
Performance Analysis of a Distributed System under
Time-Varying Workload and Processor Failures

Helen Karatza

Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

Email: karatza@csd.auth.gr

Abstract. This paper studies the performance of a distributed system which is
subject to hardware failures and subsequent repairs. A special type of schedul-
ing called gang scheduling is considered, under which jobs consist of a number
of interacting tasks which are scheduled to run simultaneously on distinct proc-
essors. The distribution for the number of parallel tasks per job varies with
time. Two gang scheduling policies used to schedule parallel jobs are examined
in two cases: In the blocking case, a job that is blocked due to processor failure
keeps all of its assigned processors until the failed processor is repaired. In the
non-blocking case, the remaining operable processors can serve other jobs. Sys-
tem performance is analysed for different workload parameters.

1 Introduction

Distributed systems have been the focus of research for many years. They consist of
several, loosely interconnected processors, where jobs to be processed are in some
way apportioned among the processors, and various techniques are used to coordinate
processing. However, it is still not clear how to efficiently schedule parallel jobs. To
determine this, it is critical to properly assign the tasks to processors and then sched-
ule execution on distributed processors. Good scheduling policies can maximize sys-
tem and individual application performance, and avoid unnecessary delays.

In this study jobs consist of parallel tasks that are scheduled to execute concur-
rently on a set of processors. The parallel tasks need to start at essentially the same
time, co-ordinate their execution, and compute at the same pace. This type of resource
management is called “gang scheduling” or “co-scheduling” and has been extensively
studied in the literature. Simulation models are used in this paper to answer perform-
ance questions about systems in which the processors are subject to failure. In envi-
ronments that are subject to processor failure, any job that has been interrupted by
failure must restart execution. Recovery from failure implies that a newly reactivated
processor is reassigned work. When an idle processor fails, it can be immediately
removed from the set of available processors and the reassignment of jobs after the
processor is repaired can be arbitrary.

This paper studies and analyzes the performance of different scheduling algorithms
in the case where job parallelism is not defined by a specific pattern but changes with

 503

the time. So, a time interval during which arriving jobs exhibit highly variable de-
grees of parallelism, is followed by a time interval during which the majority of jobs
exhibit moderate parallelism, and vice-versa. We employed this distribution because
in real systems the variability in job parallelism can vary during the day depending on
the jobs that run on different time intervals. Also, we compare the performance of
different scheduling policies for various coefficients of variation of the processor
service times and for different degrees of multiprogramming.

Gang scheduling is studied extensively in [1, 2, 3, 4, 5, 6]. However, these works
do not consider processor failures. [7, 8] study gang scheduling under processor fail-
ures, but they consider only the uniform distribution for the number of parallel tasks
per job (gang size). Furthermore, [7, 8] study smaller degrees of multiprogramming
than those examined here. The routing policy that is employed in [7] is based on the
shortest queue criterion, while the routing policy that is employed in [8] is based on
probabilities. Time-varying distribution for the gang size is considered in [9, 10, 11].
From these papers, [9, 10] do not consider processor failures and the systems that
they study are shared memory partitionable parallel systems where all jobs share a
single queue. Paper [11] studies a distributed system under processor failures and
considers uniform, normal and time varying distributions for the number of tasks per
job. This paper is an extension of [11]. It presents and analyzes additional results for
the varying with time distribution case, and it provides a more detailed study of the
impact on performance of various workload parameters.

The structure of the paper is as follows. Section 2.1 specifies system and workload
models, section 2.2 describes scheduling policies, section 2.3 presents the metrics
employed in assessing the performance of the scheduling policies that are studied,
while model implementation and input parameters are described in section 2.4. The
results of the simulation experiments are presented and analyzed in section 3. Section
4 is the conclusion and provides suggestions for further research, and the last section
is references.

2 Model and Methodology

The technique used to evaluate the performance of the scheduling disciplines is ex-
perimentation using a synthetic workload simulation.

2.1 System and Workload Models

A closed queuing network model of a distributed system is considered (Fig. 1). There
are P = 16 homogeneous and independent processors each equipped with its own
queue (memory). The degree of multiprogramming N is constant during the simula-
tion experiment. A fixed number of jobs N are circulating alternatively between the
processors and the I/O unit. The I/O subsystem has the same service capacity as the
processors since we are interested in a system with a balanced program flow. The
effects of the memory requirements and the communication latencies are not repre-
sented explicitly in the system model. Instead, they appear implicitly in the shape of

 504

the job execution time functions. By covering several different types of job execution
behaviors, we expect that various architectural characteristics will be captured.

x

x

x

...
z

1

2

P

. . .

N jobs (gangs)

task
split

I/O subsystem

Fig. 1. The queueing network model

There are enough repair stations for all failed processors so that they all can be re-
paired concurrently. In this system, simultaneous multiple processor failures are not
allowed. Idle and allocated processors are equally likely to fail. If an idle processor
fails, it is immediately removed from the set of available processors. It is reassigned
only after it has been repaired. When a processor fails during task execution, all work
that was accomplished on all tasks associated with that job needs to be redone. Tasks
of failed jobs are resubmitted for execution as the first tasks in the assigned queues.

The number of tasks in a job is the job’s degree of parallelism. The number of
tasks of job j is represented as t(j). If p(j) represents the number of processors re-
quired by job j, then it holds that 1 ≤ t(j) = p(j) ≤ P.

We call a job “small” (“large”) if it requires a small (large) number of processors.
Each time a job returns from I/O service to the distributed processors, it requires a
different number of processors for execution. That is, its degree of parallelism is not
constant during its lifetime in the system. Each task of a job is routed to a different
processor for execution. The routing policy is that tasks enter the shortest queues.
Tasks in processor queues are examined in order accordingly to the scheduling pol-
icy. A job starts to execute only if all processors assigned to it are available. Other-
wise, all tasks of the job wait in the assigned queues. When a job finishes execution,
all processors assigned to it are released. The number of jobs that can be processed in
parallel depends on the job size, number of operable processors and the scheduling
policy that is employed. The workload considered here is characterized by the follow-
ing: Distribution of gang sizes, distribution of task service demand, distribution of I/O
service time, distribution of processor failures, distribution of processor repair time,
and degree of multiprogramming.

Exponentially Time-Varying Distribution of Gang Size. We assume that the distri-
bution of the number of tasks per job changes in exponentially distributed time inter-
vals, from uniform to normal and vice-versa (shown in Fig. 2). Those jobs that arrive

 505

at the processors within the same time interval have the same distribution of gang
size. However, during the same time interval there may exist some jobs at the proces-
sors that arrived during a past time interval and which may have a different distribu-
tion of gang size. These jobs may still wait at the processors queues or are being
served. The mean time interval for distribution change is d.

Uniform
distribution

Normal
distribution

Uniform
distribution

t
Normal

distribution
.. ..

d1 d3d2 dn….

d1, d2, d3, …., dn : exponentially distributed time intervals over time t

Fig. 2. Exponentially time-varying distribution of gang size

In the uniform distribution case we assume that the number of tasks per job is uni-
formly distributed in the range of [1..P]. Therefore, the mean number of tasks per job
is equal to η = (1+P)/2. In the normal distribution case we assume a “bounded” nor-
mal distribution for the number of tasks per job with mean equal to η = (1+P)/2. We
have chosen standard deviation σ = η /4. It is obvious that jobs of the uniform distri-
bution case present larger variability in their degree of parallelism than jobs whose
number of tasks is normally distributed. In the second case, most of the jobs have a
moderate degree of parallelism as compared with the number of processors.

Distribution of Task Service Demand. We examine the impact of the variability in
task service demand (gang execution time) on system performance. A high variability
in task service demand implies that there are a proportionately high number of service
demands that are very small compared to the mean service time and there are a com-
paratively low number of service demands that are very large. When a gang with a
long service demand starts execution, it occupies its assigned processors for a long
time interval, and depending on the scheduling policy, it may introduce inordinate
queuing delays for other tasks waiting for service. The parameter that represents the
variability in task service demand is the coefficient of variation of task service de-
mand C. We examine the following cases with regard to task service demand distri-
bution:

 Task service demand is an exponential random variable with mean x.
 Task service demand has a Branching Erlang distribution with two stages. The

coefficient of variation is C >1 and the mean is x.

Distribution of I/O Service Time. After a job leaves the processors, it requests ser-
vice on the I/O unit. The I/O service times are exponentially distributed with mean z.

Distributions of Processor Failures and Repair Time. Processor failure is a Pois-
son process with a failure rate of α. Processor repair time is an exponentially distrib-
uted random variable with the mean value of 1/β.

 506

2.2 Scheduling Strategies

We present two well known queuing policies when gang scheduling is used. We as-
sume that the scheduler has correct information about jobs size, i.e. it knows the exact
number of processors required by all jobs in the queues.

Adaptive First-Come-First-Served (AFCFS). This policy attempts to schedule a
job whenever processors assigned to its tasks are available. When there are not
enough processors available for a large job whose tasks are waiting in the front of the
queues, AFCFS policy schedules smaller jobs whose tasks are behind the tasks of the
large job. One major problem with this scheduling policy is that it tends to favor
those jobs requesting a smaller number of processors and thus may increase
fragmentation of the system.

Largest-Gang-First-Served (LGFS). With this strategy tasks are placed in increas-
ing job size order in processor queues (tasks that belong to larger gangs are placed at
the head of queues). All tasks in queues are searched in order, and the first jobs
whose assigned processors are available begin execution. This method tends to im-
prove the performance of large, highly parallel jobs at the expense of smaller jobs,
but in many computing environments this discrimination is acceptable, if not desir-
able. Supercomputer centers often run large, highly parallel jobs that cannot run else-
where.

When a processor fails during task execution, all tasks of the corresponding job are
resubmitted for execution as the leading tasks in the assigned queues. They wait at the
head of these ready queues until the failed processor is repaired. During that time
there are two cases for each of the AFCFS and LGFS policies:

Blocking Case. The remaining processors assigned to the interrupted job are blocked
and cannot execute other job tasks. Unfortunately, this case is conservative since jobs
are only retained on processor queues when they could run on those processors.

Non-blocking Case. Jobs in queues are processed early instead of requiring them to
wait until the blocked job resumes execution. The remaining processors assigned to
the blocked job execute tasks of other jobs waiting in their queues. This case incurs
additional overhead since it can examine all jobs in these queues when a processor
fails. In order to distinguish the scheduling policies in the two different cases we use
the notations AFCFS(B) and LGFS(B) for the blocking case, while we use the nota-
tions AFCFS and LGFS in the non-blocking cases.

I/O Scheduling. For the I/O subsystem, the FCFS policy is employed.

 507

2.3 Performance Metrics

We consider the definitions: Response time of a random job is the interval of time
from the dispatching of this job tasks to processor queues to service completion of this
job. Cycle time of a random job is the time that elapses between two successive proc-
essor service requests of this job. In our model cycle time is the sum of response time
plus queuing and service time at the I/O unit. Parameters used in later simulation
computations are presented in Table 1.

Parameter Definition
R System throughput
U Mean processor utilization
N Degree of multiprogramming
α Failure rate
1/β Mean repair time
φ The failure to repair ratio (α/β)
x Mean processor service time
z Mean I/O service time
d Mean time interval for distribution change
DR The relative (%) increase in R when we compare

a scheduling policy with AFCFS(B)

Table 1. Notations

2.4 Model Implementation and Input Parameters

The queuing network model is simulated with discrete event simulation modelling
using the independent replication method.

The system considered is balanced (refer to Table 1 for notations): x = 1.0, z =
0.531. The reason z = 0.531 is chosen for balanced program flow is that there are on
average 8.5 tasks per job at the processors. So, when all processors are busy, an aver-
age of 1.88235 jobs are served each unit of time. This implies that I/O mean service
time must be equal to 1/1.88235 = 0.531 if the I/O unit is to have the same service
capacity. The mean time interval for gang size distribution change is considered to be
d = 10, 20, 30. These are reasonable choices considering that the mean service time of
tasks in equal to one.

In typical systems, processor failures and repairs do not occur very frequently. In
order to produce a sufficient number of data points for these rare events, the simula-
tion program was run for 20,000,000 job services at the processors. A value of α =10-

3 is used (i.e., mean inter-failure time or 1/α = 103). The failure to repair ratio (or φ) is
set at 0.05, and 0.10, which means mean repair times (or 1/β) are set to 50, and 100.

The system is examined for cases of task execution time with exponential distribu-
tion (C = 1), and Branching Erlang for C = 2, 4. The degree of multiprogramming N
is 16, 24, 32, .., 80.

 508

3 Simulation Results and Performance Analysis

Tables 2-7 show the mean processor utilization range for all N in all cases that we
examined. The relative increase in R when each of LGFS(B), AFCFS, and LGFS is
employed instead of AFCFS(B) is depicted in Figures 3-20. Figures 3-11 represent
DR versus N in the φ = 0.05 case. Figures 12-20 show DR versus N in the φ=0.10 case.

Scheduling policy d = 10 d = 20 d = 30
AFCFS(B) 0.610-0.650 0.610-0.651 0.609-0.650
LGFS(B) 0.625-0.687 0.624-0.688 0.624-0.688
AFCFS 0.624-0.669 0.624-0.669 0.623-0.670
LGFS 0.639-0.709 0.639-0.709 0.639-0.709

Table 2. U range, C = 1, φ = 0.05

Scheduling policy d = 10 d = 20 d = 30
AFCFS(B) 0.587-0.628 0.586-0.629 0.586-0.629
LGFS(B) 0.600-0.663 0.600-0.664 0.600-0.664
AFCFS 0.608-0.665 0.608-0.665 0.607-0.665
LGFS 0.624-0.705 0.624-0.705 0.623-0.705

Table 3. U range, C = 1, φ = 0.10

Scheduling policy d = 10 d = 20 d = 30
AFCFS(B) 0.599-0.640 0.599-0.640 0.599-0.640
LGFS(B) 0.607-0.673 0.607-0.673 0.606-0.673
AFCFS 0.612-0.658 0.611-0.658 0.611-0.658
LGFS 0.621-0.692 0.621-0.693 0.620-0.693

Table 4. U range, C = 2, φ = 0.05

Scheduling policy d = 10 d = 20 d = 30
AFCFS(B) 0.577-0.619 0.576-0.619 0.576-0.620
LGFS(B) 0.603-0.650 0.584-0.649 0.584-0.650
AFCFS 0.597-0.654 0.596-0.654 0.596-0.654
LGFS 0.607-0.689 0.606-0.689 0.606-0.689

Table 5. U range, C = 2, φ = 0.10

Scheduling policy d = 10 d = 20 d = 30
AFCFS(B) 0.570-0.626 0.569-0.626 0.569-0.626
LGFS(B) 0.573-0.649 0.572-0.649 0.572-0.649
AFCFS 0.581-0.643 0.581-0.643 0.580-0.642
LGFS 0.584-0.667 0.584-0.667 0.583-0.667

Table 6. U range, C = 4, φ = 0.05

 509

Scheduling policy d = 10 d = 20 d = 30
AFCFS(B) 0.549-0.607 0.549-0.605 0.548-0.606
LGFS(B) 0.552-0.628 0.551-0.628 0.551-0.628
AFCFS 0.568-0.639 0.567-0.638 0.567-0.639
LGFS 0.571-0.663 0.570-0.663 0.570-0.663

Table 7. U range, C = 4, φ = 0.10

The results show that with each scheduling method, the mean processor utilization
is slightly higher in the non-blocking case than in the blocking case. However, in
both cases part of the processor utilization is repeat work caused by processor fail-
ures rather than useful work.

In the results presented in Figures 3-20, we observe that the relative performance
of the different policies is not significantly affected by the length of the mean time
interval for gang size distribution change. The results presented in these Figures also
show that the relative performance of the scheduling algorithms depends on φ.

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 3. DR versus N, d = 10, C = 1, φ = 0.05

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 4. DR versus N, d = 20, C = 1, φ = 0.05

 510

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 5. DR versus N, d = 30, C = 1, φ = 0.05

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 6. DR versus N, d = 10, C = 2, φ = 0.05

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 7. DR versus N, d = 20, C = 2, φ = 0.05

In all cases, the LGFS method performs better than the other methods, while the
worst performance is encountered with the AFCFS(B) policy. This is because the
mean response time of jobs is lower (higher) in the LGFS (AFCFS(B)) policy case

 511

than in the other methods cases. This results in a lower (higher) mean cycle time
respectively, and therefore in larger (smaller) system throughput.

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 8. DR versus N, d = 30, C = 2, φ = 0.05

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 9. DR versus N, d = 10, C = 4, φ = 0.05

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 10. DR versus N, d = 20, C = 4, φ = 0.05

 512

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 11. DR versus N, d = 30, C = 4, φ = 0.05

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 12. DR versus N, d = 10, C = 1, φ = 0.10

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 13. DR versus N, d = 20, C = 1, φ = 0.10

 513

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 14. DR versus N, d = 30, C = 1, φ = 0.10

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 15. DR versus N, d = 10, C = 2, φ = 0.10

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 16. DR versus N, d = 20, C = 2, φ = 0.10

 514

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 17. DR versus N, d = 30, C = 2, φ = 0.10

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 18. DR versus N, d = 10, C = 4, φ = 0.10

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 19. DR versus N, d = 20, C = 4, φ = 0.10

 515

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Fig. 20. DR versus N, d = 30, C = 4, φ = 0.10

Generally, the superiority of LGFS(B), LGFS, and AFCFS over AFCFS(B) in-
creases with increasing N (that is, DR generally increases with increasing N). This is
due to the fact that the advantages of these policies as compared to AFCFS(B) are
better exploited in the cases of larger queues than in the cases of smaller queues.

DR generally decreases with increasing C. This is due to the following two facts: a)
the variability in gang execution time increases with increasing C, and b) the schedul-
ing methods that we employ do not use criteria that are based on gang service time
requirements. Gangs with very long execution times cause anyway long delays to
subsequent gangs in the queues independently of the scheduling method that we em-
ploy.

DR is generally larger for φ = 0.10 than for φ = 0.05. This is because the advan-
tages of the scheduling methods can be more effective when the repair time is large
than when it is smaller.

The relative performance of LGFS(B) and AFCFS depends on the workload. In
some cases the second best method after LGFS is LGFS(B) while in other cases
AFCFS is the second best method. For example, for φ = 0.10 in all cases AFCFS
outperforms LGFS(B). In this case, the difference in performance between these two
methods increases with increasing C, but for each C the difference in performance
decreases with increasing N. For φ = 0.05, at N = 16 AFCFS either outperforms
LGFS(B) (C > 1) or performs very close to LGFS(B) (C = 1). As N increases, the
difference between these two methods first tends to zero and then from some N that
depends on C, LGFS(B) outperforms AFCFS with a difference that generally in-
creases with increasing N. The reason that the N where the relative performance of
these two methods changes is different at different C, is because for each N, the mean
processor utilization is lower at larger C.

4 Conclusions and Future Research

The simulation results show that the LGFS method outperforms the other methods.
Furthermore, the results show that the relative performance of the scheduling poli-
cies depends on the variability of processor service times, the degree of
multiprogramming, and the failure to repair ratio. We also conclude that the length of

 516

gramming, and the failure to repair ratio. We also conclude that the length of the
mean time interval for the gang size distribution change does not significantly affect
performance. In this paper we studied processor failures in a closed queueing net-
work model of a distributed system where the number of jobs is constant during a
simulation experiment. As a future research we plan to consider an open queueing
network model and to study the impact on performance of a time-varying distribution
for job inter-arrival times.

References

1. Feitelson D.G., Rudolph R.: Parallel Job Scheduling: Issues and Approaches. In: Feitelson,
D.G., Rudolph, R. (eds.): Job Scheduling Strategies for Parallel Processing. Springer
LNCS Vol.949. (1995) 1-18

2. Feitelson D.G., Rudolph R.: Evaluation of Design Choices for Gang Scheduling Using
Distributed Hierarchical Control. Journal of Parallel and Distributed Computing, 35:18-34,
(1996)

3. Feitelson D.G., Jette M.A.: Improved Utilisation and Responsiveness with Gang Schedul-
ing”. In: Feitelson, D.G., Rudolph, R. (eds.): Job Scheduling Strategies for Parallel Proc-
essing. Springer LNCS, Vol.1291. (1997) 238-261

4. Sobalvarro P.G., Weihl W.E.: Demand-Based Coscheduling of Parallel Jobs on Multipro-
grammed Multiprocessors. In: Feitelson, D.G., Rudolph, R. (eds.): Job Scheduling Strate-
gies for Parallel Processing. Springer LNCS, Vol.949, (1995) 106-126

5. Squillante M.S., Wang, F., Papaefthymioy, M.: Stochastic Analysis of Gang Scheduling in
Parallel and Distributed Systems. Performance Evaluation, 27-28(4):273-296 (1996)

6. Wang F., Papaefthymiou M., Squillante M.S. Performance Evaluation of Gang Scheduling
for Parallel and Distributed Systems. In: Feitelson, D.G., Rudolph, R. (eds.): Job Scheduling
Strategies for Parallel Processing. Springer LNCS, Vol.1291. (1997) 184-195

7. Karatza H.D.: Gang Scheduling in a Distributed System with Processor Failures. Proceed-
ings UK Performance Engineering Workshop. University of Bristol, Bristol (1999) 199-208

8. Karatza H.D.: Performance Analysis of Gang Scheduling in a Distributed System Under
Processor Failures. International Journal of Simulation: Systems, Science & Technology, 2
(1):14-23 (2001)

9. Karatza H.D.: Gang Scheduling Performance under Different Distributions of Gang Size.
Parallel and Distributed Computing Practices, 4(4):433-449 (2003)

10.Karatza H.D.: Co-Scheduling in a Shared-Memory Multiprocessor System Under Time
Varying Workload. Proceedings 6th UK Simulation Society Conference. Cambridge (2003)
181-187

11.Karatza H.D.: Gang Scheduling in a Distributed System under Processor Failures and Time-
Varying Gang Size. Proceedings 9th IEEE Workshop on Future Trends of Distributed Com-
puting Systems. Puerto Rico (2003) 330-336

