A New Formal IDEF-based Modelling of
Business Processes

Costin Badica', Amelia Bidic?, and Valentin Litoiu?

! Software Engineering Department, University of Craiova
1100 Craiova, Romania,
Email: c_badica@hotmail.com
2 Business Information Systems Department, University of Craiova
1100 Craiova, Romania

Abstract. This paper formalizes the notation for business processes that has
been developed in the INSPIRE project. The process dimension of the notation
integrates in a novel way aspects from IDEF0 and IDEF3. The first part of
the paper gives an informal introduction of this notation. Then the abstract
syntax is described in a formal way using set theory. The formalization allowed
to capture concisely intuitive notions like activity decomposition and level of
detail of a business process model and to prove two important results that are
consistent with our intuition: i) ”composing” activity decompositions yields a
more refined decomposition and ii) any level of detail of a business process
model is a decomposition of the root activity. The process dynamics is formally
interpreted by mapping a level of detail to a Place/Transition net. The mapping
is described by an algorithm which is linear in the size of the process model.

1 Introduction

An increased interest in applying information technology to business processes has been
manifested during the last decade. Because organizations are very complex artifacts,
it has been claimed that carefully developed models are necessary for describing, an-
alyzing and/or enacting their underlying business processes ([1]). A business process
model is expressed with a graphical notation able to capture all the relevant model in-
formation and additionally to facilitate the model analysis by static verification and/or
dynamic simulation.

The aim of the INSPIRE project (IST-10387-1999) was to develop an integrated
tool-set to support a systematic and more human-oriented approach to business process
re-engineering (BPR hereafter). According to INSPIRE, BPR is a structured approach
towards changing the current situation - As Is, to a new situation - To Be, with the
goal to radically revising it in order to accommodate new organizational needs and
achieve some benefits. An INSPIRE BPR process is defined as a sequence of stages:
understanding and capturing the current situation as an As Is, search for a better
solution, i.e one or more improved To Be processes, implementation, i.e. produce an
implementation plan and then run it and finally monitor and evaluate the results.
During all these stages the modeling and analysis activities of business process are
very important. Therefore, a central aspect was the development of a notation for

536

representing business processes that is both easy to use and understand by the project
partners and sufficiently rigorous to allow static verification and dynamic simulation
([2]). The process dimension of this notation is based on IDEF0 ([3]) and enhanced
with facilities for representing the dynamics of business processes from IDEF3 ([4]).

The paper is structured as follows: section II gives an informal introduction of
the notation and the rationale behind it; section III describes the syntax of INSPIRE
models in a formal way; section IV describes the mapping of the INSPIRE notation to
Place/Transition nets (P/T nets hereafter); section V provides some pointers to related
work; section VI concludes the paper.

2 A Notation for Business Processes

2.1 The Black Box Model

IDEFO is a technique for producing a function model of a new or existing system or
subject area ([3]).

The modelling elements of IDEF0 are (i) boxes and (ii) arrows. Boxes represent
functions defined as activities, processes or transformations and arrows represent data
or objects related to functions. A box describes what happens in a designated function.
In IDEFO a box has attached to it four types of arrows: inputs, outputs, controls and
mechanisms. Mechanism arrows are further subdivided into resource or support arrows
and call arrows. According to [3], inputs are transformed or consumed by the the
function, outputs are the data or objects produced by the function, controls specify
the conditions required for the function to produce correct outputs, mechanism arrows
pointing upwards identify some means for supporting the execution of the function, and
mechanism arrows pointing downwards are call arrows enabling the sharing of details
between models.

One goal of the INSPIRE notation was to retain as much as possible from IDEF0
and to avoid or constrain those aspects that were considered problematic. Because
the focus in INSPIRE was on re-engineering and because dynamic simulation was
considered a very important issue, a special attention has been paid to produce a
function modeling component that allows a neat extension to incorporate the modeling
of dynamic aspects.

An INSPIRE activity has input flows, output flows, control flows and mechanism
flows (see figure 1). Controls were considered a special kind of inputs, with a particular
interpretation for modeling dynamic aspects, even if this might look too restrictive. A
control expresses a condition that must be true in order for the activity to start. In this
way the goal of eliminating ambiguities from IDEFO0 has been achieved with the price
of reducing the expressivity. The mechanisms bring to an activity the resources, either
humans or machines, i.e. agents, that are needed to execute it. An important distinction
has been drawn between inputs, outputs and controls on one side and mechanisms on
the other side. The first are called data flows because their purpose is to carry data
or objects to or from activities. Mechanisms are called resource flows because their
purpose is to bring resources to activities.

o937

Control

i

Input ——» Function name [— Output

Mechanism

Fig. 1. An INSPIRE activity

A special attention has been paid to branching arrows (forks and joins, known also
as bundling arrows in IDEF0). Branching on data flows were considered separately
from branching on resource flows.

A fork is an arrow from source to use that is divided into two or more branching
arrows ([3]). Because IDEFO does not impose any constraints on the dynamics and
because unconstrained forks on data flows were considered a source of confusion in
dynamics modeling, the following assumption was introduced: a fork on a data flow
indicates that the item placed onto the arrow from source to use will be made available
to all its destinations. In this case all the arrows will have the same label. Thus distinct
labels on the branches of a fork on a data flow are not allowed. If the fork is not intended
to model this situation, than it must be replaced with a single input/multiple output
activity. The next section shows that forks on data flows are just a form of syntactic
sugar of the notation and they are not really needed for theoretical investigation.

A join is a point where two or more arrows from source to use are merged into a
single arrow ([3]). Merging is different from splitting because it is difficult to imagine
that it could happen outside an activity. Merging was considered a source of confusion
even if the labels of the branching arrows are the same as the parent arrow and thus
they were completely eliminated from the notation. Whenever is needed to model a
join-like situation, it is suggested to use multiple input/single output activities and to
clarify the semantics using the dynamics part of the notation.

Only branches of type fork are allowed for mechanisms. The pool of resources or
agents needed to execute the activity is attached to a mechanism. Thus it was con-
sidered natural to have a compositional semantics for the forks on mechanisms. Two
situations must be distinguished. If at least one branch on a mechanism arrow has a
label different than the label of the parent arrow then the fork models the fact that
some parts (i.e. subsets of resources) of the pool of resources attached to the parent
arrow are taken and attached to (some of) the child arrows. If a child arrow is not
labeled then it makes sense to assume that it is labeled by default with the label ”in-
herited” from the parent arrow (i.e. the original IDEF0 interpretation is used) and thus

538

the pool attached to the parent arrow is made available to the child arrow, as well. A
small plain triangle symbol was used to indicate the first situation and a small plain
circle symbol to indicate the last one (see figure 3). The circle symbol is used on forks
on data flows as well.

For example, in a manufacturing company there is a business process for material
acquisition. It takes material requests and produces purchase orders and payment au-
thorizations. It contains a sub-process for handling the material requests that takes
material requests and produces validated requests. The company has a list of available
suppliers, but is must be prepared to find and handle new potential suppliers. So, there
is an additional input to handle new supplier requirements and an additional output
to produce new supplier packages. Two resource pools were identified for this process:
data systems needed to log and track the request, to register the product, a.o. and
materials staff including clerks, supervisors, a.o.

The process is represented at an abstract level in figure 2. For the meaning of the
activities names and flow names see table 1.

iz ——p —» O

my my

Fig. 2. The top-level abstraction of a business process

The notation allows the presentation of a model at different levels of detail. The
process in figure 2 is detailed in figure 3. Figures 2 and 3 are called diagrams. Figure
2 is called the top-level or root diagram of the business process.

2.2 Adding Glass Box Views

The functional part of the notation was enhanced with features for modeling the dy-
namics by attaching to each black box a glass-box view based on IDEF3.

IDEF3 is a technique for producing a dynamic model of the system ([4]). IDEF3
can produce two views: a process-centered view and an object-centered view. Only the

539

I1 ty
—p a-l
A A
01
2 t2
7y 7y
ts
&
A
ms
my > 02
o a Ly
my 7y 7\
L 2 ms

Fig. 3. A more detailed presentation of the process in figure 2

Name Description
aop |Process Material Request
a1 |Log Material Request
az |Validate Material Request
a3 |Resolve Request Problems
a4 |Develop New Supplier Specification
i1 |Material Request
i2 |New Supplier Requirement
o1 |Validated Request
02 |New Supplier Package
t1 |Logged Request
t> |Request Errors
ts |Request Updates
m1 |Data Systems
mo |Materials Staff
mg |Material Tracking System
m4 |Product Data System
ms |Material Clerk
me |Material Supervisor
Table 1. Meanings of symbols used in figures 2 and 3

540

process-centered view was considered here. The main building blocks of the process-
centered view of IDEF3 are (i) units of behavior, (ii) links and (iii) junctions. Units
of behavior represent types of happenings (events, acts, etc.), links represent temporal
relations between units of behavior, and junctions are used to specify the logic of process
branching. Within the INSPIRE tool the term connector is used instead of junction.

A glass-box view contains a unit of behavior, a tree of input connectors and a tree
of output connectors. There are one-to-one mappings between the inputs of a black box
and the leaves of its input tree and between the outputs of a black box and the leaves
of its output tree. The unit of behavior models the ”instantiation” of the activity. The
input tree models the logic of selecting the inputs participating in the activity, and the
output tree models the logic of generating the outputs produced by the activity. The
INSPIRE notation allows the use of four connector types: input exclusive or (izor),
input and (iand), output exclusive or (oxor) and output and (cand).

Consider again the example in figure 3. Glass-box views are associated to activities
as (Validate Material Request) and a4 (Develop New Supplier Specification). Activity
a; may take t; (Logged Request) or ¢35 (Request Updates) and may produce either
o1 (Validated Request) or t» (Request Errors). Activity a4 takes both o; (Validated
Request) and i» (New Supplier Requirement) to produce oo (New Supplier Package).
This is modeled in figure 4.

I1 tl
—> a =
I 01
L >
t3
a3
. —ﬁ» 02
[Py =1 —>
g

Fig. 4. The result of adding glass-box views to the process in figure 3

Note that the introduction of glass box views simplifies the black-box level of the
notation by eliminating forks on data flows. For example, the fork on 0; can be in-

041

corporated into the tree of output connectors of activity a» by adding an output oand
connector. In this way the activity a» will have an additional output of.

If a fork occurs on an input interface flow on a diagram, it can be replaced with
a single input/multiple output dummy activity with the tree of output connectors
consisting of a single output oand connector.

The way that controls condition the execution of an activity is modelled by adding
a top level tand connector that binds together into a single input tree the controls and
the tree of input connectors of the activity inputs.

3 Formalizing the INSPIRE Notation

This section presents the INSPIRE notation in a concise and unambiguous way, using
set theory. The description is focused on the process dimension of the notation. This
formalization allowed to capture precisely the intuitive notions of activity decomposi-
tion and level of detail of a business process model and to formally prove two important
results: i) the act of ”composing” decompositions yields a more refined decomposition
(proposition 5) and ii) a level of detail of a business process model is a decomposition
of the root activity of the business process (proposition 6). In particular, proposition
6 relates this section, which is focused on the syntax of the notation, with section 4,
which is focused on the dynamics of the notation.

3.1 Activities and Diagrams

Let AN be a set of activity names and let FN be a set of flow names. The set F'N is
partitioned into the set DF N of data flow names and the set RFN of resource flow
names.

Definition 1. (connector trees)

a. A tree of input connectors ¢ and its set leaves(t) of leaves are defined recursively
as follows:

i) If f € DF'N thent = f is a tree of input connectors and leaves(t) = {f}

ii) If T's is a nonempty set of trees of input connectors then t; = iand(T's) and to =
izor(T's) are tree of input connectors with leaves(t;) =
Uiers leaves(t) fori=1,2.

Tree of output connectors are defined similarly, except that their roots are labeled

with oand and oxor.

b. Additionally undefined tree of connectors are allowed for the case when glass box
views are not attached to activities. They are denoted by t; = iundef(F's) and
to = oundef(F's) such that Fs C DFN. Moreover, leaves(t;) = F's, i = 1,2 are
defined.

c. The following are defined for a tree of connectors t:

i) A predicate Leaf(t) that is true iff t is a leaf node.

ii) A function subtrees(t) that is defined iff Leaf(t) = false and returns the set
of subtrees of t.

iii) A function root(t) that is defined iff Leaf(t) = false and returns the root of t.

542

An activity has four components: a name, an input tree, an output tree and a set
of resource flows called mechanisms.

Definition 2. (activities)

a. An activity is a quadruple (a,it, ot,ms) such that a € AN is the activity name, it is
the activity’s tree of input connectors, ot is the activity’s tree of output connectors
and ms C RFN is the activity’s set of mechanism flow names. Any two distinct
activities have distinct names, i.e. act; # acty iff ay # as. The following selector
functions on activities are defined: activityName(act) = a; inputTree(act) = it;
outputTree(act) = ot;
mecs(act) = ms.

b. For each activity act the set of inputs, is(act) = leaves(it) and the set of outputs,
os(act) = leaves(ot) are defined. It is required that the inputs and outputs of an
activity are disjoint, i.e. for all activities act, is(act) Nos(act) = 0.

The INSPIRE notation allows to group several activities into a single block called
diagram. In addition to a set of activities, a diagram also contains a set of bundled
mechanism flows.

Definition 3. (bundled mechanisms and diagrams)

a. A bundled mechanism is a pair bm = (mec, mecs) such that mec € RFN, mecs C
RFEN and mecs # (. mec is the name of the bundled mechanism and mecs are
the names of the parts the bundled mechanism is split in. The following selector
functions on bundled mechanisms are defined: mec(bm) = mec; mecs(bm) = mecs.

b. A diagram is a pair d = (acts,bms) such that acts is a set of activities and bms
is a set of bundled mechanisms. The following selector functions on diagrams are
defined: acts(d) = acts and bms(d) = bms. A diagram is required to satisfy the
following constraints:

i) Any two distinct activities in a diagram have no inputs in common and no
outputs in common, i.e. for all acty,acts € acts if act; # acty then is(act;) N
is(acts) = 0 and os(act1) Nos(acty) = 0.

ii) Each part of a bundled mechanism is connected to at least one mechanism of an
activity in the diagram, i.e. Ubmebmes(a) mecs(bm) =
UactEacts(d) mecs(GCt)'

iii) For all bmy,bmy € bms if bmy # bmso then (mecs(bmy) U {mec(bmy)}) N
(mecs(bmz) U {mec(bmsa)}) = 0.

Part a of definition 3 allows to have mec(bm) € mecs(bm). Let us assume that
mec(bm) = {mo} and mecs(bm) = {mo,mq,...,my}. Then my,...my are interpreted
as strict parts of the ”whole” mg. The fact that my is listed among its own parts means
that there is at least one activity in the diagram that requires the whole bundle mq of
resources rather that just one or more of its strict parts.

Condition i) of part b of definition 3 assumes that the forks on the data flows in
the diagram have been quietly removed as stated in section 2, paragraph 2.2.

Condition iii) of part b of definition 3 requires no mixture of the mechanism flows
of any two distinct bundled mechanisms on the same diagram.

043

Definition 4. (diagram flows) The following sets of flows are defined for a diagram
d:

a. The set of data flows of d is the union of the inputs and outputs of all activities of
d, i.e. data(d) =, qreqets(a) i5(act) U os(act).

b. The set of input flows of d consists of the inputs of activities of d that are not out-
puts of any activity of d, i.e. inputs(d) = U, .icacts(a) 15(act) \ Uyercacts(ay 05(act).

c. The set of output flows of d consists of the outputs of activities in d that are not
inputs of any activity in d, i.e. inputs(d) =, .reqets(a) 05(act) \Ugereacts(a) i5(act).

d. The set of private data flows of d contains all the flows of d that are both input to an
activity of d and output to an activity of d, i.e. private(d) = U, qeqets(a) 15(act) N
UactEacts(d) OS(G’Ct)'

e. The set of bundled mechanism flows of d is the set of names of all the bundled
mechanisms of d i.e. bmechanisms(d) = Uy, ecpms(a){mec(bm)}.

f. The set of mechanism flows of d is the set of names of all the mechanisms that
occur in d i.e. mechanisms(d) = Uy, cpms(a) mecs(bm) U {mec(bm)}.

g. The set of private mechanism flows of d is the set of names of all the mecha-
nisms that occur in d and are strict parts of the bundled mechanisms of d i.e.
pmechanisms(d) = Uy, epms(a) (mees(bm) \ {mec(bm)}).

Proposition 1. For all diagrams d the family of sets of inputs, outputs and private
data flows of d is a partition of the set of data flows of d and the family of sets of bundled
mechanism flows and private mechanism flows is a partition of the set of mechanism
flows of d.

3.2 Decompositions

An important concept in INSPIRE is the presentation of a model at different levels of
detail, based on the notion of decomposition.

Definition 5. (decomposition) Let d be a diagram and let act ¢ acts(d) be an activity.
d is called a decomposition of act iff the following conditions hold:

i) inputs(d) = is(act)
it) outputs(d) = os(act)
iii) bmechanisms(d) = mecs(act)

Two special cases of diagrams are:

i) d = (0,0) called the empty diagram.
ii) d = ({act}, {(mec, {mec})|mec € mecs(act)} called a singleton diagram.

Proposition 2. The singleton diagram d = ({act}, {(mec,{mec})|imec €
mecs(act)} is a decomposition of activity act.

Decompositions can be ”composed” to obtain more refined decompositions, follow-
ing two steps: definition of an operation for composing sets of bundled mechanisms of
diagrams and of an operation for removing an activity from a diagram to obtain a new

544

diagram. Composing decompositions is then straightforward. Basically if diagram d; is
a decomposition of activity actg, act; is an activity of d; and ds is a decomposition of
acty then acty is first removed from d;, producing a new diagram dj. Then the compo-
sition of d; and d» is obtained by taking the union of activities of d} and of d» and the
composition of the sets of bundled mechanisms of d and ds. Furthermore, it is proved
that the composition of d; and d» is a decomposition of acty as well.

Definition 6. (composing sets of bundled mechanisms) Let bms; and bmss be two
sets of bundled mechanisms of two diagrams (i.e. they obey condition iii) of part b)
of definition 3) such that (U, cpms, mecs(bm) U {mec(bm)}) 0 Uy cpm, (Mmecs(bm) \
{mec(bm)})) = (. Then the composition bms; & bmsy of bms; and bmss is defined
according to the following three rules:

i) bms; ® 0 = bms;.

it) bms; ® {bms} =
1.(mec(bmy), (mecs(bmy) \ {mec(bms)}) U mecs(bms) if exists bmy € bmsy such
that mec(bms) € mecs(bmy);
2. (mec(bmy),mecs(bmy) U mecs(bms)) if exists bmy € bmsy such that
mec(bm,) = mec(bms);
3. bms; U {bmo} otherwise.

iii) bmsy @ bmsa = (bmsy ® {bma}) ® (bmsa \ {bma}) if by € bmss.

Condition ii) shows that when composing a set of bundled mechanisms with a
singleton set of bundled mechanisms three cases must be considered. In the first case
bmy is decomposing further a mechanism in mecs(bms;) and thus the new parts must
be added to the resulting bundled mechanism. In the second case the ”whole” part of
the bundled mechanism mec(bm;) is decomposed in a different way according to bms,
so the new parts must be collected as well in the resulting mechanism. In case three
there is no special interaction between bms; and bms so bms is simply added to the
resulting bundled mechanism set.

Condition iii) is a recursive definition of composition of sets of bundled mechanisms.
It shows how the composition of bms; and bms, is defined in terms of the composition
of bms; and a set obtained by removing one element from bmss.

Proposition 3. Assuming the conditions of definition 6, the composition bms; ®bmss
of two sets of bundled mechanisms can be the set of bundled mechanisms of a diagram
(i.e it satisfies condition iii) of part b) of definition 3).

Removing an activity from a diagram means removing it from the set of diagram’s
activities and updating the set of bundled mechanisms accordingly.

Definition 7. (removing an activity from a diagram) If d = (acts,bms) is a diagram
and act € acts is an activity of the diagram then the result of removing act from d is
a new diagram d* = d © act defined as d* = (act*,bms*) such that act* = acts \ {act}
and bms* = {(mec, mecs*)|(mec, mecs) € bms, mecs* = mecs N J,¢ .- mecs(a) and

mecs* # 0}.

545

Proposition 4. d*, as defined by definition 7, is a proper diagram, i.e. it satisfies the
conditions of definition 3, part b).

The operation for composing decompositions can now be defined.

Definition 8. (composing decompositions) Let acty be an activity, di a decomposi-
tion of acty, act; € acts(dy) and dy a decomposition of acty such that data(d;) N
private(ds) = O and mechanisms(d;) N pmechanisms(dy) = O . Let d} be the dia-
gram obtained by removing act; from di, i.e. d* = d; © acty. Then d = (acts(d*) U
acts(dy),bms(d*) ® bms(ds) is called the composition of di and ds.

An important property is that by composing decompositions, a proper and more
refined decomposition is obtained.

Proposition 5. d, as defined by definition 8, is a proper decomposition of actg.

The interpretation is that if an activity of decomposition is further decomposed in
a "clean” way then a more refined decomposition of the initially decomposed activity
is obtained.

For all activities act, the singleton diagram determined by act is a decomposition
of act. If in definition 8 and proposition 5 dy is taken to be the singleton diagram
determined by act; then the composition of d; and ds will simply be d;. So singleton
decompositions act as neutral elements for composing decompositions.

3.3 Levels of Detail

To model the tree structure of a business process model at different levels of detail the
notion of decomposition structure is needed.

Definition 9. (decomposition structure) Let A be a finite set of activities and D a set
of diagrams. A decomposition structure rooted at r € A is a function dec : A — D
such that:

i) For all z #y € A if x # y then acts(dec(z)) N acts(dec(y)) = .
i) Uyeq acts(dec(y)) = A\ {r}.
i) For all © € A if acts(dec(x)) # 0 then dec(x) is a decomposition of x.
i) For all x € A and y € acts(dec(x)), data(dec(z)) N private(dec(y)) = O and
mechanisms(dec(z)) N pmechanisms(dec(y)) = 0.

Conditions i) and ii) ask for the dec function to define a tree structure on the set A
of activities. r is the root of this tree and it is called the top level activity. Condition
iii) asks for dec(z) to be a decomposition of z. Condition iv) asks for the context of
decomposing y to be ”clean”, i.e. the diagram that contains y should not have any
common flows with the private set of flows of the decomposition of y.

A final important concept is the level of detail of a business process model. A
business process model in INSPIRE has a tree structure. Clearly, the least refined level
of detail of the process is the root of the tree, and the most refined level of detail of
the process is the set of leaves. Between them there are many ”intermediate” levels
of detail. An ”intermediate” level of detail corresponds to a cut in the decomposition
tree.

546

Definition 10. (level of detail) Let dec : A — D be a decomposition structure rooted
at r € A. A level of detail in dec is a diagram d defined according to the following
rules:

i) The singleton diagram defined by r is a level of detail in dec.
it) If lis a level of detail in dec, © is an activity inl, i.e. © € acts(l) and if acts(dec(x)) #
0 then the diagram obtained by composing | with dec(x) is a level of detail in dec.

An important result that follows from proposition 5 and definition 10 is that all
the levels of detail in a decomposition structure are decompositions of the top level
activity.

Proposition 6. Let dec : A — D be a decomposition structure rooted at r € A and |
a level of detail in dec. Then | is a decomposition of r.

4 Mapping the INSPIRE Notation to P/T Nets

The result stated by proposition 6 allows the study of the problem of mapping a level of
detail to a P/T net. The resulted P/T net provides the semantics for the presentation
of the business process model at a given level of detail. P/T nets have been intensely
studied and have a well-established classic theory. They have been used for modelling
workflows in [8]. Moreover, there were identified special classes of P/T nets suitable for
an efficient static analysis ([14]).

The mapping of the INSPIRE notation to P/T nets does not consider the mech-
anisms. A similar assumption has also been made in [8] in the context of modeling
workflows using P/T nets.

A P/T net is represented using three sets: i) the set of places; ii) the set of
transitions; iii) the set of arcs C (places X transitions) U (transitions X places).

The mapping is described by means of an algorithm for translating a level of detail
to a P/T net. Assuming that each activity has attached a glass box view, the algorithm
will translate each activity tree of input connectors and output connectors. The activity
itself is translated into a transition. The flows are translated into places. The translation
of trees will produce new places and transitions.

The translation of an activity act is given by algorithm Activity2PT Net. The
translation of a tree it of input connectors is given by algorithm InputTree2PT Net.
The translations of iand and ixzor connectors are given by algorithms I And2PT Net
and I Xor2PT Net.

procedure Activity2PT Net(act)
Iy < InputTree2PT Net(inputTree(act))
Iz <~ OutputTree2PT Net(outputTree(act))
t + NewTransition(activity N ame(act))
transitions < transitions U {t}
arcs + arcs U {(ly,t), (t,12)}

end

047

function InputTree2PT Net(it)
if Leaf(it) then
r < NewPlace(it)
places + places U {r}
else
trees + subtrees(it)
r < NewPlace(NewSymbol('l"))
places + places U {r}
rs < InputTrees2PT Net(trees)
if Root(it) =' iand' then
IAnd2PT Net(rs,r)

else
IXor2PT Net(rs,r)
return r
end
procedure [And2PT Net(rs,r) procedure [Xor2PT Net(rs,r)
t < NewTrans(NewSymbol('tr')) for each = € rs do
transitions < transitions U {t} t < NewTrans(NewSymbol('tr'))
for each z € rs do transitions < transitions U {t}
arcs + arcs U{(z,t), (t,r)} ares « arcs U {(z,t),(t,r)}
end end

The function NewSymbol(prefiz) generates a new symbol with a given prefix. The
functions NewPlace(label) and NewTransition(label) generate a new place and a new
transition with a given label.

The complexity of the translation algorithm is linear in the number of activities
plus the number of connectors plus the number of data flows in the chosen level of
detail of the business process.

The result of translating the process in figure 4 is shown in figure 5.

5 Related Work

This paper uses set theory to describe the formal syntax of the INSPIRE notation and
the way it combines features from IDEF0 and IDEF3. Then it shows how the dynamics
of INSPIRE business processes can be formally understood by mapping the models
to P/T nets. Other techniques proposed in the literature for formally understanding
business processes are based on flownomial expressions ([5]), process algebras ([6]) or
knowledge-based systems ([7]). P/T nets have been used for workflow modeling and
verification ([8]).

There are not many references in the literature reporting on the formal analysis of
IDEF0 and in particular on relating IDEF0 and Petri nets. Paper [10] discusses how

948

Fig. 5. The result of translating the process in figure 4 to a P/T net

IDEFO0 and colored Petri nets can be used for business process modeling. Some clues
on how to map IDEFO0 diagrams to colored Petri nets are also given in [11]. Paper
[9] discusses the suitability and effectiveness of IDEF diagrams (IDEF0 and IDEF3)
and Petri nets for modeling business processes in the context of business process re-
engineering. A comparative evaluation of their features is also provided there. Also,
the INSPIRE notation has some similarities with the formally founded description
technique of business processes reported in [12] and [13]. The similarities concern the use
of black-boxes, glass-box views and switches (that correspond roughly to the INSPIRE
connectors).

6 Conclusions

This paper introduced a notation for business process modeling that incorporates facil-
ities for function modeling from IDEF0 and for dynamic modeling from IDEF3. Those
aspects from IDEF0 that were considered problematic have been constrained or elimi-
nated and only aspects from the process-centered view of IDEF3 have been borrowed.
In fact, what was obtained is a novel notation for business process modeling that is
both easy to use and formal. Its main advantages are: i) the elements of the notation
are the well known boxes, arrows and connectors employed by IDEF0O and IDEF3,
which are widely used in the practice of business process modeling and ii) the fact that
the notation has a meaning underpinned by mathematics (set theory and P/T nets)
makes the models suitable for various tasks specific to business process re-engineering
like static verification and dynamic simulation.

References

1. Ould M.: Business Processes: Modeling and Analysis for Re-engineering and Improvement,
John Wiley, (1995)

10.

11.

12.

13.

14.

549

. Fox C.: The Process Representation Module (specification), INSPIRE (IST-1999-10387)

Deliverable 2.1 (2000)
Draft Federal Information Processing Standards Publication 183, Integration Definition
for Function Modelling (IDEF0) (1993)

. Mayer R. et al.: Information Integration for Concurrent Engineering (IICE): IDEF3 Pro-

cess Description Capture Method Report (1993)

Badica C., Fox C.: Modeling and Verification of Business Processes, Proceedings IASTED
International Conference on Applied Simulation and Modeling, Crete, Greece (2002) 7-12
Schroeder M.: Verification of Business Processes for a Correspondence Handling Center
Using CCS, Proceedings European Symposium on Validation and Verification of Knowl-
edge Based Systems and Components, Oslo, Norway (1999) 253-264

Yu E., Mylopoulos J. J., Lesprance Y.: AT Models for Business Process Re-Engineering,
IEEE Expert, 11(4):16-23 (1996)

Aalst W.M.P. van der: The Application of Petri Nets to Workflow Management, The
Journal of Circuits, Systems and Computers, 8(1):21-66 (1998)

Bosilj Vuksic V., Giaglis G.M., Hlupic V.: IDEF Diagrams and Petri Nets for Business Pro-
cess Modeling: Suitability, Efficacy, and Complementary Use, Proceedings International
Conference on Enterprise Information Systems (IECIS), Stafford, UK (2000) 242-247
Pinci O., Shapiro R.M.: Work Flow Analysis, Proceedings Winter Simulation Conference,
Los Angeles, CA (1993) 1122-1130

The Design/CPN Tutorial, http://www.daimi.au.dk/designCPN/man/Tutorial/.
Thurner V.: A Formally Founded Description for Business Processes. Proceedings Interna-
tional Symposium on Software Engineering for Parallel and Distributed Systems (PDSE),
Los Alamitos, CA (1998) 254-261

Rumpe B., Thurner V.: Refining Business Processes, Proceedings 7th OOPSLA Workshop
on Behavioral Semantics of OO Business and System Specifications, Munich, Germany
(1998) 205-220

Desel J., Esparza J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer
Science, 40, Cambridge University Press (1995)

