
Application Layer Protocol for Video-on-Demand

Panayotis Fouliras Athanasios Manitsaris

Department of Applied Informatics, University of Macedonia
54006 Thessaloniki, Greece

Email: {pfoul,manits}@uom.gr

Abstract. We propose a new scalable application-layer protocol, specifically
designed for low-bandwidth, data streaming applications with large receiver
sets. This is based upon a control hierarchy of successive hypercubes for the
peers and is quite robust to peer and network failures. Dynamic load balancing
is also incorporated. We present an analysis showing that it is near optimum in
performance and use of server channels.

1 Introduction

The advance of communication technology has spawned a large number of services,
previously too expensive or even impossible to access for the average user.

However, there are still services that require a large amount of bandwidth and the
associated cost has not allowed them to achieve widespread use. Video-on-Demand
(VoD) is one such service.

Under VoD there are at least three entities, namely the video server, the customer’s
client computer and the intermediate network. The client sends a request for a certain
video title; the video server processes the request and, if possible, replies with a
corresponding video stream.

There are several conflicting requirements: Less bandwidth per video means more
video streams (virtual channels) available per video server. Also, due to the nature of
the Internet, it is not easy to avoid jitters by establishing isochronous virtual channels
between the server and the client. The memory space occupied by a single video is
typically much larger than the available memory on the client. The client requests for
the same video do not necessarily arrive within the same period, forcing the use of
more channels. Moreover, in a typical video service the client expects additional
capabilities, such as fast forward, pause and rewind, not to mention interactive video.

Many researchers have worked on these problems the past few years and have
proposed several interesting ideas.

Some of the proposals are patching [1], skyscraper broadcasting [5], bandwidth
skimming [6], SVD [7] and greedy disk-conserving broadcasting [11], all of which try
to minimize the duration of broadcast or the number of additional server channels for
the same video.

Other researchers try to utilize client memory in a simple but very hard to
implement way (e.g. chaining [4]).

 492

Other proposals have slightly different goals or assumptions, such as Variable Bit
Rate (VBR) broadcasting [10, 12, 13, 14], or lossy network environments [2].

In most cases the goal is to minimize the delay of service for client requests, while
at the same time minimizing server and overall network bandwidth. Unsurprisingly,
the server uses multicasting in order to serve many client requests simultaneously for
the same video. If all such requests can somehow be grouped together in a batch, only
one video stream needs to be transmitted. This method corresponds to Near Video on
Demand (NVoD), where client requests close to each other in time are grouped to
form batches. This is opposed to True Video on Demand (TVoD), where a request is
served as soon as possible.

The key problem we address in this paper is how to minimize overall video server
network bandwidth, while simultaneously maintaining the latency of service to client
requests minimal, for popular videos. We assume client bandwidth slightly higher
than the playback rate for incoming traffic and outgoing traffic approximately the
same if multicasting can be utilized. In the case of unicasting for clients, the number
of video channels has an upper bound of b, where b>1. In all cases, multicasting is
assumed for the video server itself.

We also assume that the client buffer size is very small (approximately 2% of the
total video duration, which has a typical duration of 120 minutes). Furthermore, we
assume that the clients can join or leave a broadcast at any time, either due to their
choice or due to the problematic nature of the underlying network. These assumptions
are quite realistic for present-day mobile clients (e.g. PDAs).

Based on these assumptions, we propose the use of clients not only as passive
receivers of videos, but also as partial video servers for other clients through the use
of their buffers. This is not a novel approach [4, 9, 15, 16], but the organization of the
underlying access control mechanism is, since we propose a semi-hierarchical
hypercube overlay against the tree-like arrangements proposed by other researchers
[16]. We also propose a different mechanism for the join and departure of clients,
with emphasis on fault-tolerance, recovery and dynamic load balancing.

The obvious advantages of such an approach are minimization of the load for the
video server and the waiting time for clients which require the same popular video.
The disadvantages are the realization of the proposed protocol, which is challenging,
but not very difficult to accomplish and the possibility that the clients may not prefer
to have some of their bandwidth used for broadcasting. The latter can be solved either
as a term for using the video services (i.e., if a client wants to receive a video it has to
use the appropriate software agent which forces broadcasting) or through other
incentives. Of course, another problem may arise if a network connection is
unbalanced – download bandwidth is much larger than the upload. Work is
undergoing on this special issue, but this is not taken into account in the present work.

The rest of the paper is organized as follows. In section 2 we formulate the
problem. In section 3 we present the Application Layer Multicast protocol (ALM),
together with analysis showing that it is near optimum, scalable and resistant to
failures. Our conclusions follow in section 4.

 493

2 Problem Formulation

We assume for simplicity that there is one video server S, which contains a set of
videos M with cardinality nM. The duration of each video is D. Also, C is the set of all
clients, while Cm the set of clients requesting the same video m up to a certain time
point. The cardinality of these sets is nc and ncm, respectively. The buffer size
available at each client (expressed in playing time) is d << D, which we assume is the
same for all clients.

There is no limit on the amount of clients who can make requests, except that only
one request per client may be outstanding or served at any moment. Client requests
are denoted by rjm, where 1 < j ≤ ncm and may arrive at any time. The server receives
such requests directly, but tries to serve them at discrete successive time points, ti, ti+1,
…, so that ti+1-ti ≤ tw. The latter (tw) is a constant that depends on the amount of time a
client is willing to wait for service, before it decides to withdraw its request.

The server primarily provides the video service, but we try to use as much of the
available memory on the clients that are already being served. Therefore, if at least
one client receives the same video at successive time points with time difference tw <
d, it is possible to form a “chain” of successive video streams that serve all client
requests up to the present time, using only a single server channel. Thus, at some time
point ti, there are ncm clients for the same video grouped in i levels, namely L1, … Li.
The server is always at level L0.

Finally, each client has only one channel for video reception and only b channels
for video broadcasting at playback rate. These are the data or video channels.

Multicasting is assumed for video broadcasting from a parent client to its children
for the basic version of ALM, in which case b can be considered practically infinite.

Unicasting is also considered in the second version of ALM, in which case b is
some positive integer, depending on the upper limit of video broadcasting channels
per client.

It is possible for clients to fail, withdraw or operate in a lossy network
environment. Consequently, such “chains” would break and the system should
somehow try to remedy the situation. Therefore, a solution must satisfy the following
characteristics:
• It must be simple and fast in order to adapt quickly to the changing circumstances
• It must minimize the amount of simultaneous video server broadcasts
• No client must wait for time > tw to be served
• It must provide an access control mechanism for clients to join or leave quickly so

that the amount of network traffic to any client is manageable
• It must provide speedy recovery for client or network failures

Since the client memory can be utilized by ALM only if the same video has been
requested, in the rest of the paper we assume all client requests are for the same video,
unless otherwise stated.

 494

3 Problem Solution

The ALM protocol arranges clients into a hierarchy of i levels, where 0 < i ≤ D / tw.
The main operation is to create and maintain this hierarchy.

Contrary to other proposals [16], the data and control paths are not identical: The
data path follows a tree-like arrangement where a client at level Li, provides a
multicast stream to a group of clients at level Li+1 (or a set of up to b unicast streams).

The control path is twofold: All the clients at level Li are organized in a binary
hypercube. They maintain and exchange control information with their neighbors at
the same level, as well as their parents and children in the data path, which allows
them to respond quickly in the event of local failures. One of the clients at each level i
is the Local Representative (LRi). This client, together with other LRs from the rest of
the levels, communicates with the video server, forming a control topology of a star,
keeping overall communication minimal.

In the rest of this section we describe the exact form of hierarchy for ALM and
how it is used to establish scalable control and data paths.

Fig. 1. Hierarchy under ALM

3.1 Arrangement of Clients

The control hierarchy is created by assigning members to different levels. From time
ti to ti+tw the server receives client requests for the same video, which it groups into
the level Li, arranging them in a hypercube data structure. The arrangement is not
random; the end-to-end latency of the path between a client and the server is used as
criterion to select the Local Representative for this level (LRi) and all other clients are
placed closest to it in the hypercube. The second closest client is selected as the
Backup Local Representative (BLRi).

Video
Server

Level L1

Level L2

LR2 BLR2

LR1 BLR1

H1

H2

Video Streams

Video Stream

 495

The rationale behind this arrangement is that the LRi is the only client for level Li
communicating with the server under normal conditions; hence an effort is made to
select the one closest to the server in terms of end-to-end latency. The BLR is selected
for the case of a failed LR, since it can quickly take up its place.

The LRs and the server form a star with the server at the center. The total
communication load on the server for this set of clients is relative to maximum
number of levels D /tw.This has the advantage that the server can detect LR problems
quickly. Moreover, this arrangement is more reliable than any other scheme with
message hopping from LR to LR until the server is reached, since LRs are clients that
can withdraw at any moment without notice. This hierarchy is depicted in Fig.1, for
the first two levels of clients grouped into hypercubes H1 and H2.

Assuming that there are ni-1, ni and ni+1 clients at levels Li-1, Li and Li+1
respectively, the server divides the clients at level Li in ni-1 equal-sized subgroups,
assigning each subgroup to a client at level Li-1. This, progressively, forms a tree
structure, which is used for the data path (i.e., video streams).

In the end, each client v at level Li communicates for control purposes with its
parent at level Li-1, as well as its children at level Li+1. Therefore, the control
communication paths needed per client v under normal conditions are:

Control_Paths(v) = logni + min(b, ni+1) + 1 . (1)

The second term depends upon whether we have multicasting or unicasting.

3.2 Protocol Operations

The server and each client act both as data as well as control management servers, but
only the server is considered reliable. Under the ALM protocol, there are three phases
for any client: Join, Work and Leave.

3.2.1 Join Phase
Under the Join phase, a client v requests a video-clip from the video server at some
time t ∈ (ti-1, ti-1+tw). The server gathers all requests Rj for the video and calculates the
end-to-end latency between each client and itself, forming an ascending sorted list of
clients. This list is used to create a virtual hypercube Hi for the group Rj of these
clients.

Next, the server determines whether there is already a broadcast to at least one
client, which is currently receiving the first part of the video. If none exists, a new
broadcast is scheduled from the server; otherwise, the new level Li and identity of the
LRi are determined.

This information, together with the above-calculated hypercube Hi is sent to the
LRi and BLRi of level Li. The rest of the clients only receive the list of their neighbors
in Hi. Thus, the size of these messages is O(logni).

Finally, as explained in the previous section, the server divides the clients at the
new level Li in ni-1 subgroups and sends this information to each client at level Li-1,
and each client at level Li. In this way a forest of trees is formed where a client at
level Li-1 is the parent and certain clients at level Li are its children. This forest
augments the data path, apart from the control path. If possible, the LRi and BLRi and

 496

their neighbors are not assigned any children due to their additional administrative
load and the need to reserve a manageable amount of clients as backup for failure of
other clients.

There are many possible assignments, but to keep the arrangement simple and
faster to compute, the clients at level Li ‘closer’ to the server are assigned to the
closest client at level Li-1. This is merely a calculated guess, since the network
environment may change considerably over time.

This step concludes the Join phase. By now, each client at level Li has the
following information:
• An identity in Hi
• An initial state of Hi (only the LRi and BLRi)
• Its immediate neighbors in Hi
• Its parent in the data path, as well as the neighbors of its parent in Hi-1
• It knows whether it is the LRi or BLRi for level Li
• It knows the LRi-1 and BLRi-1 for its parent level
In addition, each client at level Li-1 knows its children in Hi.

3.2.2 Work Phase
During the Work phase, the clients at level Li-1 broadcast the video content in their
buffers to their respective children at level Li.

Apart from the data, control information is exchanged in order to detect any
possible problems.

First, all clients send periodically a simple Alive message to all their neighbors in
the hypercube. If no such message arrives from any neighbor w, between successive
transmissions of Alive messages by client v, then w is no longer considered neighbor
of v. Each of these messages includes the parent identity of their neighbors and its
respective load. Thus, a list of potential parents is formed, sorted according to their
load. Only neighbors of their parent with load < b are considered potential parents, so
this list is kept in an ascending order.

Also, each client v sends periodically an Alive message to its parent p. This
message informs p about its remaining children.

An Alive message from a parent p to its children is also necessary, so that it
informs them on its current load (i.e., how many children it currently serves). This is
also useful for load balancing.

Finally, the LRi periodically exchanges a special Alive message with the BLRi. This
is sent so that either can detect potential failure of its peer.

3.2.3 Leave Phase
This phase deals with two cases: Normal and abnormal termination of client
participation.

Under the first case, a client v that wishes to withdraw sends a Quit message to all
its neighbors in the hypercube and also to its parent and children.

Under the second case, a client v no longer broadcasts video to its children and
does not exchange Alive messages with its neighbors or parent.

 497

In both cases the parent p removes v from the list of its children. Furthermore, if
unicasting has been used, p stops broadcasting video to v. The neighbors of v update
their information about the hypercube status, accordingly.

3.2.4 Orphans and Recovery
There are two problems that have to be solved now: The first problem is that the
children of p at level Li+1 are now orphans. Since they know the immediate neighbors
of p, they send a LJoin (Local Join) message to the first of them, say p1. If p1 is able to
accept some of them, it replies sending Alive messages according to its current load
(no more than b children under unicasting) and proximity. Thus, orphans are not
necessarily accepted as children by any single neighbor of p.

If no Alive message arrives from any neighbor of p, the remaining orphans send a
LJoin message to the LRi, denoting their late parent. This is useful for grouping cases
of orphans of the same failed parent.

LRi deletes the p and all neighbors of p from its hypercube Hi. It then probes the
clients at its perimeter in Hi to check the number of orphans anyone is able to accept.
The reason is that such clients first receive orphans of their neighbors. Only those
clients capable of accepting at least one child respond. Therefore, the moment that LRi
receives enough messages to allocate orphans it stops probing clients (if has not sent
probes to all clients at its level) and sends this information to the orphans as it
receives it. This is depicted in Fig. 2. The orphans manage to become children of p’s
neighbor on the right, apart from one, which is not accepted by any neighbor. It asks
the LRi which finds another client, which accepts it as its child. Note that this
information is periodically sent to BLRi and the video server.

If LRi has found no appropriate parent or it has failed, the orphans try the same
process with LBRi. The latter becomes LRi and selects its closest neighbor with the
least load as the new BLRi through a special LRSelect message.

Fig. 2. Orphans and Recovery

If no new parent is found or both LRi and BLRi have failed at the same time, the
orphans contact the server. The server schedules a new broadcast to the orphans and
their descendants. It also calculates the new Hi possibly merging fragments of the
hypercube and selects one of the remaining clients as the LRi and another one as the
BLRi. It then sends the new Hi information to both of them and the updated
neighbourhood information to the rest of the clients. Then the process continues as
described above.

Level Li+1

Level Li

Failed parent p

LRi

Orphans of p

Neighbors of p

 498

Note that LRi does not calculate the new hypercube Hi; only quick modifications
are performed to the old hypercube. Also, the server does not deal with such
situations unless whole parts of the hypercube have failed.

3.2.5 Uncertainty due to Client Failures
Finally, a special problem arises from the fact that the control communication pattern
is fairly distributed and unreliable. It is possible that no Alive message by v reaches
some neighbor w. This is a partial failure: One or more network links have failed to
deliver the Alive message, but client v and some of its links operate properly.

If client w is a neighbor of v, which has not received an Alive message by v within
a certain amount of time, it simply deletes v from its list of active neighbors, although
it keeps sending it Alive messages periodically. It is, thus, hoped that the link with v
will operate again soon, in which case v is re-instated as an active neighbor of w. If
this does not occur and w fails, the children of w do not send a request to v as a
potential father. To avoid extreme cases, v is removed permanently from the list of
w’s neighbors after a constant number of unanswered Alive messages.

3.3 Analysis - Experimental Results

As described earlier, there are at most O(D/tw.) possible time-slots at which client
requests may belong, requiring a separate video channel for their service. We shall
focus our analysis in the worst case, where the server uses multicasting and the clients
use unicasting.

Under ALM, the number of video server channels for a video m range from one
(optimal case when at least one client per time slot) up to D/2s (worst case when
client requests arrive every two time slots).

Using ALM, each level in the hierarchy must have at least one client to maintain it.
Each client must exchange a pair of messages with every neighbor at the same level,
another pair with its parent and each of its children. With a total of ncm clients in the
hierarchy and equation (1), we have for the normal case:

Client_Messages = O(log ni + b) . (2)

Since ncm = ∑
=

i

k
k

1
n for i levels and in the worst case the number of clients at level

Li is:

ni ≤ b(i-1) * n1 . (3)

we can determine a stricter bound:

Client_Messages = O(log (bi * n1) + b) . (4)

In practice, we expect 2 ≤ b ≤ 4. Hence, equation (4) now becomes:

Client_Messages = O(i+ log n1) . (5)

 499

Thus, we determine that the number of participating clients in the hierarchy
depends on the number of clients at the first level (3) and that the amount of messages
per client is bounded by logn1 and the amount of levels (5).

If the number of clients is approximately the same at each level or we are at the
beginning of the hierarchy (i.e., i is small), equation (4) becomes:

Client_MessagesAvg = O(log n1 + b) . (6)

In case of any parent p failure at level Li, the worst case for the amount of
messages per orphan or neighbor of p is O(logni). Using (3) we find:

Orphan_Messages = O(i* log b + log n1) . (7)

Using (4), (5) and (7) we find that the total amount of messages per client in the
hierarchy is:

Total_Messages = O(log n1 + i) . (8)

Total_MessagesAvg = O(log n1+ b) . (9)

The only exception to the analysis above is the LR at each level. This has a higher
burden than the rest of the clients, since it has to receive the initial and updated
hypercube status by the server. It also needs to select and probe potential new parents
for orphans. In the worst case these are as many as the clients in its perimeter area.
Together with those for the LBR and the number of the orphans yields O(logni+b)
messages. From the previous discussion we end up at equations (8) and (9) above.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0% 20% 40% 60% 80% 100% 120%

Clients remaining (s)

1/
bs

for b=2
for b=3
for b=4

Fig. 3. Probability for Massive Failure

Of course, in the extreme case all parents at every second level fail. Thus, the
server falls to the batching strategy, with D/2tw channels to accommodate the
orphans, although not for the full duration of the video [3].

 500

Based on the discussion above, we see that for many clients, additional server
channels are required only in the case of massive adjacent client faults. If only partial
faults take place and the clients are evenly distributed at each level, then only a single
video stream is required (a speed-up of up to D/2tw times, which is near optimum).

If s is the cumulative percentage of non-failed clients during a complete video
broadcast, then up to (b*s*ni) children at level Li+1 can be accommodated. Thus,
massive failures are more probable when the ratio ni+1/1/(b*s*ni) is close to 1. This
can be rewritten as ni/ni+1≤1/(b*s). That is, massive failures are likely to occur when
the ratio 1/bs ≥ 1. This is depicted in Fig. 3 for possible values of b.

From this figure we see that massive failures are likely when 1/bs ≥ 1, which
occurs with b=2 for s=50%, with b=3 for s=35% and with b=4 for s=25%.

Finally, the clients never calculate the hypercubes. This is performed initially by
the server and then in two more extreme cases: Either both LRi and BLRi or the
complete level Li of clients have failed. In the first case, the server only needs to
receive at least one message that both LRi and BLRi have failed and to verify itself this
event by probing them. If more messages from orphans arrive, the server calculates
the new hypercube and selects two of the remaining ones as the LRi and BLRi.

We, therefore, see that ALM is not only near optimal in terms of server channels
usage, but also scalable and quite robust to failures.

Dynamic load balancing is straightforward to implement: Each client at the same
level can easily find out through Alive messages, the current load of its neighbours. If
a client has at least 2 children more than one of its neighbors, one of the children is
“passed” to that neighbor. This process is easy to implement and does not require any
central authority (e.g., the video server) to participate in it. Another advantage is that
no disruption in the video stream being delivered occurs. The most important
advantage, however, is that the children are more evenly distributed to data
subgroups, reducing the probability of massive failures.

4 Conclusion

We have proposed ALM, a new multicast application layer protocol for NVoD,
utilizing the available buffer of clients under a hierarchy of successive hypercubes, in
a faulty environment, leading to better server network and channel utilization.

Preliminary analysis has shown that it is scalable and quite robust, for NVoD and
relatively easy to implement, since it is less complex or demanding for clients
compared to other proposals.

Work is in progress for a more detailed simulation with enhancements on the basic
idea.

References

1. Kien A. Hua, et al: Patching: A Multicast Technique for True Video-on-Demand Services,
Proceedings ACM Multimedia Conference (SIGMM), (1998) 191-200

 501

2. Mahanti L., et al: Scalable On-Demand Media Streaming with Packet Loss Recovery,
Proceedings ACM SIGCOMM Conference (2001), 97-108

3. Jack Y. B. Lee: UVoD: An Unified Architecture for Video-on-Demand Services, IEEE
Communications Letters, 3(9):277-279 (1999)

4. S. Sheu K. Hua, Tavanapong, W.: Chaining: A Generalized Batching Technique for Video-
On-Demand Systems, Proceedings ICMCS’97 Conference (1997) 110-117

5. Hua K., Sheu, S.: Skyscraper Broadcasting: A New Broadcasting Scheme for Metropolitan
Video-on-Demand Systems, Proceedings ACM SIGCOMM Conference, (1997) 89-99

6. Hua K., Cai Y., Sheu S.: Patching: A Multicast Technique for True Video-on-Demand
Services, Proceedings ACM Multimedia Conference (SIGMM) (1998) 191-200

7. Eager D., et al: Optimal and Efficient Merging Schedules for Video-on-Demand Servers,
Proceedings ACM Multimedia Conference (SIGMM) (1999) 199-202

8. Min-You Wu et al: Scheduled Video Delivery for Scalable on-Demand Service, Proceedings
ACM NOSDAV Conference (2002) 167-175

9. Wang, James Z., Guha, Ratan K.: Data Allocation Algorithms for Distributed Video Servers,
Proceedings ACM Multimedia Conference (SIGMM) (2000) 456-458

10. Loser C., et al: Distributed Video on Demand Services on Peer to Peer Basis, Proceedings
International Workshop on Real-Time LANS in the Internet Age (RTLIA) (2002)

11. Saparilla D., Ross K.: Periodic Broadcasting with VBR-Encoded Video, Proceedings IEEE
Infocom Conference (1999) 464-471

12. Lixin Gao et al: Efficient schemes for broadcasting popular videos, Multimedia Systems,
8:284-294, (2002)

13. Tantaoui M., et al: Interaction with Broadcast Video, Proceedings ACM Multimedia
Conference (SIGMM) (2002)

14. Yanping Zhao, et al: Efficient Delivery Techniques for Variable Bit Rate Multimedia,
Proceedings MMCN Conference, (2002)

15. Kien Hua, JungHwan Oh, Khanh Vu: An adaptive video multicast scheme for varying
workloads, Multimedia Systems, 8:258-269, (2002)

16. Kien Hua, et al: Overlay Multicast for Video on Demand on the Internet, Proceedings ACM
SAC Conference, (2003)

