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Abstract. Usually Boolean functions are presented with Disjunctive Normal
Forms (DNF). I. I. Zhegualkin introduced in consideration the complete set
of Boolean functions - conjunction, addition modulo 2 and both constants. The
formulae over this set are the polynomials modulo 2, called Zhegualkin polynomi-
als (or reduced polynomials too). Zhegualkin polynomials have some advantages
comparing with DNF’s. For example, they have good algebraic properties - the
set of polynomials of n variables could be considered as a group, ring, linear
space, etc. This paper presents some algebraic properties of the polynomials
modulo 2, considered as a linear vector space, which could be used for deriving
of efficient algorithms.

1 Introduction

In the theory of the Boolean functions the formulae over disjunction, conjunction and
negation are preferred to present functions, as well as for implementing them in elec-
tronic circuits. There are many reasons for this. Historically this was the first set of
Boolean functions proved to be complete, e.i. each Boolean function is presented with
a formula over the set. Given the table of the function it is too easy to write the corre-
sponding formula - the perfect Disjunctive Normal Form (DNF). These three functions,
plus implication, equivalence and both constants were enough to formalize the tradi-
tional logic in natural way. And last but not the least, in the programming languages
disjunction, conjunction and negation are used for composing logical expressions, that
is why in the world of programmers these three functions are well known.

In late 20’s I. I. Zhegualkin [1] started to use another complete set of Boolean func-
tions - conjunction, addition modulo 2 and both constants. The formulae over this set
are the polynomials modulo 2, called Zhegualkin polynomials (or reduced polynomials
t00). Zhegualkin polynomials have some advantages comparing with DNF’s. For exam-
ple, they have good algebraic properties - the set of polynomials of n variables could be
considered as a group, ring, linear space, etc. Very important class of error correcting
codes - the codes of Read-Muller are defined in terms of Zhegualkin polynomials and
any result in the arrea is important for the development of the theory.

The main purpose of this paper is to present some algebraic properties of the poly-
nomials modulo 2, considered as a linear vector space, which could be used for deriving
of efficient algorithms.
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2 Definitions and Preliminary Results

Let N be the set of the natural numbers, N = {0,1,2,...}. For each i € N, 0 <
i< 2" né€ Nn>1,let 0, 10,_2...00 be the binary presentation of i, i.e. i =
On 12" + 0, 2272 4+ - 4 092°, where 0; € {0,1} fori =n —1n—2,...,0. We
will call ¢ an index of the binary vector (0,—1,0p—2,...,00) € {0,1}" and will denote
i = v(0p-1,0n-2,--.,00)- If i # 0 then at least one of o,_1,0,—2,...,00 is not zero,
so we could define a carrier of i as car(i) = {i1,is,...,i,}, where o;,,04,,...,0;, are
all non zero coefficients in the binary presentation of i. Even if it does not mater, we
will supose i; > iy > ... > i,. We will denote with #(i) the number r of the nonzero
binary digits of i. For i = 0 we have car(0) = ) and #(0) = 0. Let 27 X be the family
of all finite subsets of the set X. The function car : N — 2V is bijective one and we

can define its inverse function car~! : 2/ — N, such that car=*({i1,is,...,4,}) = i.
Function # : N — N is defined by the recurrence equation:
#(0) = 0;

#@) =#@G-2""H+1,2" 1 <i<2",n>1
and the function car : N — 2/ - with the recurrence equation:

car(0) = ;
car(i) = car(i —2" "YU {n—1}, 2" 1 <i<2" n>1.

The functions F» = {f|f : {0,1}} — {0,1},i = 1,2,...} are called Boolean func-
tions of n variables. We will denote by FJ' the set of Boolean functions of n variables.
For each Boolean function f(z,—1,%n—2,---,Zo) exists a formula over the set of Boolean
functions {zy, rPy,0,1} where zy and z @y are the multiplication and the addition of
the finite field GF(2) (the modulo 2 field) and 0 and 1 are the both constant functions.
Using the obvious properties: f & f =0, g ® 0 = g and zx = z, each such formula is
easy reducible to a polynomial of the n variables and coefficients from {0, 1}, such that
each monomial is included no more than once and each variable included is of degree
one. We will call this polynomial reduced or Zhegualkin polynomial of the function. Each
Boolean function have unique Zhegualkin polynomial. For fixed n there are 2™ different
possible monomials (using the value 1 for denoting the monomial without variables).
Let denote the corresponding coefficients with ag,ay,...,asn 1, where a; is the coef-
ficient of the monomial zj, ), ...z, , {j1,J2,---Jx@)} = car(i). We will denote by
P,lag,a1,...,a2~_1] the general form of the reduced polynomial of n variables with
coefficients ag, a1, ..., an_1. For example the general forms of the polynomials of 1,2
and 3 variables are:

ap D arxo
ap D ar1ro ® axx1 G azr1xo
ag @ a1To D asx1 D a3x1xg D ag4T2 D a5T2X9 D AgT2T1 D A7T2X1 T

If f # 0 we will not write the monomials with zero coefficients in the formula and will
omit the coefficients which are ones. In the polynomial of the constant 0 all coefficients
are 0 and we will denote it with 0. For example, if the function is conjunction ag = a1 =
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a2 = 0 and the corresponding polynomial is just zizg. If the function is disjunction
then ag = 0 and the corresponding polynomial is zo®x1 B x1xo. Finally, the polynomial
of negation is 1 ® xp.

3 Zhegualkin Transformation

Let f(xp—1,Tn—2,...,%0) € Fi. Let a(ap, a1, ...,asn_1) be the vector of coefficients of
its Zhegualkin polynomial and f(0n—1,0n-2,---,00) = by(s,_1,00_s,....00) SO b(bo, by,
...,ban_1) is the vector of values of the function f. In this section we will study the
properties of the function ZH,, : {0,1}*" — {0,1}2" such that ZH,(b) = @, i.e. the
function that calculate the polynomial of a given Boolean function. The function ZH,
is well defined and bijective because of the uniqueness of the Zhegualkin polynomial
for each Boolean function.

It is obvious that ZH,, is a linear transformation of the n-dimensional linear vector
spaces GF(2)™ over the field GF(2). Really, replacing each of the elements of {0,1}"
in the general form of the Zhegualkin polynomial of n variables and equalizing to the
values of the given function for the corresponding elements of {0,1}" we will obtain
a system of 2™ linear equations for the unknown coefficients of the polynomial of the
function. The system has unique solution because of the existence and the uniqueness
of the polynomial. We will call ZH,, Zhegualkin transformation.

Let M, = ||m; |l,i =0,1,...,2" =1 and j = 0,1,...,2" — 1 is the matrix of the
linear transformation ZH,, i.e. Mnl; = a'. Below the matrices M; and M, are given

explicitly:
10
= (1)

1000
1100
1010
1111

My

Theorem 31 Let gcar(i) — {S(),Sl, .. .,52#(1')71}. Then mij = 1 Zﬁ] S {car‘l(So),
car=1(S1),...,car= (Syrm_1)}, i-e. iff car(j) C car(i).

The proof of the theorem follows directly from the definition of the general form of
the reduced polynomial of n variables.

Theorem 32 For the elements of M, the following properties hold:

mMio = Man_1,; = 1,:=0,1,...,2" —1;
mi7i:1,i:0,1,...,2”—1;
m;;=0,4=0,1,...,2" = 1,5 > i;
mion_1—; = 0,6 =0,1,...,2" —2;

Mij = Man_1_jon_1—i,1,7 € {0,1,...,2" —1}.

® e =R
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Proof: The proofs of all these properties are based on Theorem 21.

a. m;p = 1, because car(0) = 0 € car(i),i = 0,1,...,2" — 1. From car(2" — 1) =
{n—1,n—2,...,0} it follows that Vi,0 < i < 2" — 1(car(i) C car(2™ — 1)) and then
Man_1; = L.

b. m;; = 1 because Vi,0 < i < 2" — 1(car(i) C car(i)).

c. m;; = 0 when j > i because car(j) € car(i).

d. mjan_1—; = 0 because car(i) Ncar(2™ —1 — i) = () and then car(2" —1—14) €
car(i),1=0,1,...,2" — 2.

e.If i4+j = 2" —1 then m; ; and man_1_j2»_1_; are the same element of the matrix,
so the equality holds. Let i + j # 2™ — 1. It is clear that {car(k),car(2® —1—k)} isa
partition of {0,1,...,2" — 1} and each z of {0,1,...,2" — 1} belongs to exactly one of
the parts. If m; ; = 0 then car(j) € car(i) and then 3z € car(j),z ¢ car(i). But then
x € car(2® —1—1),z ¢ car(2™ —1—j), that means car(2"—1—1i) € car(2"—1—j) and
Man_1—jon_1—; = 0 too. If m; ; = 1 then car(j) C car(i), that means car(2” —1—1) C
car(2™ —1—j) and mon_1_jon_1—; = 1 too. &

Theorem 33 For each n > 1 the matriz M, of the Zhegualkin transformation is
defined by
_ Mnfl Onfl
Mn N <Mn1 Mnl)
where Op,_1 is the matriz of size 2°~! x 2"~ consisting of zeros.

Proof: First 2”1 lines of M,, are obtained from the vectors of {0,1}" for which
Tp—1 = 0. This will reduce the general form of the polynomial of n variables to the
general form of the polynomials of n — 1 variables, which will result to M,_; in first
271 columns. We will obtain O,,_; in the last 27! columns because of Theorem 22.c.
The last 277! lines of M,, will be obtained from the vectors for which z,_; = 1. In
this case the general form of the polynomial will be reduced to

P[ao, Alyenny a2n—1,1] D P[a2n—1 yAon—111,... a2n,1]
which will give us M,, 1 in the first 27! columns as well as in the last 2" 'ones.{
Theorem 34 For each natural n > 1, M, ' = M,.

Proof: Let I, be the matrix of size 2" x 2™ with 1’s on the main diagonal and all
other elements equal 0. For n = 1 obviously M2 = I; and then M1_1 = M;. Suppose
the statement is true for n = k& — 1. We will prove that it is true for n = k. Really,
using the Theorem 23. we will obtain

M2 = <Mk—1 0k—1> (Mk—l Ok—l) _
k My 1 My M1 My

_ (Mi_y ® Op—1 My—1 My—10p—1 & Op—1 My—1 ) _
M;_, & M?_, My_10p_1 ® M}_,
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the statement is true for n = k too and the theorem was proved.{

Let n and ¢ be natural numbers, n > 1 and g > 1. If we replace in M, each 1 with
M, and each 0 with O, we will Obtain a new matrix of size 2"*¢ x 2"*¢ which will be
called g-expansion of M,. The 1-expansion of M; is obviously M, the 1-expansion of
M, as well as the 2-expansion of M; is M3. Using Theorem 23. it is easy to prove the
following

Theorem 35 For each naturaln and g, n > 1, ¢ > 1, the g-expansion of M, is M, ,.

If, vice versa, we split the matrix M, 4, to submatrices of size 2¢ x 27 we will obtain
only two types - either M, or O,. Replacing each M, with 1 and each O, with 0 we
will obtain a new matrix of size 2™ x 2™ which is called g-contraction of M, 4. As the
previous statement suggests it is true the following

Theorem 36 For each natural n and q, n > 1, ¢ > 1, the g-contraction of My, is
M,.

The above mentioned properties demonstrated that the matrix M, of the Zhegualkin
transformation is a very symmetric one. Looking at the figure below, presenting only
the 1’s of My, it is easy to see the similarity to the famous fractal called triangle of
Serpinsky. We will call this phenomenon discrete fractal.

1

11

11

1111

1 1

11 11

1111
11111111

1 1

11 11

11 11
1111 1111

1 1 1 1
11 11 11 11
11111111
1111111111111111

Figure. The matrix of ZH,

Studying the discrete fractals is far beyond the goals of this paper. But the analogy
with the fractals suggests that the Zhegualkin transformation could have some good
algorithmic properties. That is why in [2] these properties was studied and very efficient
algorithm for applying the transformation was obtained. Briefly, if the table of the
values of a Boolean function is given the coefficients of the corresponding reduced
polynomial are just the result of the Zhegualkin transformation applied to the given
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values. That means the corresponding system of m = 2™ linear equations have to be
solved in the field GF(2). Of course the matrix is triangular (see Theorem 22.c.) and
instead of the usual O(m?) operation of the method of Gauss, only O(m?) are enough
for the back passing of the method. But this algorithm do not use the properties of
M,. Using the properties of the matrix M,, we obtained the following

Algorithm:

integer n,m=2"n,k=1,i,j,s
binary b[0..2"nl
for i=1 to n do

{
for s=k to m-k step 2%k
for j=s to s+k-1 do b[jl=b[j] XOR b[j-k]
k=2x%k
}

The values of the function are given in the array b, the coefficients of the corresponding
polynomial are obtained in the same array. No additional memory is necessary and the
values of M,, are not used at all. The time complexity of this algorithm is O(mlgm)
and it was conjectured that no algorithm which is asymptotically better. Moreover,
from Theorem 24 it is clear that the same algorithm could be used for performing
the inverse of the Zhegualkin transformation, i.e given the polynomial of a Boolean
function to find the table of its values.

4 Fixed Points of Zhegualkin Transformation

In this section we will study the fixed points of the Zhegualkin transformation. As
usually the vector @ is called fized point of the linear transformation if M,at = a.

The constant function 0 is a fixed point of ZH,, because M,0" = 0. Something
more, the set of fixed points is closed under the addition modulo 2, because if a; and
d» are fixed points then M, (d1 © ds)! = Mpdi' ® M, d>" = d, ® d». In such a way we
proved the following

Theorem 41 The set of all fixed points of the linear transformation ZH, is a subspace
of the linear space of GF(2)™.

We will denote the linear subspace of the fixed points of ZH,, with X(ZH,). For
finding the dimension of X(ZH,) we have to study the matrix M, © I,, or M, @
I,,, which is the same in GF(2). We still have not an elegant proof of the following
fundamental fact.

Theorem 42 For each natural n > 1, rank(M,, & I,,) = 2" L.
Now for the number of the fixed points of ZH,, we have

anl

Theorem 43 For each natural n > 1, |X(ZH,)| =2* .
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Proof: |X(ZH,)| is exactly the number of solutions of the system of 2" linear
equations (M, & I,)# = 0. That is why |X(ZH,)| = 22" —rank(Ma®L,) — 92"-2""" _
22" 9.

It is interesting to mention here some analogy with another set of Boolean functions.
The function f*(z,—1,Zn-2,...,20) = f(Tn_1 ® L, zp_2D1,...,20® 1) ® 1 is called
dual of the function f. The function D,, : {0,1}?" — {0,1}?", such that D,,(f) = f*is
an affine transformation of {0, 1}2". The fixed points of D,, are called self-dual Boolean
functions. The set of self-dual functions is not subspace of the linear space of GF(2)",
because D, (0) = 1 and so 0 is not self-dual. Nevertheless, there are exactly 22"
self-dual functions of n variables, a fact which is very interesting to be compared with
Theorem 3.3.

Let now try to make some classification of the functions of X (ZH,). For each
f(xp—1,Tn_2,...,20) € F¥ we define its 0-subfunction fy and its I-subfunction fi
using the trivial equality

f(@n-1,Tn-2,...,70) = fo(Tn-2,Tn-3,...,%0) ® Tn—1f1(Tn—2,Tn-3,..,T0)-
We will denote with f = (fo, f1) the fact that fo and f; are the subfunctions of f.

Theorem 44 If f = (fo, f1) € X(ZH},) then

a. fo € X(Zanl);
b. ZHy—1(fo ® f1) = f1-

Proof: If f = (fo, f1) then for the vector a of values of f we have a = (dp,d1),
where dg and d; are the vectors of values of fy and fi, respectively. Using Theorem 23
and M,a' = a = (dy, d;) we will obtain

Myat = My, (dy,d1)t =
My—1 Op— .
= (3 ) o -
= (Mp—1do" ® Op_1dr', My_1do" ® My_1dy") =
= (My_1do", My —1(do & ay)") =
= (d()) dl)
i.e.

a. Mnfldot = (fo and fo S X(Zanl)
b. M, _1(do ® d1)! =a and ZH,,—1(fo @ f1) = f1. &

As a side effect of the proof we obtained that if f = (fo,f1) € X(ZH,) then
fi=Mu_1(fo® fr)t or fo = (Mp_1 ® I,—1)ff. As we know from Theorem 32. there

are exactly 22" solutions of the equation mentioned above, when fy is given and f;
is unknown.

Theorem 45 If f = (fo, f1) € X(ZH,) and g = (go,91) € X(ZH,), [ # g then
fi g1



418

Proof: Suppose the opposite, i.e fi = ¢g1. Then f dg=h € X(ZH,) and f dg=
(fo, f1) ® (90,91) = (ho,0). Applying Theorem 34.b we will obtain ZH,,_;(ho ® 0) =
ZH,_1(hy) =0. But hy € X(ZH,_,) because h € X(ZH,) and so hy = 0 and finally
fo = go, which contradicts f # g. {.

Let now describe the ”picture” of X (ZH,) that is shown by the Previous two
theorems. Each function f = (fo, f1) € X(ZH),) is composed of some fo € X(ZHp,_1)
and unique function of F'. Each function fo € X(ZH,_1) generates 22" different
functions of X(ZH,,). Then we could define two natural morphisms: the isomorphism
¢:X(ZH,) — FJ~ " such that if f = (fo, f1) then ¢(f) = f1 and the homomorphism
£:X(ZH,) — X(ZH,_1) such that &(f) = fo. The final "line” of the picture is given
by the following

Theorem 46 f € ker(§) iff f1 € X(ZHp—1).

Proof: Let f = (fo, f1) € ker(), i.e. fo = 0. Applying Theorem 34.b. we will have

fi= ZHn_l(f() (&) f1) = ZHn_l(O (5] f1) = ZHn—l(fl) and f; € X(ZHn_l).NLet now
fi € X(ZH,_1). Then from Theorem 3.4.b f; = ZH', = fo + f1. So fo = 0. ¢
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