
Entropy as a Measure of Object-Oriented
Design Quality

Alexander Chatzigeorgiou George Stephanides

Department of Applied Informatics, University of Macedonia
54006 Thessaloniki, Greece

Email: {achat,steph}@uom.gr

Abstract. In this paper, object-oriented designs are approached from an infor-
mation theoretic point of view and entropy is proposed as a design quality met-
ric. One of the primary aims of object-orientation is the flexibility and the ease
in extending a system’s functionality, with limited alterations to existing mod-
ules. This feature is evaluated defining an appropriate probability space accord-
ing to the number of unary associations enabling the definition of an entropy
metric. The entropy of the next generation of an object-oriented system with
enhanced functionality remains close to its previous level in case the added
functionality affects a limited number of existing classes; on the other hand, a
poorly designed system increases entropy drastically. In this way, not only a
given system is evaluated but it is also possible to assess the degradation of a
system and its “distance” from the original design.

1 Introduction

The development of large software systems can benefit significantly from the applica-
tion of appropriate metrics during all life-cycle stages [1]. Following the increased
acceptance of object-orientation (OO) in the software industry, a plethora of metrics
have been proposed for assessing several aspects concerning the process, the products
and the resources associated with the development of OO-systems. The initial and
most well-studied suite of OO-metrics has been proposed by Chidamber and Kemerer
[2]. Since then, numerous metrics have been developed, reaching a total of 72 OO-
metrics according to [3].

The object-oriented paradigm promises to be one of the most flexible frameworks
for developing systems by shifting responsibility from functional modules to a more
local level, namely to objects. The merits of object-oriented systems concerning ease
of reuse, maintenance, extensibility and scalability are well understood and drive the
wide acceptance of object-orientation among software developers.

However, object-oriented design is rather a skill than a set of strict guidelines that
can be safely applied. Obviously, not all object-oriented designs are of good quality.
According to [4] a good object-oriented design has anticipated major axes of change
and is designed in a way that does not exhibit “odors” of rigidity and fragility. Even
in basic textbooks on object-oriented analysis and design, one of the key features of

 566

the object oriented way of thinking is the ability to add new functionality with limited
effort, in terms of code update of existing building blocks. Stated differently, if in
order to update an object-oriented system, each of its classes has to be revisited by
modifying one or more of its methods and attributes, then object-orientation does not
perform any better than procedural programming.

However, it is quite difficult to assess whether an OO-system possesses the charac-
teristics that make it flexible and easily extendible. Although there are metrics that
evaluate the degree of object-orientation or measure specific characteristics of the
design, such as cohesion and coupling, metrics for evaluating the quality of an object-
oriented model with respect to its accordance to well defined criteria, would be useful
in object-oriented analysis. Only recently, empirical models for assessing high-level
design quality attributes of object-oriented systems have been proposed in [5].

In this paper, we propose the use of entropy as defined in Information Theory, to
evaluate the initial status of an object-oriented design as well as its status after the
addition of new functionality. The difference between the entropy of the two systems
provides insight to the quality of the design in terms of how flexible it has been dur-
ing the enhancement of its functionality. In case enhancements to the functionality of
an object-oriented system affect a limited number of existing classes, the proposed
entropy metric remains close to the initial value. In case of a poorly designed system,
where functionality enhancements enforce modifications to almost all classes, the
entropy increases drastically.

Within the context of OO systems, entropy has been first used by [6]. However, in
that work, entropy was defined as conceptual inconsistency between hierarchical
levels. Entropy from an information theoretic point of view has been proposed in [7]
for evaluating the structuredness of software. However, this metric is based on the file
structure and its applicability is limited to large procedural software systems.

The rest of the paper is organized as follows: Section 2 introduces the notion of en-
tropy in information theory, while in section 3 the proposed entropy metric for object-
oriented systems is presented. Application results to two OO designs are discussed in
section 4. Finally, we conclude in section 5.

2 Entropy

A measure of the information (self-information) contained in an outcome is de-
fined as:

() { }()ii xpxI 2log−= . (1)

where p{xi} is the probability of xi. This definition satisfies the intuitive requirement
that the information contained in an outcome is proportional to its uncertainty. More-
over, this definition also satisfies the requirement that the total information in inde-
pendent events should add.

The entropy or average information content per symbol for an information source
X with alphabet A = {a1, a2, . . ., an} and probability distribution PA = { p1, p2, . . ., pn}

 567

is the average self-information associated with each symbol on the output of the
source [8]. For the source X as a whole, its entropy is defined as:

() ()∑
=

−=
n

i
ii ppXH

1
2log . (2)

In other words, the more difficult it gets to estimate the outcome at the source output,
the larger the entropy becomes. The maximum value attainable by an alphabet's en-
tropy occurs when the symbols are equally likely. In this case, the entropy equals

n2log . The minimum value (zero) occurs when only one symbol occurs; it has prob-
ability one of occurring and the rest have probability zero.

3 Object-Oriented Design Quality

As already mentioned, one of the primary goals of object-orientation is to develop
systems that are easily extensible taking advantage of features such as encapsulation,
information hiding, inheritance and polymorphism. If an OO design fails to satisfy
the requirement for flexibility in upgrading the system’s functionality, it certainly
lacks one of the most desired features, in a world of constantly changing requirements
[4]. Next, we will attempt to define the entropy of an OO system, in order to assess its
degradation during functionality upgrades, which in turn depends on the inherent
flexibility of the system.

It is assumed that the system is described in a standard class diagram format fol-
lowing UML (Unified Modeling Language [9]) notation for associations between
classes. For a randomly selected unary association, we define as p{Ci} the probability
that the association leads to class Ci. The existence of such an association indicates
that class Ci provides services to the rest of the system, since it responds to messages
sent to it. Within this context, bi-directional associations are treated as two separate
unary associations.

In other words, we consider as event the fact that a random association has a di-
rection towards class Ci and consequently, the sample space { }nCCCS ,,, 21 K=
consists of all classes in the system. Since, as it will be shown in the next paragraph,
probabilities are extracted from the statistics of the system, a randomly selected asso-
ciation with direction towards a class, does not affect the direction of another ran-
domly selected association, and as a result any two events can be considered to be
independent. Independence of events is required in order to be able to define the
entropy based on the corresponding probability distribution.

The probability p{Ci} is extracted from the class diagram as the ratio of unary as-
sociations directed towards class Ci over the total number of unary associations in the
design. Under this definition, the following two properties are valid:
1. Any probability is a number between 0 and 1: 0 ≤ p{Ci} ≤ 1.
2. The sample space, S, of all possible outcomes has a probability of 1: p{S} = 1.

Now, it is possible to define the entropy of an object-oriented design D with n
classes, based on these probabilities:

 568

{ } { }[]i

n

i
iD CpCpH 2

1
log∑

=

−= . (3)

This definition of entropy is in agreement with the intuitive feeling that entropy
should become larger as the disorder in the system increases. The reason for extract-
ing the probabilities based on the number of unary associations directed towards the
class and not those leaving the class is best illustrated by an example: Assume that a
given system is extended by adding one new class. The unary associations towards
the new class, imply changes to the attributes (pointers or references) of the existing
classes, and as such are related to the flexibility of the system. On the other hand, if
we had selected the unary associations leaving from the new class, all changes would
refer to the new class, whose code would be added anyway.

The maximum value for entropy is obtained when all classes “connect” to all
classes (including themselves), implying a system with the maximum possible cou-
pling between system components.

For such a system with total disorder, the total number of all possible unary asso-
ciations (between discrete classes) is given by the 2-permutations of a set with n
classes:

() () ()1
!2

!2,# −=
−

== nn
n

nnPnsassociatio . (4)

Each class can also have a reflexive association, which in the worst case, can also be
binary. (Consider for example a Professor class, where each professor can advise
other professors but can also be advised by other professors).
Consequently, to the number of total associations, we have to add the number of self-
associations (counting one for each direction) for all possible classes. Therefore:

() ()121_# +=+−= nnnnnnsassociatiototal . (5)

As a result, the probabilities for such a fully interconnected class diagram will be
equal to:

{ } () 1
1

1 +
=

+
==

nnn
npCp eqi . (6)

The probabilities in this case are equal, as expected from the definition of entropy in
eq. (2).
This uniform distribution will cause entropy to obtain its maximum value:

() ()
n

n
nppnH eqeqD ⋅
+

+
=⋅−=

1
1loglog 2

2
max . (7)

Consequently, the maximum entropy of a system with n classes tends to infinity as
∞→n .

For simplicity, we assume first that the functionality of the design is enhanced by
the addition of a new class. A “good” OO-design implies that the addition of the new
class will influence as few of the existing classes as possible. Otherwise, if the initial
part of the design is to fully “embrace” the new class by adding associations between
almost all of the existing classes and the new one, then obviously there is a significant

 569

degradation of the quality. This quality degradation is captured by the notion of en-
tropy, which in this case, will obtain a significantly larger value for the upgraded
design.

The difference between the entropy value of the initial and the new design not
only indicates the deterioration of the design (for a well-designed system this differ-
ence should be small), but can also serve as a measure of the number of generations
of the design. Assuming a low entropy value for the initial design (corresponding to
the first generation) and having an estimate (from past data) for the entropy increase
per generation, it is possible to calculate the number of generations elapsed during the
development of the system. Moreover, if the entropy approaches its maximum possi-
ble value, this fact indicates whether the design has reached a saturation level, beyond
which it is relatively difficult to improve the quality of the design, and the system has
to be re-designed from scratch.

The proposed entropy metric does not consider so far one of the most important
features of object-orientation, namely inheritance. The presence of a generalization
relationship between two classes is a form of a static association. The introduction of
a unary association directed from class A to class B, implies a modification to the
attributes and methods of class A. However, the presence of a generalization relation-
ship, where class A is the parent class and B the descendant (the arrow in a class dia-
gram pointing to A), implies a modification only to the added class B and not to the
existing class A. Therefore, generalizations are not counted during the extraction of
the entropy metric when determining the corresponding probabilities.

4 Results

We believe that software metrics that assess any aspect of quality in an object-
oriented software system should be evaluated against appropriate Design Patterns
[10]. Since there is a general agreement on the fact that Design Patterns improve the
quality of an object-oriented design, such a qualitative improvement should be meas-
urable by the applied metrics. Any of the metrics from the plethora of suggested ones
that does not validate the usefulness of well-established Design Patterns should pos-
sibly be discarded.

To this end, we apply the following methodology for evaluating the proposed en-
tropy metric against one Behavioral and one Structural Design Pattern, namely the
Strategy and Composite [10]. Testing against these two patterns will also be valuable
in evaluating whether the proposed entropy metric can be of help in enforcing the
Open-Closed and the Liskov Substitution Principle [4], which both patterns help to
apply. We observe the value of entropy for successive generations of an object-
oriented system, both for a “naïve” design as well as for a more sophisticated design
employing design patterns. The initial design is for both products the same. Each new
set of requirements calls for a new generation of the design; However, during the
upgrade, the “good” design is redesigned employing appropriate design patterns.

Our primitive application is an adaptation of the infamous “Shape” Application
used in many OOD books. Initial and further requirements are listed below:

 570

• initial requirement: application must be able to draw circles
• second requirement: application must be able to draw squares as well
• third requirement: application must be able to draw complex shapes consisting

of several squares
• fourth requirement: application must be able to draw complex shapes consist-

ing of both squares and circles

We first follow the evolution of the “naïve” design. The class diagram of the first
design includes, except for the Client class, a Circle class, which the Client uses. In
respond to the second requirement, the designers choose to add a second class
Square, which the Client also uses. Unfortunately, the new class also imposes
changes to the code of the Client class. The third requirement is handled by adding a
Complex class which a) uses the Square class and b) is used by the Client. Since the
Client must be able to draw complex shapes as well as primitive squares, the initial
association between Client and Square should remain. Finally, the fourth requirement
enforces the programmers to change the code of the Complex class to insert an asso-
ciation to the Circle class as well. The UML class diagram for each generation of the
software design is shown in Figure 1.

Client

+Draw()

Circle

 Gener. 3 Gener. 4

Client

+Draw()

Circle

+Draw()

Square

Client

+Draw()

Circle

+Draw()

Square

+draw()

Complex Client

+Draw()

Circle

+Draw()

Square

+draw()

Complex

Gener. 1 Gener. 2

Fig. 1. Successive generations of “naïve” design

 571

On the other hand, the improved design employs design patterns to avoid chang-
ing the code, each time a new requirement is implemented (Open-Closed Principle
[4]). To accommodate the initial requirement the development team will obviously
come up with the same solution as in the previous case and consequently the class
diagram for the first generation is the same. However, when the second requirement
arises, the designers identify an axis of change acknowledging that several shapes can
be requested. Therefore, to close function Draw against different shape types, a kind
of “shape abstraction” is required. This calls for the Strategy Pattern, which accord-
ing to the GoF [10] “lets an algorithm vary independently from clients that use it”.
The successive generations for the improved design are illustrated in Figure 2.

Client

+Draw()

Circle

 STRATEGY PATTERN

Gener. 1 Gener. 2

Client

+Draw()

Shape

+draw()

Circle

+draw()

Square

Client

+Draw()

Shape

+draw()

Circle

+draw()

Square

+Draw()

Component

+Draw()

Composite

1

*

No change

 Gener. 3 Gener. 4

 STRATEGY + COMPOSITE PATTERN

Fig. 2. Successive generations of improved design

 572

The third requirement is not handled by simply adding a Complex class, since this
solution would not follow the Open-Closed principle against different shapes con-
tained in this class. Moreover, in order to allow drawing both primitive as well as
composite objects, the design would require additional associations. To improve the
design, the development team opts for the Composite Pattern, which lets clients treat
individual objects and compositions of objects uniformly, eliminating unnecessary
associations. The solution is shown in the third generation in Figure 2. Once the Strat-
egy and Composite pattern are applied, there is no need to change to design in order
to accommodate the fourth requirement: It can be directly implemented based on the
class diagram of the third generation, without any modification of existing classes!

The application of the entropy metric to each generation of both designs reveals the
following results:

“Naïve” Design:
Generation 1: HD = 0
Generation 2: HD = 1
Generation 3: HD = 1.5
Generation 4: HD = 1.521928
The final entropy value is obtained from the following probabilities:
p(Client) = 0, p(Complex) = 1/5, p(Circle) = 2/5, p(Square) = 2/5,

Improved Design:
Generation 1: HD = 0
Generation 2: HD = 0
Generation 3: HD = 0
Generation 4: HD = 0

As it can be observed, the entropy values are in agreement with the fact that an
object-oriented design employing Design Patterns is better structured. In the “naïve”
design the entropy value increases from each generation to the next and since the
addition of each new class “spreads out” the probabilities even more, the entropy
value will continue to increase.

On the other hand, in the improved design, not only the entropy value has a lower
final value and does not change between successive generations, but the addition of
any new shapes to the final design will not change further the entropy value, indicat-
ing the stability and flexibility of the system.

5 Conclusions

The merits of object-oriented systems concerning ease of reuse, maintenance, exten-
sibility, scalability are well understood and drive the wide acceptance of object-
orientation among software developers. However, it is generally difficult to differen-
tiate “good” from “bad” designs, since object-orientation is rather a skill than a set of
guidelines. In this paper, an information theoretic entropy metric has been proposed

 573

for evaluating the flexibility of an OO design and the ease in extending a system’s
functionality.

The metric is based on the assumption that the entropy of the next generation of
an object-oriented system with enhanced functionality remains close to its previous
level in case the added functionality affects only a limited number of existing classes.
Results for successive generations of two designs, where one of them is better struc-
tured employing design patterns, validates the proposed metric against two popular
design patterns.

References

1. Basili V. R., Briand L. C., Melo W. L.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering 22:751-761 (1996)

2. Chidamber S. R., Kemerer C. F.: A Metrics Suite for Object Oriented Design. IEEE Trans-
actions on Software Engineering 20:476-493 (1994)

3. Dumke R., Foltin E.: Metrics-based Evaluation of Object-Oriented Software Development
Methods, Preprint Nr. 10, Fakultät für Informatik, Universität Magdeburg (1997)

4. Martin R. C.: Agile Software Development: Principles, Patterns and Practices, Prentice
Hall, Upper Saddle River, NJ (2003)

5. Bansiya J., Davis C. G.: A Hierarchical Model for Object-Oriented Design Quality Assess-
ment. IEEE Transactions on Software Engineering 28:4-17 (2002)

6. Dvorak J.: Conceptual Entropy and Its Effect on Class Hierarchies. IEEE Computer 27:59-
63 (1994)

7. Snider G.: Measuring the Entropy of Large Software Systems. HP Technical Report, HPL-
2001-221, (2001) www.hpl.com/techreports/2001/HPL-2001-221.pdf

8. Papoulis A.: Probability, Random Variables, and Stochastic Processes, 2nd ed. McGraw-
Hill, New York (1984)

9. Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading, MA (1999)

10. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Boston, MA (1995)

