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Abstract. We propose a new scalable application-layer protocol, specifically 
designed for low-bandwidth, data streaming applications with large receiver 
sets. This is based upon a control hierarchy of successive hypercubes for the 
peers and is quite robust to peer and network failures. Dynamic load balancing 
is also incorporated. We present an analysis showing that it is near optimum in 
performance and use of server channels. 

1 Introduction 

The advance of communication technology has spawned a large number of services, 
previously too expensive or even impossible to access for the average user. 

However, there are still services that require a large amount of bandwidth and the 
associated cost has not allowed them to achieve widespread use. Video-on-Demand 
(VoD) is one such service. 

Under VoD there are at least three entities, namely the video server, the customer’s 
client computer and the intermediate network. The client sends a request for a certain 
video title; the video server processes the request and, if possible, replies with a 
corresponding video stream. 

There are several conflicting requirements: Less bandwidth per video means more 
video streams (virtual channels) available per video server. Also, due to the nature of 
the Internet, it is not easy to avoid jitters by establishing isochronous virtual channels 
between the server and the client. The memory space occupied by a single video is 
typically much larger than the available memory on the client. The client requests for 
the same video do not necessarily arrive within the same period, forcing the use of 
more channels.  Moreover, in a typical video service the client expects additional 
capabilities, such as fast forward, pause and rewind, not to mention interactive video. 

Many researchers have worked on these problems the past few years and have 
proposed several interesting ideas. 

Some of the proposals are patching [1], skyscraper broadcasting [5], bandwidth 
skimming [6], SVD [7] and greedy disk-conserving broadcasting [11], all of which try 
to minimize the duration of broadcast or the number of additional server channels for 
the same video. 

Other researchers try to utilize client memory in a simple but very hard to 
implement way (e.g. chaining [4]). 
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Other proposals have slightly different goals or assumptions, such as Variable Bit 
Rate (VBR) broadcasting [10, 12, 13, 14], or lossy network environments [2]. 

In most cases the goal is to minimize the delay of service for client requests, while 
at the same time minimizing server and overall network bandwidth. Unsurprisingly, 
the server uses multicasting in order to serve many client requests simultaneously for 
the same video. If all such requests can somehow be grouped together in a batch, only 
one video stream needs to be transmitted. This method corresponds to Near Video on 
Demand (NVoD), where client requests close to each other in time are grouped to 
form batches. This is opposed to True Video on Demand (TVoD), where a request is 
served as soon as possible. 

The key problem we address in this paper is how to minimize overall video server 
network bandwidth, while simultaneously maintaining the latency of service to client 
requests minimal, for popular videos. We assume client bandwidth slightly higher 
than the playback rate for incoming traffic and outgoing traffic approximately the 
same if multicasting can be utilized. In the case of unicasting for clients, the number 
of video channels has an upper bound of b, where b>1. In all cases, multicasting is 
assumed for the video server itself. 

We also assume that the client buffer size is very small (approximately 2% of the 
total video duration, which has a typical duration of 120 minutes). Furthermore, we 
assume that the clients can join or leave a broadcast at any time, either due to their 
choice or due to the problematic nature of the underlying network. These assumptions 
are quite realistic for present-day mobile clients (e.g. PDAs). 

Based on these assumptions, we propose the use of clients not only as passive 
receivers of videos, but also as partial video servers for other clients through the use 
of their buffers. This is not a novel approach [4, 9, 15, 16], but the organization of the 
underlying access control mechanism is, since we propose a semi-hierarchical 
hypercube overlay against the tree-like arrangements proposed by other researchers 
[16]. We also propose a different mechanism for the join and departure of clients, 
with emphasis on fault-tolerance, recovery and dynamic load balancing. 

The obvious advantages of such an approach are minimization of the load for the 
video server and the waiting time for clients which require the same popular video. 
The disadvantages are the realization of the proposed protocol, which is challenging, 
but not very difficult to accomplish and the possibility that the clients may not prefer 
to have some of their bandwidth used for broadcasting. The latter can be solved either 
as a term for using the video services (i.e., if a client wants to receive a video it has to 
use the appropriate software agent which forces broadcasting) or through other 
incentives. Of course, another problem may arise if a network connection is 
unbalanced – download bandwidth is much larger than the upload. Work is 
undergoing on this special issue, but this is not taken into account in the present work. 

The rest of the paper is organized as follows. In section 2 we formulate the 
problem. In section 3 we present the Application Layer Multicast protocol (ALM), 
together with analysis showing that it is near optimum, scalable and resistant to 
failures. Our conclusions follow in section 4. 
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2 Problem Formulation 

We assume for simplicity that there is one video server S, which contains a set of 
videos M with cardinality nM. The duration of each video is D. Also, C is the set of all 
clients, while Cm the set of clients requesting the same video m up to a certain time 
point. The cardinality of these sets is nc and ncm, respectively. The buffer size 
available at each client (expressed in playing time) is d << D, which we assume is the 
same for all clients.  

There is no limit on the amount of clients who can make requests, except that only 
one request per client may be outstanding or served at any moment. Client requests 
are denoted by rjm, where 1 < j ≤ ncm and may arrive at any time. The server receives 
such requests directly, but tries to serve them at discrete successive time points, ti, ti+1, 
…, so that ti+1-ti ≤ tw. The latter (tw) is a constant that depends on the amount of time a 
client is willing to wait for service, before it decides to withdraw its request. 

The server primarily provides the video service, but we try to use as much of the 
available memory on the clients that are already being served. Therefore, if at least 
one client receives the same video at successive time points with time difference tw < 
d, it is possible to form a “chain” of successive video streams that serve all client 
requests up to the present time, using only a single server channel. Thus, at some time 
point ti, there are ncm clients for the same video grouped in i levels, namely L1, … Li. 
The server is always at level L0. 

Finally, each client has only one channel for video reception and only b channels 
for video broadcasting at playback rate. These are the data or video channels. 

Multicasting is assumed for video broadcasting from a parent client to its children 
for the basic version of ALM, in which case b can be considered practically infinite. 

Unicasting is also considered in the second version of ALM, in which case b is 
some positive integer, depending on the upper limit of video broadcasting channels 
per client. 

It is possible for clients to fail, withdraw or operate in a lossy network 
environment. Consequently, such “chains” would break and the system should 
somehow try to remedy the situation. Therefore, a solution must satisfy the following 
characteristics: 
• It must be simple and fast in order to adapt quickly to the changing circumstances 
• It must minimize the amount of simultaneous video server broadcasts 
• No client must wait for time > tw to be served 
• It must provide an access control mechanism for clients to join or leave quickly so 

that the amount of network traffic to any client is manageable 
• It must provide speedy recovery for client or network failures 

Since the client memory can be utilized by ALM only if the same video has been 
requested, in the rest of the paper we assume all client requests are for the same video, 
unless otherwise stated. 
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3 Problem Solution 

The ALM protocol arranges clients into a hierarchy of i levels, where 0 < i ≤ D / tw. 
The main operation is to create and maintain this hierarchy. 

Contrary to other proposals [16], the data and control paths are not identical: The 
data path follows a tree-like arrangement where a client at level Li, provides a 
multicast stream to a group of clients at level Li+1 (or a set of up to b unicast streams). 

The control path is twofold: All the clients at level Li are organized in a binary 
hypercube. They maintain and exchange control information with their neighbors at 
the same level, as well as their parents and children in the data path, which allows 
them to respond quickly in the event of local failures. One of the clients at each level i 
is the Local Representative (LRi). This client, together with other LRs from the rest of 
the levels, communicates with the video server, forming a control topology of a star, 
keeping overall communication minimal. 

In the rest of this section we describe the exact form of hierarchy for ALM and 
how it is used to establish scalable control and data paths. 

 

 
Fig. 1. Hierarchy under ALM 

3.1 Arrangement of Clients 

The control hierarchy is created by assigning members to different levels. From time 
ti to ti+tw the server receives client requests for the same video, which it groups into 
the level Li, arranging them in a hypercube data structure. The arrangement is not 
random; the end-to-end latency of the path between a client and the server is used as 
criterion to select the Local Representative for this level (LRi) and all other clients are 
placed closest to it in the hypercube. The second closest client is selected as the 
Backup Local Representative (BLRi).  
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The rationale behind this arrangement is that the LRi is the only client for level Li 
communicating with the server under normal conditions; hence an effort is made to 
select the one closest to the server in terms of end-to-end latency. The BLR is selected 
for the case of a failed LR, since it can quickly take up its place. 

The LRs and the server form a star with the server at the center. The total 
communication load on the server for this set of clients is relative to maximum 
number of levels D /tw.This has the advantage that the server can detect LR problems 
quickly. Moreover, this arrangement is more reliable than any other scheme with 
message hopping from LR to LR until the server is reached, since LRs are clients that 
can withdraw at any moment without notice. This hierarchy is depicted in Fig.1, for 
the first two levels of clients grouped into hypercubes H1 and H2. 

Assuming that there are ni-1, ni and ni+1 clients at levels Li-1, Li and Li+1 
respectively, the server divides the clients at level Li in ni-1 equal-sized subgroups, 
assigning each subgroup to a client at level Li-1. This, progressively, forms a tree 
structure, which is used for the data path (i.e., video streams). 

In the end, each client v at level Li communicates for control purposes with its 
parent at level Li-1, as well as its children at level Li+1. Therefore, the control 
communication paths needed per client v under normal conditions are: 

Control_Paths(v) = logni + min(b, ni+1) + 1 . (1) 

The second term depends upon whether we have multicasting or unicasting. 

3.2 Protocol Operations 

The server and each client act both as data as well as control management servers, but 
only the server is considered reliable. Under the ALM protocol, there are three phases 
for any client: Join, Work and Leave. 

3.2.1 Join Phase 
Under the Join phase, a client v requests a video-clip from the video server at some 
time t ∈ (ti-1, ti-1+tw). The server gathers all requests Rj for the video and calculates the 
end-to-end latency between each client and itself, forming an ascending sorted list of 
clients. This list is used to create a virtual hypercube Hi for the group Rj of these 
clients. 

Next, the server determines whether there is already a broadcast to at least one 
client, which is currently receiving the first part of the video. If none exists, a new 
broadcast is scheduled from the server; otherwise, the new level Li and identity of the 
LRi are determined. 

This information, together with the above-calculated hypercube Hi is sent to the 
LRi and BLRi of level Li. The rest of the clients only receive the list of their neighbors 
in Hi. Thus, the size of these messages is O(logni). 

Finally, as explained in the previous section, the server divides the clients at the 
new level Li in ni-1 subgroups and sends this information to each client at level Li-1, 
and each client at level Li. In this way a forest of trees is formed where a client at 
level Li-1 is the parent and certain clients at level Li are its children. This forest 
augments the data path, apart from the control path. If possible, the LRi and BLRi and 
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their neighbors are not assigned any children due to their additional administrative 
load and the need to reserve a manageable amount of clients as backup for failure of 
other clients. 

There are many possible assignments, but to keep the arrangement simple and 
faster to compute, the clients at level Li ‘closer’ to the server are assigned to the 
closest client at level Li-1. This is merely a calculated guess, since the network 
environment may change considerably over time. 

This step concludes the Join phase. By now, each client at level Li has the 
following information: 
• An identity in Hi 
• An initial state of Hi (only the LRi and BLRi) 
• Its immediate neighbors in Hi 
• Its parent in the data path, as well as the neighbors of its parent in Hi-1 
• It knows whether it is the LRi or BLRi for level Li 
• It knows the LRi-1 and BLRi-1 for its parent level 
In addition, each client at level Li-1 knows its children in Hi. 

3.2.2 Work Phase 
During the Work phase, the clients at level Li-1 broadcast the video content in their 
buffers to their respective children at level Li. 

Apart from the data, control information is exchanged in order to detect any 
possible problems. 

First, all clients send periodically a simple Alive message to all their neighbors in 
the hypercube. If no such message arrives from any neighbor w, between successive 
transmissions of Alive messages by client v, then w is no longer considered neighbor 
of v. Each of these messages includes the parent identity of their neighbors and its 
respective load. Thus, a list of potential parents is formed, sorted according to their 
load. Only neighbors of their parent with load < b are considered potential parents, so 
this list is kept in an ascending order. 

Also, each client v sends periodically an Alive message to its parent p. This 
message informs p about its remaining children. 

An Alive message from a parent p to its children is also necessary, so that it 
informs them on its current load (i.e., how many children it currently serves). This is 
also useful for load balancing. 

Finally, the LRi periodically exchanges a special Alive message with the BLRi. This 
is sent so that either can detect potential failure of its peer. 

3.2.3 Leave Phase 
This phase deals with two cases: Normal and abnormal termination of client 
participation. 

Under the first case, a client v that wishes to withdraw sends a Quit message to all 
its neighbors in the hypercube and also to its parent and children. 

Under the second case, a client v no longer broadcasts video to its children and 
does not exchange Alive messages with its neighbors or parent. 
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In both cases the parent p removes v from the list of its children. Furthermore, if 
unicasting has been used, p stops broadcasting video to v. The neighbors of v update 
their information about the hypercube status, accordingly. 

3.2.4 Orphans and Recovery 
There are two problems that have to be solved now: The first problem is that the 
children of p at level Li+1 are now orphans. Since they know the immediate neighbors 
of p, they send a LJoin (Local Join) message to the first of them, say p1. If p1 is able to 
accept some of them, it replies sending Alive messages according to its current load 
(no more than b children under unicasting) and proximity. Thus, orphans are not 
necessarily accepted as children by any single neighbor of p. 

If no Alive message arrives from any neighbor of p, the remaining orphans send a 
LJoin message to the LRi, denoting their late parent. This is useful for grouping cases 
of orphans of the same failed parent. 

LRi deletes the p and all neighbors of p from its hypercube Hi. It then probes the 
clients at its perimeter in Hi to check the number of orphans anyone is able to accept. 
The reason is that such clients first receive orphans of their neighbors. Only those 
clients capable of accepting at least one child respond. Therefore, the moment that LRi 
receives enough messages to allocate orphans it stops probing clients (if has not sent 
probes to all clients at its level) and sends this information to the orphans as it 
receives it. This is depicted in Fig. 2. The orphans manage to become children of p’s 
neighbor on the right, apart from one, which is not accepted by any neighbor. It asks 
the LRi which finds another client, which accepts it as its child. Note that this 
information is periodically sent to BLRi and the video server. 

If LRi has found no appropriate parent or it has failed, the orphans try the same 
process with LBRi. The latter becomes LRi and selects its closest neighbor with the 
least load as the new BLRi through a special LRSelect message. 

 

 
Fig. 2. Orphans and Recovery 

If no new parent is found or both LRi and BLRi have failed at the same time, the 
orphans contact the server. The server schedules a new broadcast to the orphans and 
their descendants. It also calculates the new Hi possibly merging fragments of the 
hypercube and selects one of the remaining clients as the LRi and another one as the 
BLRi. It then sends the new Hi information to both of them and the updated 
neighbourhood information to the rest of the clients. Then the process continues as 
described above. 
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Note that LRi does not calculate the new hypercube Hi; only quick modifications 
are performed to the old hypercube. Also, the server does not deal with such 
situations unless whole parts of the hypercube have failed. 

3.2.5 Uncertainty due to Client Failures 
Finally, a special problem arises from the fact that the control communication pattern 
is fairly distributed and unreliable. It is possible that no Alive message by v reaches 
some neighbor w. This is a partial failure: One or more network links have failed to 
deliver the Alive message, but client v and some of its links operate properly. 

If client w is a neighbor of v, which has not received an Alive message by v within 
a certain amount of time, it simply deletes v from its list of active neighbors, although 
it keeps sending it Alive messages periodically. It is, thus, hoped that the link with v 
will operate again soon, in which case v is re-instated as an active neighbor of w. If 
this does not occur and w fails, the children of w do not send a request to v as a 
potential father. To avoid extreme cases, v is removed permanently from the list of 
w’s neighbors after a constant number of unanswered Alive messages. 

3.3 Analysis - Experimental Results  

As described earlier, there are at most O(D/tw.) possible time-slots at which client 
requests may belong, requiring a separate video channel for their service. We shall 
focus our analysis in the worst case, where the server uses multicasting and the clients 
use unicasting. 

Under ALM, the number of video server channels for a video m range from one 
(optimal case when at least one client per time slot) up to D/2s (worst case when 
client requests arrive every two time slots). 

Using ALM, each level in the hierarchy must have at least one client to maintain it. 
Each client must exchange a pair of messages with every neighbor at the same level, 
another pair with its parent and each of its children. With a total of ncm clients in the 
hierarchy and equation (1), we have for the normal case: 

Client_Messages = O(log ni + b) . (2) 

Since ncm = ∑
=

i

k
k

1
n  for i levels and in the worst case the number of clients at level 

Li is:  

ni ≤ b(i-1) * n1 . (3) 

we can determine a stricter bound: 

Client_Messages = O(log (bi * n1) + b) . (4) 

In practice, we expect 2 ≤ b ≤ 4. Hence, equation (4) now becomes: 

Client_Messages = O(i+ log n1) . (5) 



 499

Thus, we determine that the number of participating clients in the hierarchy 
depends on the number of clients at the first level (3) and that the amount of messages 
per client is bounded by logn1 and the amount of levels (5). 

If the number of clients is approximately the same at each level or we are at the 
beginning of the hierarchy (i.e., i is small), equation (4) becomes: 

Client_MessagesAvg = O(log n1 + b) . (6) 

In case of any parent p failure at level Li, the worst case for the amount of 
messages per orphan or neighbor of p is O(logni). Using (3) we find: 

Orphan_Messages = O(i* log b + log n1) . (7) 

Using (4), (5) and (7) we find that the total amount of messages per client in the 
hierarchy is: 

Total_Messages = O(log n1 + i) . (8) 

Total_MessagesAvg = O(log n1+ b) . (9) 

The only exception to the analysis above is the LR at each level. This has a higher 
burden than the rest of the clients, since it has to receive the initial and updated 
hypercube status by the server. It also needs to select and probe potential new parents 
for orphans. In the worst case these are as many as the clients in its perimeter area. 
Together with those for the LBR and the number of the orphans yields O(logni+b) 
messages. From the previous discussion we end up at equations (8) and (9) above. 
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Fig. 3. Probability for Massive Failure 

Of course, in the extreme case all parents at every second level fail. Thus, the 
server falls to the batching strategy, with D/2tw channels to accommodate the 
orphans, although not for the full duration of the video [3]. 
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Based on the discussion above, we see that for many clients, additional server 
channels are required only in the case of massive adjacent client faults. If only partial 
faults take place and the clients are evenly distributed at each level, then only a single 
video stream is required (a speed-up of up to D/2tw times, which is near optimum). 

If s is the cumulative percentage of non-failed clients during a complete video 
broadcast, then up to (b*s*ni) children at level Li+1 can be accommodated. Thus, 
massive failures are more probable when the ratio ni+1/1/(b*s*ni) is close to 1. This 
can be rewritten as ni/ni+1≤1/(b*s). That is, massive failures are likely to occur when 
the ratio 1/bs ≥ 1. This is depicted in Fig. 3 for possible values of b.  

From this figure we see that massive failures are likely when 1/bs ≥ 1, which 
occurs with b=2 for s=50%, with b=3 for s=35% and with b=4 for s=25%.  

Finally, the clients never calculate the hypercubes. This is performed initially by 
the server and then in two more extreme cases: Either both LRi and BLRi or the 
complete level Li of clients have failed. In the first case, the server only needs to 
receive at least one message that both LRi and BLRi have failed and to verify itself this 
event by probing them. If more messages from orphans arrive, the server calculates 
the new hypercube and selects two of the remaining ones as the LRi and BLRi. 

We, therefore, see that ALM is not only near optimal in terms of server channels 
usage, but also scalable and quite robust to failures. 

Dynamic load balancing is straightforward to implement: Each client at the same 
level can easily find out through Alive messages, the current load of its neighbours. If 
a client has at least 2 children more than one of its neighbors, one of the children is 
“passed” to that neighbor. This process is easy to implement and does not require any 
central authority (e.g., the video server) to participate in it. Another advantage is that 
no disruption in the video stream being delivered occurs. The most important 
advantage, however, is that the children are more evenly distributed to data 
subgroups, reducing the probability of massive failures. 

4 Conclusion 

We have proposed ALM, a new multicast application layer protocol for NVoD, 
utilizing the available buffer of clients under a hierarchy of successive hypercubes, in 
a faulty environment, leading to better server network and channel utilization. 

Preliminary analysis has shown that it is scalable and quite robust, for NVoD and 
relatively easy to implement, since it is less complex or demanding for clients 
compared to other proposals. 

Work is in progress for a more detailed simulation with enhancements on the basic 
idea. 
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