: ana@pmf.ukim.edu.mk 

2Maastricht School of Management, Maastricht, The Netherlands 
E-mail: nikolik@msm.nl 

3Department of Genetics, Academic Hospital/University of Maastricht 
Maastricht, The Netherlands 

E-mail: curfs@msm.nl 

Abstract. Support Vector Machines (SVM) classifiers are applied to problem 
in Molecular Biology - recognizing mitochondrial sеquences in the human ge-
nome. We present the results obtained by SVM hard classification, using the 
Plat’s model and Modified SVM outputs (MSVMO) method, an alternative way 
of interpreting and modifying the outputs of the SVM classifiers.  

1 Introduction 

Recognition of the human mitochondrial sequences is part of the protein subcellular 
localization problem, which is a key functional characteristic of proteins. A fully 
automatic prediction system is required, especially for the analysis of large-scale ge-
nome sequences. Experimental determination of subcellular location is mainly ac-
complished by three approaches: cell fractionation, electron microscopy and fluores-
cence microscopy. As currently practiced, these approaches are time consuming, 
subjective and variable. The assignment of the function for a given protein has proved 
to be especially difficult where no clear homology to proteins of known function ex-
ists [Bork, 1994].  

Proteins need to be sorted to one or the other subcellular compartment to perform 
their functions. Sorting usually relies on the presence of an N-terminal targeting se-
quence, which is removed after entry in the right organelle. The system for automatic 
classification should ‘learn’ to recognize the mentioned targeting sequences. 

Humans are part of the eukaryotic species. Mitochondrial subcellular localization 
is one of the four location categories: nuclear, cytoplasmic, mitochondrial and 
extracellular. 
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2 SVM and MSVMO 

The support vector machines [Vapnik, 1995] is a new tool for prediction and function 
estimation.  

Given a training set of input-output pairs 

(x1,y1) , (x2, y2) ... (xn,yn), 

the SVM algorithm estimates a function f such that, for (x,y) drawn according to the 
same distribution P(X,Y) as the training set, f(x) = y.  

The SVM presented here is an extension of the perceptron algorithm. The percep-
tron learns a linear discriminant function 

)b(sign)(g i +⋅= xwx  (1) 

The SVM extend this algorithm in two respects. It introduces non-linear decision 
surfaces, and a means of avoiding overfitting. The latter will be explained below. The 
former is achieved through a non-linear projection of the data into a higher dimen-
sional feature space prior to estimation of the linear discriminant. The linear model 
learned in this space is equivalent to a non-linear model in the input space.  

The second extension of the perceptron algorithm concerns capacity control or 
regularization. The SVM achieves good generalization by choosing a discriminant 
function that maximally separates the two classes in the feature space. The Euclidean 
distance between the closest point and the decision surface is known as the margin.  

Maximizing the margin acts as a form of regularization. The SVM algorithm can 
be formulated in such a way that it only requires the calculation of the dot product *, 
between training points. Moreover in test or prediction phase, test points also only oc-
cur as dot products (1). 

An algorithm with this feature is known as having a `dual form'. The SVM algo-
rithm exploits the dual form by finding functions that perform the non linear projec-
tion described above, and the dot product in one step. These kernel functions' K(x,y) 
equate (xi) *(xj) . The positions of the points in the feature space are in fact never cal-
culated. There are many choices of kernel function, some of which have implicit fea-
ture spaces of infinite dimension. Such feature spaces provide a large number of mod-
els.  

Some usual forms of the Kernel functions, are: 
- linear SVM: j

T
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- polynomial SVM: d
j

T
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- Gaussian radial basis function SVM: k(xi,xj) = exp(-g || xi-xj ||2); 
The support vectors are the closest points to the separating hyperplane. They are 

lying at the same distance from either side of the hyperplane, assigned (+) or (-) re-
spectively. The SVM procedure establishes that no other correctly classified vector 
from the training set lies closer to the hyperplane than any of the chosen support vec-
tors. 

Using the analytical geometry approach we are able to provide an alternative ex-
planation of the vector outputs. It is very important to assign a suitable ‘measure of 



 368 

belonging' to a vector of a given class, which later can allow post-processing the data 
set.  

As mentioned in the beginning of this section, the aim of the SVM classifier is to 
classify correctly given a two-class classification problem. The output in a linearly 
separable case has the form: 

b)(f T += xwx  (2) 

where x is an input vector. 
It is clear that for a given hyperplane described with the equation wTx +b=0, and 

for a vector z that does not belong to the hyperplane, the following is satisfied: 

wzw dbT ±=+ , (3) 

where d is ‘the distance’ of the ‘point’ z to the given hyperplane. The different signs 
determine the vector’s z side of the hyperplane. 

Equation (4) represents the MSVMO posterior probability [Madevska, 2000]:  
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The monotonicity of (4) is assured for k < 0.  
The results we have obtained using the MSVMO model will never be worse than 

the results from the hard SVM classification.  

3 Automatic Classification of Mitochondrial Sequences 

The dataset of mitochondrial sequences is consisted only with human mitochondrial 
genes. The coding is done over the nucleotides from the maturated DNA. To dedicate 
to the given problem, we have created new data base, different from already prepared 
for subcellular localization [Reinhardt and Hubbard, 1998].  

We created the data set from the repository of human mitochondrial genes from the 
MITOP project web (link to EMBL) and the Gene Bank for the positive examples, 
and negative examples sent from Maastricht Genetics Department. The positive ex-
amples are the ones that are well defined - begin with the start codon ATG, and finish 
with the proper stop codon. 

We were interested in recognizing only the mitochondrial genes, so the models are 
created to recognize mitochondrial vs. non-mitochondrial sequences. In the literature 
there are always models that recognize one of the 4 location categories subcellular se-
quences in eukaryotes, and mitochondrial is one of the four classes; 

The datasets in the published literature are mixture of subcellular sequences from 
different eukaryotic organisms. Our dataset is consisted only with human mitochon-
drial genes. Coding of the input sequences is one of the most important issues in 
building models for automatic recognition. Our choice was coding the nucleotides 
from the maturated DNA by: 
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a – 1000; c – 0100; g – 0010; t – 0001 

This kind of encoding has several advantages: we work in a 4 – dimensional cod-
ing space, instead of choosing to encode the equivalent protein sequence (every triplet 
of nucleotides correspond to one-of-20 amino acid) and work in a 20-dimensional 
space. Also, this encoding offers better discriminative behavior. 

3.1 Comparison to the Published Results 

So far, the only published material for protein subcellular localization prediction us-
ing SVM approach is from the authors [8]. They used the amino acid composition for 
representing the input sequences: the input vector dimension is 20, and each unit 
represents the percentage of each amino acid in the protein sequence. The training 
data set is consisted of 321 positive examples (mitochondrial sequences) and 2106 
negative (nuclear, cytoplasmic an extracellular eukaryotic sequences). In the follow-
ing table is given their best result. This result was much better in recognizing the 
other subcellular sequences. 
 

SVM kernel polynomial kernel (%) RBF (%) 
 46.1 56.7 

Table 1. Percentage of correctly recognized mitochondrial sequences [Hua, Sun 2001] 

In order to compare our results to the published ones by Hua and Sun, we encoded 
our data base by amino acid composition, build SVM classifier and tested it on the 
test part of the data set. The same data set (the same ratio of training/test data) was 
used to build another SVM model, when the input vectors are encoding the nucleo-
tides from the maturated DNA. 

During the preparation of this series of experiments, we noticed that there are some 
mitochondrial sequences that contained nucleotides that could not all be grouped in 
the triplets (their total number of nucleotides could not be divided by 3, so the last 
ones could not be translated in the proper amino acid). To avoid any incorrectness, 
these sequences were removed from the data base. 
 
Total number of data:  383 positive and 273 negative 
Train set:  297 vectors (150 positive and 147 negative) 
Test sets:   359 vectors (233 positive and 126 negative).  
 
- amino acid composition ( Hua and Sun) 
 

g 16 5 0,5 0,005 0.0005 0.00005 0.000005 

% 1 1 1,39 49,58 34,54 33,42 32,86 

Table 2. Results of different SVM GRBF models for the amino acid composition en-
coding GRBF Kernel, C=500. Best result on the test set: 49.58%. 
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Fig. 1. Graphical interpretation of the results from Table 2 

- Maturated DNA encoding 
 

g 5 0.5 0,005 0,0005 0.00005 0.000005 
% FP FP FP 68 65.2 67.13 

Table 3. Results of different SVM GRBF models for the maturated DNA encoding 
GRBF Kernel, C=500 (FP – false positives). Best result on the test set: 68%. 
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Fig. 2. Graphical interpretation of the results from Table 3 
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3.2 Linear and GRBF Kernel 

Further experiments were taken out to point out the mining of the MSVMO algorithm 
over the same problem. 

The linear SVM model was build and the results were compared to the results from 
the best choice of the GRBF Kernel, described in the previous section. 

The results we have obtained using linear kernels, are comparable to the ones using 
non-linear kernels and in some cases, they are even better (concerning the SVM clas-
sificator results). 

We are comparing the results from a ‘hard’ classification – the outputs from the 
SVM classifier and Platt’s modified outputs [9] with the results from our modified 
outputs – MSVMO (4).  

Table 4 shows the results from the experiment with mitochondrial sequences. The 
percentages of correctly recognized elements are given for positive and negative data 
separately.  

 
 
 
 
 

Table 4. Percentage of correctly recognized mitochondrial sequences sizes 

The next figure presents the comparation between the probabilities calculated for 
the linear and Gaussian SVM classification model. 
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Fig. 3. Comparation between the MSVMO probabilities (abs) of the linear and Gaussian SVM 

model in the mitochondrial sequence recognition problem 

Kernel SVM Platt MSVMO (k=-3.42) 
pos 71.3% 71.2% 71.3% 
neg 54.8% 54.8% 54.8% 

 
Linear 

total 65.5% 65% 65.5% 
 SVM Platt MSVMO 

(k=-123.5) 
pos 73% 59.65% 73% 
neg 60% 65.1% 60% 

 
GRBF 
C= 500 
g= 0.0005 

total 68% 61% 68% 
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4 Conclusion 

We have presented an alternative way of modifying the outputs of the SVM classifiers 
so that a probability interpretation could easily be achieved. It is used over a Molecu-
lar Biology problem. It is very important to assign a suitable ‘measure of belonging' 
to a vector of a given class, which later can allow post-processing of the data set. The 
outputs of the MSVMO method provide different possibilities for post-processing the 
SVM outputs. 

The obtained results for the given problem: recognition of the human mitochon-
drial sequences – the published and the ones presented in the paper are in favor of our 
modeling. There are some differences in the two approaches: representation of the 
data and content of the data base - human mitochondrial sequences vs. sequences of 
different eukaryotic organisms. 
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