Minimizing Startup and Transfer Costs During
Dynamic Data Redistribution Between Parallel
Processor Sets

Stavros I. Souravlas Manos Roumeliotis

Department of Applied Informatics, University of Macedonia
54006 Thessaloniki, Greece

Abstract. This paper describes an algorithm for reducing the index computa-
tional and data transfer costs when distributing messages from one processor to
another. The transmission cost is reduced by using a pipeline-based schedule,
where messages of different communication costs are forming transmission tasks
from certain sending processors to certain receiving processors, in such a man-
ner, that each receiver gets only a message at a time. In this way, conflicts on
the receiving ports are avoided, while the need for local memory buffers is min-
imized. Furthermore, the time needed for the computation of the local memory
locations where each message will be stored is significantly reduced. The local
indices computations take only O(maz(P,Q)) time.

1 Introduction and Related Work

Many complicated parallel computing applications are composed of several stages. Due
to the fact that the distribution of data on the various processors may be improper to
complete a certain process, data must be redistributed during runtime or dynamically,
to the processors. Since the redistribution must be performed during runtime, it’s total
cost must be reduced to the minimum. Most of the known techniques so far implement
the dynamic redistribution of data using round robin techniques. The main reason is
that the round robin method guarantees that the processors will be equally charged
during runtime and therefore they will be prevented from staying idle. Most of the
dynamic data transfer algorithms found in literature are based on the block cyclic
redistribution theory initially developed by HPF [1,2,5,6,8,9,13] (High Performance
Fortran).

When arranging a dynamic data transmission, three separate costs are involved:
the index computational cost, that is, the cost of computing the local memory locations
where messages will be stored, the message preparation cost, that includes the minimal
amount of time at which processors perform internal memory read operations to gather
the proper data and form the messages to be sent and the total transmission cost which
is the time it takes for the messages to be transferred to their destination. In this paper,
we consider the message preparation cost to be trivial and we apply a technique for
minimizing the computational cost and the total transmission cost.

A lot of effort has been focused on the problem of runtime redistribution between
several processors. Some interesting schemes that were provided are mentioned below:

5928

Thakur et al. [14] provided algorithms for runtime redistribution. Their work is
divided into two cases: the general case of Cyclic(z) to Cyclic(y) redistribution, where
there is no relation between x and y and a special case where z is a multiple of y or y
is a multiple of z. For the special case, they developed the KY-TO-Y algorithm. Each
processor p calculates the destination processor py of it’s first element as pg= mod(kp,
P). Then, the first y elements are sent to pg, the next y to pg + 1 and so on, until
the end of the first block. Then, the other blocks are moved in the same pattern. For
the general case, they implemented the GCD (greatest common divisor) and the LCM
(least common multiplier) algorithms. The main idea was to redistribute from cyclic(z)
to cyclic(m), where m was the LCM or GCD of z, y using the KY-TO-Y algorithm
which solved the special case.

The problem of message scheduling, that is, to organize Communication between
processor pairs in such a manner that startup costs are reduced, was firstly considered
by Walker and Otto [15] who focused on the problem of data redistribution from
cyclic(z) on P processors to cyclic(Kz) on P processors. They provided synchronized
and unsynchronized schemes that were free of conflicts. In the synchronized scheme
however, performance was reduced by the fact that some processes had to wait for
others before receiving data, while the main problem of the unsynchronized algorithm
was the necessity for buffering space equal to the data redistributed. Furthermore, the
number of steps required for the implementation of those schemes was not minimal.

The problem of data redistribution was successfully dealt with, in a very interesting
paper by Desprez et al.[3]. Their effort was focused on solving the general redistribu-
tion problem, moving messages from a P-processor grid, to a Q-processor grid for any
given message size. The main idea behind their algorithm was to create homogeneous
communication patterns which they called classes. Processor pairs in a certain class
exchanged messages of the same size. Having created the classes, they arranged the
message scheduling by mixing elements that belonged to different classes in such a
manner that the elements of the most expensive classes are distributed in the fewer
steps possible.

In this paper, we will try solve the problem of moving data on a Px(@ processor
grid, focusing on minimizing index computational and transmission costs but we also
consider the problem of avoiding any congestions on destination processor ports. The
rest of the paper is organized as follows: In Section 2 we present the preliminaries
for block-cyclic redistribution necessary for the better understanding of the following
sections. In section 3, we present the algorithm in detail, focusing our attention on
reducing the index computation and transmission costs.

2 Redistribution Preliminaries

Consider the data that are going to be redistributed as a two-dimensional table MxN.
This table is going to be redistributed in a block-cyclic fashion from cyclic(r) on a P-
processor grid, to cyclic(s) on a Q-processor grid, where r, s are the number of rows and
columns each block contains, respectively. If each block contains r rows and s columns
then, provided that M divides r and N divides s, the data array will be divided into an
M, X N, parts where: M, = 2 N, = X If M does not divide r then M, = 2 +1.If N

529

does not divide s then N, = % + 1. Fig.1 shows an array of 15x20 elements partitioned
into blocks of size 4x3.

1 34 6 7 9 10 1213 1516 18 19 20

Boo Bot Box Bos Bot Bos Boa

Bio B Bi2 B3 B Bis Bile

B2o B21 B2 B23 Bz B2s B2a

Bso B3l Bx B33 Bx B3s B3a

Fig. 1. Data table divided into blocks

Block cyclic redistribution is the mapping of a data array element with index i to
a process index p, a block index [and a local memory position index x, where [3]:

l= LZI/DTJ , p=|i/r]| mod P, x =i mod r(1) (1)
From (1), we derive:

i=((P+pr+zx (2)

Consider the redistribution from cyclic(r) on a P-processor grid, to cyclic(s) on a
Q-processor grid. If the redistributed data array element is indexed 7, the process index
is ¢, the block index is m and the local memory position index y, then in a similar
way, we derive:

j=mQ+qs+y (3)

If we consider the transfer of a block indexed ¢ during a redistribution stage from
a known number of processors P to a known number of processors @), then according
to (2) and (3), this transfer can be described by the following equation:

(IP+pr+z=mQ+q)s+y (4)

We consider as the total redistribution cost of a processor pair all the information
about the block that each data element will move to, and the set of all possible local
memory positions to which it may be located. Therefore the communication cost is
represented by the number of solutions for the redistribution equation (4), given the
value of the process coordinates (p, ¢) and the total number of senders P and receivers
@, and with unknowns I, m, y, z [3] which define the coordinates of the block number
and the local memory position. The redistribution equation, can be solved using Eu-
clid’s theorem for solving linear Diophantine equations. It must be mentioned, that if
for a given pair of sender-receiver (p, ¢), there is no quadruple (I, m, y, x) to satisfy (4),
then there is no communication between p and gq.

530
3 Reducing the Startup and Transmission Cost

This section describes a method for organizing the dynamic data transmission in such
a manner that the computational cost of local memory indices and the transmission
cost are reduced to the minimum. Let g be the greatest common divisor of Pr and
Q@s. If we organize the transmission in such a manner that g is divided by the data
block size parameters r and s, we can create a communication grid composed of %
sub-tables in total (see fig. 2).

1 310 1219 20 4 613 15 7 916 18

Boo || Bos || Bos Bor || Bu Boz || Bos
O 0.0 || 0.1 || 02 0.0) || (O.1) 0.0 || (0.1

Bz2o || B23 || Bazs B21 || B4 B2z || B2s
Loy || (LD || A2 Loy || (LD (Lo || (.

Bio || B1z | Bie B11 || Biua Bi1z || Bi1s
1 ©0 || 0.1 || 02 0.0 || ©.1 0.0 || ©.1

Bio || B33 || B B31 || Bx B3z || B3s
15| WOy || (LD || L (LOy || (L) L0y || (L1y

0 1 2

Fig. 2. A communication grid composed of Pr—? sub-tables

Each of the sub-tables is of size r X s. Proposition 1 is the basis for the implemen-
tation of our method.

Proposition 1

Elements that lie in corresponding positions inside each of the r x s sub-tables represent
a communication between processors p; and ¢; such that the quadruples (z,y,1,m) that
satisfy (4) are exactly the same.

Using proposition 1, we can organize the communication in such a manner that
messages of size r X s, where r and s divide g, are transmitted from P to () processors.
Proposition 2 gives us the cost of such a schedule.

Proposition 2

The index computation cost of transmitting messages of size r x s, where r and s divide
g, is only O(maz(P,Q))

Proof

Consider figure 3(a). To find the maximum number of iterations needed to compute the
block and local memory indices, that is to find all quadruples (I,m,z,y) that satisfy

531

(a)

by

Fig. 3. Finding the solutions of the redistribution equation

(4) for a given pair of processors (p,q), we need to find the maximum length of the
interval in which the algorithm will search for solutions.

Initially, we rewrite (4) as [Pr — mQs + (pr — ¢s) = y — . We have already set g
as the greatest common divisor of Pr an ()s. Thus, there must be an integer A such
as: [Pr — mQs = A\g. Also, we set z = y — . According to [3], z lies in the interval
[1 — r...s — 1]. The relationship [Pr — mQ@Qs + (pr — ¢s) = y — = will be rewritten as:
Ag + (pr — gs) = z. This equation has a solution for a given processor pair (p, q) if we
can find a multiple of g to add to the constant (pr — ¢s) and get a value in the interval
[1 —r...s —1]. In the relationship Ag+ (pr —g¢s) = z, if we set P = P—1and Q =0, our
starting point from which we may start adding multiples of g to the constant pr — gs
is —r and the ending point beyond which the successive additions stop is s — 1. If we
set P = P —1 — s, our starting point will be —r — sr. The ending point remains s — 1.
Obviously, the lowest point from which we may start searching for solutions (or adding
multiples of g to pr —gs) is —r — Pr, while the ending point is always s — 1. In this case
our interval is of length s =1 —(—r— Pr) =s+r—1+4+Pr. Weset V; = s+r—1+ Pr.
After each iteration the interval is reduced by V; — g, thus, after k iterations it’s length
would be V; — kg. The iterations finish when V; — kg < 0 or kg < V;. The maximum
number of iterations is the minimum k for which kg < s+7—1+ Pr. Once the message
size variables r and s are defined, the solution of this inequality depend on the value
of P. The larger the value of P, the higher the number of iterations the algorithm will
perform.

Consider figure 3(b). Similarly as in the previous paragraph, the highest point from
which we may start subtracting multiples of g is s+ @s. The lowest point beyond which
subtractions stop is 1 — r. In this case, our interval is of size Vo = s+ Qs — (1 —r) =
Qs+s+r—1. Again, the maximum number of iterations required would be the minimum
k for which kg < V5. This number depends on the value of (). Therefore, the maximum
number of loops our algorithm will perform is O(maz(Vy,V2)) or O(maz(P,Q)). For
comparison, the index computation cost of other known algorithms are listed:

e Bipartite graphs based scheme: O(P + Q)3 [3]

e Circulant matrix formalism based scheme: O(log(K)), but it solves only an instance
of the problem, that is, moving data blocks increased by a factor K on a P-processor
grid [7]. Proposition 1 leads us straight to the following corollary.

Corollary 1

Processor pairs that lie in corresponding sub-table positions have the same cost of
communication.

5932

We will use corollary 1 to create a communication pattern that reduces the total transfer
cost by allowing carefully selected processor pairs to communicate at a time. The
basic idea behind our algorithm is to decompose the redistribution problem into a set
of pipeline operations. Each pipeline includes a specified number of tasks which are
responsible for the message exchanging between carefully selected processor pairs. The
main identities of all the tasks in each pipeline operation are:

e All tasks are scheduled in such a way that all sending processors can initialize
send requests to multiple destinations at time intervals which are infinitesimally small,
thus reducing the time that processors remain idle.

e All tasks are scheduled in such a way that receiving processors get one message
at a time, thus congestions are avoided.

The pipeline-based implementation is composed of three stages: a. The creation of
the pipeline tasks stage, b. The message preparation stage, and c. the sending stage.
These three stages are described below.

3.1 Stage 1: Creating the Pipeline Tasks

As mentioned above, the pipeline tasks must be arranged in such a way that receiving
processors get one message at a time. To satisfy this requirement, we schedule each
task in such a way that it includes a specified number of message transmissions where
the destination processors differ but the cost is the same. Therefore, our first job is to
sort out all processor pairs of the communication grid with respect to their commu-
nication cost. This is very easy since we know that processor pairs (p,q) which lie at
corresponding positions of different sub-tables have the same cost of communication.

3.2 Stage 2: Message Preparation

The message preparation phase includes the minimal amount of time at which proces-
sors perform internal memory read operations to gather the proper data and form the
messages to be sent. When all the messages of a specific task are read, the task passes
to a pipeline segment. When all the memory read operations finish, the pipeline is full
and the sending phase can start. This is the main difference of this strategy compared
to other strategies in literature. Each sender does not have to wait for the completion
of a transfer to prepare a new message for transmission. Instead, in each pipeline task,
every processor initializes subsequent, carefully selected message transfers at each clock
cycle. This strategy eliminates the time senders remain idle and thus reduces the total
communication cost.

3.3 Stage 3: Sending the Messages

From the moment the pipeline is full, successive message transfer tasks are completed
at successive clock pulses. This scheme prevents congestion on the destination ports,
because each task cannot contain more than one message to a given destination.

933

3.4 The Total Redistribution Cost

It is obvious that once the pipeline is full, it requires exactly d clock cycles to complete
all the tasks (message transmissions). Since a redistribution is completed by a number
of pipeline operations the total cost of the transmission phase Crg will equal the sum
of the all the maximum communication costs that exist among the tasks of the created
pipelines. This is described as:

Crr = Z maxcost|T;] (5)

k=1

where T; is a pipeline task, ie[1..d] and n is the number of the pipelines created.

To define the total transmission cost, one more cost needs to be added, the startup
cost, C's, which includes procedure call overheads, memory indexing calculations and
error controls. If a is the startup cost for a pipeline task, then the startup cost of a
pipeline operation Cg is: C's = da. The total cost of data redistribution can be found
if we add the message preparation cost Cpgr and the startup cost Cs to Eq. 5:

CTotal = Z maxcost|T;] + Cpr + Cg (6)
k=1

The total cost of redistribution as calculated in (6) is obviously reduced compared
to other known strategies. This improvement is due to the fact that a pipeline operation
can implement data transfers in a series of pipeline tasks and it’s cost equals the cost
of the longest task, name it C. During this C'; time, a pipeline operation can also
satisfy a good number of sending requests that have lower costs in comparison to Cp.

4 Conclusions

In this paper, we use an algorithm to solve the problem of moving data from P to
@ processors during runtime. The main idea behind the algorithm was to arrange the
size of the data to be transferred in such a way that we created homogeneous data
transmissions between several processor pairs, in terms of both local memory index
computation and transfer cost. Then, we created pipeline transmission tasks by mix-
ing elements from diagonal blocks of our communication grid. Each of the task was
responsible for the transmission of messages of a specific transfer cost. The big advan-
tage of our strategy was that the memory index computation cost was reduced to only
O(maz(P,Q)), which is significantly small compared to the index computation cost
of other algorithms in literature. In addition, the pipeline-based transmission schedule
guaranteed of reduced data transfer time.

References

1. B. Chapman, P.Mehrotra, H. Moritsch, H. Zima: Dynamic Data Distribution in Vienna
Fortran. Proceedings Supercomputing Conference, (1993) 284-293

534

2.

10.

11.

12.

13.

14.

Y.-C. Chung, C.-H. Hsu, S.-W. Bai: A Basic-Cycle Calculation Technique for Efficient
Dynamic Data Redistribution. IEEE Transactions on Parallel and Distributed Systems.
9(4):359-377 (1998)

F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, Y. Robert: Scheduling Block-Cyclic
Array Redistribution. IEEE Transactions on Parallel and Distributed Systems. 9(2):192-
205 (1998)

E.T Kalns and L.Ni: Processor Mapping Techniques toward Efficient Data Redistribution.
IEEE Transactions on Parallel and Distributed Systems, 6(12):1234-1247 (1995)

S.D. Kaushik, C.H. Huang, Sadayappan, J. Ramanujam, P. Sadayappan: Multi-Phase Re-
distribution: a Communication-Efficient Approach to Array Redistribution. Tech Report
OSU-CISRC-9/94-52, Ohio State Univ. (1994)

K. Kennedy, N. Nedeljkovic, A. Sethi: Efficient Address Generation for Block-Cyclic Dis-
tributions. Proceedings ACM/IEEE Supercomputing Conference, (1995)

Y.W. Lim, P.B. Bhat, V.K Prasanna: Efficient Algorithms for Block Cyclic Redistribution
of Arrays. Algorithmica, 24:298-330 (1998)

E.M. Miller: Beginner’'s Guide to HPF. Joint Institute for Computational Science,
http://www.-jics.cs.utk.edu/HPF/HPFguide.html (1998)

N. Park, V.K Prassana, C.S. Raghavendra: Efficient Algorithms for Block Cyclic Array
Redistribution Between Processor Sets. IEEE Transactions on Parallel and Distributed
Systems, 10(12):1217-1240 (1999)

A. Petitet: Algorithmic Redistribution Methods for Block Cyclic Decompositions. Ph.D
Thesis, Univ. of Tennessee, Knoxville, (1996)

A. Petitet, J. Dongarra: Algorithmic Redistribution Methods for Block Cyclic Decompo-
sitions. IEEE Transactions on Parallel and Distributed Systems, 10(12):1201-1216 (1999)
R. Thakur, A. Choudhary, G. Fox: Runtime Array Redistribution in HPF Programs.
SHPCC 94, Northeast Parallel Architectures Center, (1994)

R. Thakur, A. Choudhary, J. Ramanujam: Efficient Algorithms for Array Redistribution.
IEEE Transactions on Parallel and Distributed Systems, 7(6):587-594 (1996)

D.W Walker and S.W Otto: Redistribution of Block-Cyclic Data Distributions Using MPI.
Concurrency: Practice and Ezxperience, 8(9):707-728 (1996)

