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Abstract. This paper studies the performance of a distributed system which is 
subject to hardware failures and subsequent repairs. A special type of schedul-
ing called gang scheduling is considered, under which jobs consist of a number 
of interacting tasks which are scheduled to run simultaneously on distinct proc-
essors. The distribution for the number of parallel tasks per job varies with 
time. Two gang scheduling policies used to schedule parallel jobs are examined 
in two cases: In the blocking case, a job that is blocked due to processor failure 
keeps all of its assigned processors until the failed processor is repaired. In the 
non-blocking case, the remaining operable processors can serve other jobs. Sys-
tem performance is analysed for different workload parameters. 

1 Introduction 

Distributed systems have been the focus of research for many years. They consist of 
several, loosely interconnected processors, where jobs to be processed are in some 
way apportioned among the processors, and various techniques are used to coordinate 
processing. However, it is still not clear how to efficiently schedule parallel jobs. To 
determine this, it is critical to properly assign the tasks to processors and then sched-
ule execution on distributed processors. Good scheduling policies can maximize sys-
tem and individual application performance, and avoid unnecessary delays.  

In this study jobs consist of parallel tasks that are scheduled to execute concur-
rently on a set of processors. The parallel tasks need to start at essentially the same 
time, co-ordinate their execution, and compute at the same pace. This type of resource 
management is called “gang scheduling” or “co-scheduling” and has been extensively 
studied in the literature. Simulation models are used in this paper to answer perform-
ance questions about systems in which the processors are subject to failure. In envi-
ronments that are subject to processor failure, any job that has been interrupted by 
failure must restart execution. Recovery from failure implies that a newly reactivated 
processor is reassigned work. When an idle processor fails, it can be immediately 
removed from the set of available processors and the reassignment of jobs after the 
processor is repaired can be arbitrary.  

This paper studies and analyzes the performance of different scheduling algorithms 
in the case where job parallelism is not defined by a specific pattern but changes with 
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the time. So, a time interval during which arriving jobs exhibit highly variable de-
grees of parallelism, is followed by a time interval during which the majority of jobs 
exhibit moderate parallelism, and vice-versa. We employed this distribution because 
in real systems the variability in job parallelism can vary during the day depending on 
the jobs that run on different time intervals. Also, we compare the performance of 
different scheduling policies for various coefficients of variation of the processor 
service times and for different degrees of multiprogramming.  

Gang scheduling is studied extensively in [1, 2, 3, 4, 5, 6]. However, these works 
do not consider processor failures. [7, 8] study gang scheduling under processor fail-
ures, but they consider only the uniform distribution for the number of parallel tasks 
per job (gang size). Furthermore, [7, 8] study smaller degrees of multiprogramming 
than those examined here. The routing policy that is employed in [7] is based on the 
shortest queue criterion, while the routing policy that is employed in [8] is based on 
probabilities. Time-varying distribution for the gang size is considered in [9, 10, 11]. 
From these papers, [9, 10] do not consider processor failures and the systems that 
they study are shared memory partitionable parallel systems where all jobs share a 
single queue. Paper [11] studies a distributed system under processor failures and 
considers uniform, normal and time varying distributions for the number of tasks per 
job. This paper is an extension of [11]. It presents and analyzes additional results for 
the varying with time distribution case, and it provides a more detailed study of the 
impact on performance of various workload parameters. 

The structure of the paper is as follows. Section 2.1 specifies system and workload 
models, section 2.2 describes scheduling policies, section 2.3 presents the metrics 
employed in assessing the performance of the scheduling policies that are studied, 
while model implementation and input parameters are described in section 2.4. The 
results of the simulation experiments are presented and analyzed in section 3. Section 
4 is the conclusion and provides suggestions for further research, and the last section 
is references. 

2 Model and Methodology 

The technique used to evaluate the performance of the scheduling disciplines is ex-
perimentation using a synthetic workload simulation. 

2.1 System and Workload Models  

A closed queuing network model of a distributed system is considered (Fig. 1). There 
are P = 16 homogeneous and independent processors each equipped with its own 
queue (memory). The degree of multiprogramming N is constant during the simula-
tion experiment. A fixed number of jobs N are circulating alternatively between the 
processors and the I/O unit. The I/O subsystem has the same service capacity as the 
processors since we are interested in a system with a balanced program flow. The 
effects of the memory requirements and the communication latencies are not repre-
sented explicitly in the system model. Instead, they appear implicitly in the shape of 
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the job execution time functions. By covering several different types of job execution 
behaviors, we expect that various architectural characteristics will be captured. 
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Fig. 1. The queueing network model 

There are enough repair stations for all failed processors so that they all can be re-
paired concurrently. In this system, simultaneous multiple processor failures are not 
allowed. Idle and allocated processors are equally likely to fail. If an idle processor 
fails, it is immediately removed from the set of available processors. It is reassigned 
only after it has been repaired. When a processor fails during task execution, all work 
that was accomplished on all tasks associated with that job needs to be redone. Tasks 
of failed jobs are resubmitted for execution as the first tasks in the assigned queues.  

The number of tasks in a job is the job’s degree of parallelism. The number of 
tasks of job j is represented as t(j). If p(j) represents the number of processors re-
quired by job j, then it holds that 1 ≤ t(j) = p(j) ≤ P. 

We call a job “small” (“large”) if it requires a small (large) number of processors. 
Each time a job returns from I/O service to the distributed processors, it requires a 
different number of processors for execution. That is, its degree of parallelism is not 
constant during its lifetime in the system. Each task of a job is routed to a different 
processor for execution. The routing policy is that tasks enter the shortest queues. 
Tasks in processor queues are examined in order accordingly to the scheduling pol-
icy. A job starts to execute only if all processors assigned to it are available. Other-
wise, all tasks of the job wait in the assigned queues. When a job finishes execution, 
all processors assigned to it are released. The number of jobs that can be processed in 
parallel depends on the job size, number of operable processors and the scheduling 
policy that is employed. The workload considered here is characterized by the follow-
ing: Distribution of gang sizes, distribution of task service demand, distribution of I/O 
service time, distribution of processor failures, distribution of processor repair time, 
and degree of multiprogramming.  

Exponentially Time-Varying Distribution of Gang Size. We assume that the distri-
bution of the number of tasks per job changes in exponentially distributed time inter-
vals, from uniform to normal and vice-versa (shown in Fig. 2). Those jobs that arrive 
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at the processors within the same time interval have the same distribution of gang 
size. However, during the same time interval there may exist some jobs at the proces-
sors that arrived during a past time interval and which may have a different distribu-
tion of gang size. These jobs may still wait at the processors queues or are being 
served. The mean time interval for distribution change is d.  
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Fig. 2. Exponentially time-varying distribution of gang size 

In the uniform distribution case we assume that the number of tasks per job is uni-
formly distributed in the range of [1..P]. Therefore, the mean number of tasks per job 
is equal to η = (1+P)/2. In the normal distribution case we assume a “bounded” nor-
mal distribution for the number of tasks per job with mean equal to η = (1+P)/2. We 
have chosen standard deviation σ = η /4. It is obvious that jobs of the uniform distri-
bution case present larger variability in their degree of parallelism than jobs whose 
number of tasks is normally distributed. In the second case, most of the jobs have a 
moderate degree of parallelism as compared with the number of processors. 

Distribution of Task Service Demand. We examine the impact of the variability in 
task service demand (gang execution time) on system performance. A high variability 
in task service demand implies that there are a proportionately high number of service 
demands that are very small compared to the mean service time and there are a com-
paratively low number of service demands that are very large. When a gang with a 
long service demand starts execution, it occupies its assigned processors for a long 
time interval, and depending on the scheduling policy, it may introduce inordinate 
queuing delays for other tasks waiting for service. The parameter that represents the 
variability in task service demand is the coefficient of variation of task service de-
mand C. We examine the following cases with regard to task service demand distri-
bution:  

 Task service demand is an exponential random variable with mean x.  
 Task service demand has a Branching Erlang distribution with two stages. The 

coefficient of variation is C >1 and the mean is x.   

Distribution of I/O Service Time. After a job leaves the processors, it requests ser-
vice on the I/O unit. The I/O service times are exponentially distributed with mean z.  

Distributions of Processor Failures and Repair Time. Processor failure is a Pois-
son process with a failure rate of α. Processor repair time is an exponentially distrib-
uted random variable with the mean value of 1/β. 
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2.2 Scheduling Strategies 

We present two well known queuing policies when gang scheduling is used. We as-
sume that the scheduler has correct information about jobs size, i.e. it knows the exact 
number of processors required by all jobs in the queues. 

Adaptive First-Come-First-Served (AFCFS). This policy attempts to schedule a 
job whenever processors assigned to its tasks are available. When there are not 
enough processors available for a large job whose tasks are waiting in the front of the 
queues, AFCFS policy schedules smaller jobs whose tasks are behind the tasks of the 
large job. One major problem with this scheduling policy is that it tends to favor 
those jobs requesting a smaller number of processors and thus may increase 
fragmentation of the system. 

Largest-Gang-First-Served (LGFS). With this strategy tasks are placed in increas-
ing job size order in processor queues (tasks that belong to larger gangs are placed at 
the head of queues). All tasks in queues are searched in order, and the first jobs 
whose assigned processors are available begin execution. This method tends to im-
prove the performance of large, highly parallel jobs at the expense of smaller jobs, 
but in many computing environments this discrimination is acceptable, if not desir-
able. Supercomputer centers often run large, highly parallel jobs that cannot run else-
where. 

When a processor fails during task execution, all tasks of the corresponding job are 
resubmitted for execution as the leading tasks in the assigned queues. They wait at the 
head of these ready queues until the failed processor is repaired. During that time 
there are two cases for each of the AFCFS and LGFS policies: 

Blocking Case. The remaining processors assigned to the interrupted job are blocked 
and cannot execute other job tasks. Unfortunately, this case is conservative since jobs 
are only retained on processor queues when they could run on those processors.  

Non-blocking Case. Jobs in queues are processed early instead of requiring them to 
wait until the blocked job resumes execution. The remaining processors assigned to 
the blocked job execute tasks of other jobs waiting in their queues. This case incurs 
additional overhead since it can examine all jobs in these queues when a processor 
fails. In order to distinguish the scheduling policies in the two different cases we use 
the notations AFCFS(B) and LGFS(B) for the blocking case, while we use the nota-
tions AFCFS and LGFS in the non-blocking cases.  

I/O Scheduling. For the I/O subsystem, the FCFS policy is employed. 



 507 

2.3 Performance Metrics 

We consider the definitions: Response time of a random job is the interval of time 
from the dispatching of this job tasks to processor queues to service completion of this 
job. Cycle time of a random job is the time that elapses between two successive proc-
essor service requests of this job. In our model cycle time is the sum of response time 
plus queuing and service time at the I/O unit. Parameters used in later simulation 
computations are presented in Table 1.  
 

Parameter  Definition 
R System throughput 
U Mean processor utilization 
N Degree of multiprogramming 
α Failure rate 
1/β Mean repair time 
φ The failure to repair ratio (α/β ) 
x Mean processor service time 
z Mean I/O service time 
d  Mean time interval for distribution change  
DR The relative (%) increase in R when we compare 

a scheduling policy with AFCFS(B) 

Table 1. Notations 

2.4 Model Implementation and Input Parameters 

The queuing network model is simulated with discrete event simulation modelling 
using the independent replication method.  

The system considered is balanced (refer to Table 1 for notations): x = 1.0, z = 
0.531. The reason z = 0.531 is chosen for balanced program flow is that there are on 
average 8.5 tasks per job at the processors. So, when all processors are busy, an aver-
age of 1.88235 jobs are served each unit of time. This implies that I/O mean service 
time must be equal to 1/1.88235 = 0.531 if the I/O unit is to have the same service 
capacity. The mean time interval for gang size distribution change is considered to be 
d = 10, 20, 30. These are reasonable choices considering that the mean service time of 
tasks in equal to one.  

In typical systems, processor failures and repairs do not occur very frequently. In 
order to produce a sufficient number of data points for these rare events, the simula-
tion program was run for 20,000,000 job services at the processors. A value of α =10-

3 is used (i.e., mean inter-failure time or 1/α = 103). The failure to repair ratio (or φ) is 
set at 0.05, and 0.10, which means mean repair times (or 1/β) are set to 50, and 100.  

The system is examined for cases of task execution time with exponential distribu-
tion (C = 1), and Branching Erlang for C = 2, 4. The degree of multiprogramming N 
is 16, 24, 32, .., 80.  
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3 Simulation Results and Performance Analysis 

Tables 2-7 show the mean processor utilization range for all N in all cases that we 
examined. The relative increase in R when each of LGFS(B), AFCFS, and LGFS is 
employed instead of AFCFS(B) is depicted in Figures 3-20. Figures 3-11 represent 
DR versus N in the φ = 0.05 case. Figures 12-20 show DR versus N in the φ=0.10 case. 
 

Scheduling policy d = 10 d = 20 d = 30 
AFCFS(B) 0.610-0.650 0.610-0.651 0.609-0.650 
LGFS(B) 0.625-0.687 0.624-0.688 0.624-0.688 
AFCFS 0.624-0.669 0.624-0.669 0.623-0.670 
LGFS 0.639-0.709 0.639-0.709 0.639-0.709 

Table 2. U range, C = 1, φ = 0.05 

Scheduling policy d = 10 d = 20 d = 30 
AFCFS(B) 0.587-0.628 0.586-0.629 0.586-0.629 
LGFS(B) 0.600-0.663 0.600-0.664 0.600-0.664 
AFCFS 0.608-0.665 0.608-0.665 0.607-0.665 
LGFS 0.624-0.705 0.624-0.705 0.623-0.705 

Table 3. U range, C = 1, φ = 0.10 

Scheduling policy d = 10 d = 20 d = 30 
AFCFS(B) 0.599-0.640 0.599-0.640 0.599-0.640 
LGFS(B) 0.607-0.673 0.607-0.673 0.606-0.673 
AFCFS 0.612-0.658 0.611-0.658 0.611-0.658 
LGFS 0.621-0.692 0.621-0.693 0.620-0.693 

Table 4. U range, C = 2, φ = 0.05 

Scheduling policy d = 10 d = 20 d = 30 
AFCFS(B) 0.577-0.619 0.576-0.619 0.576-0.620 
LGFS(B) 0.603-0.650 0.584-0.649 0.584-0.650 
AFCFS 0.597-0.654 0.596-0.654 0.596-0.654 
LGFS 0.607-0.689 0.606-0.689 0.606-0.689 

Table 5. U range, C = 2, φ = 0.10 

Scheduling policy d = 10 d = 20 d = 30 
AFCFS(B) 0.570-0.626 0.569-0.626 0.569-0.626 
LGFS(B) 0.573-0.649 0.572-0.649 0.572-0.649 
AFCFS 0.581-0.643 0.581-0.643 0.580-0.642 
LGFS 0.584-0.667 0.584-0.667 0.583-0.667 

Table 6. U range, C = 4, φ = 0.05  
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Scheduling policy d = 10 d = 20 d = 30 
AFCFS(B) 0.549-0.607 0.549-0.605 0.548-0.606 
LGFS(B) 0.552-0.628 0.551-0.628 0.551-0.628 
AFCFS 0.568-0.639 0.567-0.638 0.567-0.639 
LGFS 0.571-0.663 0.570-0.663 0.570-0.663 

Table 7. U range, C = 4, φ = 0.10 

The results show that with each scheduling method, the mean processor utilization 
is slightly higher in the non-blocking case than in the blocking case. However, in 
both cases part of the processor utilization is repeat work caused by processor fail-
ures rather than useful work.  

In the results presented in Figures 3-20, we observe that the relative performance 
of the different policies is not significantly affected by the length of the mean time 
interval for gang size distribution change. The results presented in these Figures also 
show that the relative performance of the scheduling algorithms depends on φ.   
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Fig. 3. DR versus N, d = 10, C = 1, φ = 0.05 
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Fig. 4. DR versus N, d = 20, C = 1, φ = 0.05 
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Fig. 5. DR versus N, d = 30, C = 1, φ = 0.05 
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Fig. 6. DR versus N, d = 10, C = 2, φ = 0.05 
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Fig. 7. DR versus N, d = 20, C = 2, φ = 0.05 

In all cases, the LGFS method performs better than the other methods, while the 
worst performance is encountered with the AFCFS(B) policy. This is because the 
mean response time of jobs is lower (higher) in the LGFS (AFCFS(B)) policy case 
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than in the other methods cases. This results in a lower (higher) mean cycle time 
respectively, and therefore in larger (smaller) system throughput.   
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Fig. 8. DR versus N, d = 30, C = 2, φ = 0.05 
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Fig. 9. DR versus N, d = 10, C = 4, φ = 0.05 
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Fig. 10. DR versus N, d = 20, C = 4, φ = 0.05 
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Fig. 11. DR versus N, d = 30, C = 4, φ = 0.05 
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Fig. 12. DR versus N, d = 10, C = 1, φ = 0.10 
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Fig. 13. DR versus N, d = 20, C = 1, φ = 0.10 
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Fig. 14. DR versus N, d = 30, C = 1, φ = 0.10 
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Fig. 15. DR versus N, d = 10, C = 2, φ = 0.10 
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Fig. 16. DR versus N, d = 20, C = 2, φ = 0.10 
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Fig. 17. DR versus N, d = 30, C = 2, φ = 0.10 
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Fig. 18. DR versus N, d = 10, C = 4, φ = 0.10 
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Fig. 19. DR versus N, d = 20, C = 4, φ = 0.10 
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Fig. 20. DR versus N, d = 30, C = 4, φ = 0.10 

Generally, the superiority of LGFS(B), LGFS, and AFCFS over AFCFS(B) in-
creases with increasing N (that is, DR generally increases with increasing N). This is 
due to the fact that the advantages of these policies as compared to AFCFS(B) are 
better exploited in the cases of larger queues than in the cases of smaller queues. 

DR generally decreases with increasing C. This is due to the following two facts: a) 
the variability in gang execution time increases with increasing C, and b) the schedul-
ing methods that we employ do not use criteria that are based on gang service time 
requirements. Gangs with very long execution times cause anyway long delays to 
subsequent gangs in the queues independently of the scheduling method that we em-
ploy.  

DR is generally larger for φ = 0.10 than for φ = 0.05. This is because the advan-
tages of the scheduling methods can be more effective when the repair time is large 
than when it is smaller.  

The relative performance of LGFS(B) and AFCFS depends on the workload. In 
some cases the second best method after LGFS is LGFS(B) while in other cases 
AFCFS is the second best method. For example, for φ = 0.10 in all cases AFCFS 
outperforms LGFS(B). In this case, the difference in performance between these two 
methods increases with increasing C, but for each C the difference in performance 
decreases with increasing N. For φ = 0.05, at N = 16 AFCFS either outperforms 
LGFS(B) (C > 1) or performs very close to LGFS(B) (C = 1). As N increases, the 
difference between these two methods first tends to zero and then from some N that 
depends on C, LGFS(B) outperforms AFCFS with a difference that generally in-
creases with increasing N. The reason that the N where the relative performance of 
these two methods changes is different at different C, is because for each N, the mean 
processor utilization is lower at larger C.     

4 Conclusions and Future Research  

The simulation results show that the LGFS method outperforms the other methods. 
Furthermore, the results show that the relative performance of the scheduling poli-
cies depends on the variability of processor service times, the degree of 
multiprogramming, and the failure to repair ratio. We also conclude that the length of 
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gramming, and the failure to repair ratio. We also conclude that the length of the 
mean time interval for the gang size distribution change does not significantly affect 
performance. In this paper we studied processor failures in a closed queueing net-
work model of a distributed system where the number of jobs is constant during a 
simulation experiment. As a future research we plan to consider an open queueing 
network model and to study the impact on performance of a time-varying distribution 
for job inter-arrival times.  
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