
An Optimal Algorithm for Computer-Aided Design
of Key Type Constraints

Christian Mancaş, Lavinia Crasovschi

Ovidius University, Computer Science Department, 8700 Constanţa, Romania
Email: datasis@fx.ro

http://www.datasis.ro/ChristianMancasCV.htm

Abstract. The paper defines entity, relationship, attribute, structural function,
and constraint concepts in the framework of the Elementary Mathematical Data
Model. A sound and complete algorithm for computer-aided design of key type
constraints, which starts with a possibly non-empty set of keys for any object
set, and aimed at hopefully completing it with all other existing keys is then in-
troduced and discussed. Finally, this algorithm is proved to be optimal, as it
asks db designers the minimum possible number of questions. By simply re-
placing object sets with relations and mappings with attributes, this proposed
algorithm could be used in the Relational Data Model too.

1 Introduction

The Elementary Mathematical Data Model (EMDM) is a definite deductive database
(db) conceptual modeling tool (see [7] for its formal definition) based on the alge-
braic theory of sets, relations, and functions, as well as on the first-order predicate
calculus with identity. Born from both functional and logical interpretations of the
relational data model (RDM) [1] and from a rigorous formalization of the entity-
relationship data model (ERDM) [3], EMDM was continuously refined, mainly by
incorporating more and more constraint types (e.g. [4, 5, 8, 9]) and Datalog¬ pro-
grams [1].

This Section provides a brief introduction into EMDM concepts, emphasizing ob-
ject sets, mappings, and key type constraints. Section 2 presents and discusses an
algorithm for computer-aided design of key type constraints. The algorithm starts
with a possibly non-empty set of keys for any object set and smartly generates all
other remaining potential keys, which are one by one submitted to the db designer for
validation or rejection. The algorithm is then proved to be sound, complete, and op-
timal (in the sense that it asks db designers the minimum possible number of ques-
tions). Finally, Section 3 presents paper conclusions.

 575

1.1 EMDM Schemes

The scheme of any db in EMDM is a quadruple (S, M, C, P), where (S, ⊆) is a non-
empty finite poset of sets, M ⊆S S is a nonempty finite set of partially defined map-
pings, C is a finite set of closed Horn clauses called constraints, and P is a finite set
of Datalog¬ programs.

In their turn, S = Ω ⊕V ⊕ ∅, where (Ω, ⊆) is a nonempty finite poset of object
sets and (V, ⊆) is a nonempty finite poset of value sets; M = A ⊕ F, where A ⊆ ⊆VΩ
is a nonempty finite set of partial mappings called attributes and F ⊆ ΩΩ is a finite set
of partial mappings called structural functions; for “compact” modeling convenience
and historical reasons, both mathematically and db motivated (see mathematical rela-
tions and entity-relationship db modeling), a derived concept named relationship is
provided by EMDM too, thus partioning Ω = E ⊕Æ, where E is a non-empty entity
sets and Æ a relationship sets class; finally, each Datalog¬ program is a nonempty
finite set of open Horn clauses called inference rules.

Just like in ERDM, entities model “atomic” objects, which “exists independently
of any other object” (i.e. elements of non-Cartesian product sets, e.g. persons, cities,
books, bookstores, etc.), while relationships model “compound” ones, “whose exis-
tence depends on the existence of other objects” (i.e. elements of Cartesian product
sets, e.g. stocks, loans, co-authors, etc.). Note that, unlike ERDM, binary functional
relations are modeled in EMDM not as relationships, but as structural functions. For
the theory of attributes, structural functions, keys and instances see [4], [9], and [10].

EMDM provides seventeen constraint types: object constraints (i.e. closed Horn
clauses over objects); function minimal injectivity, surjectivity, equality, and idempo-
tence; representative systems; binary relations reflexivity, symmetry, antisymmetry,
transitivity, and acyclicity; set (strict) inclusion, equality, disjointness, and direct sum,
as well as existence and (explicit) domain constraints.

For object and domain constraints, EMDM provides an object-oriented first-order
predicate calculus with identity [8]. ∀ω ∈ Ω, EMDM automatically defines a total
one-to-one mapping #ω : ω ↔ NAT, #ω ∈A, referred to as the object identifier of ω
(where NAT denotes the naturals).

Example 1: Let us consider the following EMDM scheme fragment [7]:
Ω = {SETS, OBJECTS, VALUES, ENTITIES, RELATIONSHIPS, FUNCTIONS,

ATTRIBUTES, STRUCT_FUNCTS, CONSTRAINTS, PROGRAMS, INF_RULES,
PROG_COMP}

V = {NAT, CHAR, BOOL}
A = {#S, SetName, SetType, #F, FunctionName, Total, Injective, #C, Constraint-

Name, ConstraintType, #P, ProgName, #IR, #PC, InfRulePosition} (all of them to-
tally defined and having obvious domains and codomains)

F ={Synonym : OBJECTS → OBJECTS; ObjectId : OBJECTS ↔ FUNCTIONS,
total; Domain : FUNCTIONS → OBJECTS, total; Codomain : FUNCTIONS → OB-
JECTS, total; Program : PROG_COMP → PROGRAMS, total; InferenceRule :
PROG_COMP → INF_RULES, total}

 576

C = {C1: SETS = OBJECTS ⊕ VALUES ⊕ ∅, C2: OBJECTS = ENTITIES ⊕
⊕RELATIONSHIPS, C3: FUNCTIONS = ATTRIBUTES⊕STRUCT_FUNCTS, C4: key
FunctionName•Domain, C5: key Program•InferenceRule, C6: key Program•Inf-
RulePosition, C7:(∀x∈FUNCTIONS)(∀y∈Domain(x))(Total(x)∧x(y)∈Codomain(x)∨
∨¬Total(x) ∧ x(y)∈Codomain(x) ∪ {NULL})}
(where object constraint C7 obviously formalizes function definition)

P = {InclusionTC={InclusionTC(x,y)←Inclusion(x,y),
 InclusionTC(x,y)← InclusionTC(x,z), Inclusion(z,y)},
 EqualityTC={EqualityTC(x,y)←Equality(x,y),

 EqualityTC(x,y)← EqualityTC(x,z), Equality(z,y)}}
(where Datalog programs InclusionTC and EqualityTC are computing transitive clo-
sures of inclusions and set equalities respectively). �

[4] and [9] also present and analyze a complete formal description of EMDM (but
also of RDM and ERDM) in EMDM, as well as a polynomial algorithm for translat-
ing EMDM schemes into RDM domain-key normal form (DKNF) ones [1].

1.2 Object Types and Instances

M is canonically partitioned by the following equivalence relation („domain equal-
ity”): any two mappings a,b∈M are equivalent iff dom(a) = dom(b). Such a partition
is grouping all mappings defined on a same object set; the corresponding quotient set
is trivially isomorphic to Ω; ∀O∈Ω, its representative Ô =m∈Mdom(m) = =O ⊆ M is
referred to as the associated (object) type and is also written as a mapping product:

Ô = ∏
=Odom(m)

 m : O → ∏codom(m)

Example 2: Types corresponding to object sets SETS and FUNCTIONS from Ex-
ample 1 are the following: SETS = #S•SetName•SetType, FUNCTIONS = #F•Func-
tionName•Total•Injective•Domain•Codomain. �

Note that any relationship type is implicitly including all of its canonical Cartesian
projections (here, obviously, we could have modeled PROG_COMP as a relationship
having projections Program and InferenceRule).

The description of an object o∈O∈Ω is Ô (o); the instance of object set O is the
union of the descriptions of all of its objects, i.e. the image of its corresponding type:
Im(Ô). The db instance is the union of all of the mapping images in M :

Im(M) = M (Ω) = ∪m ∈M Im(m).

1.3 Keys

Any sub-product K of a type Ô is said to be a key if it is minimally one-to-one (i.e. if
it is one-to-one and no proper subset of it is one-to-one); if K is one-to-one, then it is
a superkey. Trivially, any key is a superkey, any one-to-one mapping is a key, any
type is a superkey (as instances are sets!), any type has at least one key (in the

 577

“worst” case, itself, excluding its object id, is a key!), and may have several keys (at
least two, counting its object id too).

Example 3: SetName, ConstraintName, ProgName, FunctionName•Domain, Pro-
gram•InferenceRule, and Program•InfRulePosition from Example 1 are keys. �

Let S be any set and f, g any two mappings totally defined on it; we say that g is
functionally dependent on f (denoted by f → g) iff Kerf ⊆ Kerg (where Ker denotes
the kernel relation: Kerf = {(x,y)∈S×Sf(x)=f(y)}). Equivalently, we say that f is func-
tionally determining g. f → g is called a functional dependence (fd). Obviously, this
is a straightforward generalization of the RDM fd definition.

Example 4: Let S = SETS, f = SetName, and g = SetType from Example 1. Obvi-
ously, SetName → SetType. �

Proposition 1: (fd characterization) f → g ⇔ ∃h: Imf → Img, a unique mapping
such that g = h ° f.

Proof: (⇒) Let us define h : Imf → Img such that ∀y∈Imf, h(y) = z, where y = f(x)
and z = g(x), and firstly prove that h is well defined:

(h totally defined) According to mapping image definition, ∀y∈Imf, ∃x∈S, y=f(x);
as g is totally defined, ∀x∈S, ∃z∈Img, z = g(x) ⇒ ∀y∈Imf, h(y) = z.

(h functional) Let t,u∈Imf, t = u; by h definition, ∃x,y∈S such that h(t) = v, where
t=f(x), v=g(x), and h(u)=w, where u=f(y) and w=g(y); t=u ⇒ f(x)=f(y) ⇒ (x,y)∈Kerf;
as Kerf ⊆ Kerg, it follows that (x,y)∈Kerg ⇒ g(x) = g(y) ⇒ v = w ⇒ h(t) = h(u).

Let us show that g = h ° f; ∀x∈S, denote z = g(x)∈Img and y = f(x)∈Imf; according
to h definition, h(y) = z ⇒ h(f(x)) = g(x) ⇒ h ° f = g.

Finally, we prove that h is unique: assume that ∃h' : Imf → Img such that h' °f=g; it
follows that, ∀x∈Imf, ∃y∈S, x = f(y) such that h'(f(y)) = g(y); according to h defini-
tion, h(x) = g(y) ⇒ h(x) = h'(x) ⇒ h ≡ h'.

(⇐) Assume f → g; Kerf ⊄ Kerg ⇒ ∃(x,y) ∈ Kerf such that (x,y) ∉ Kerg, that is
∃(x,y)∈S2, f(x) = f(y) and g(x) ≠ g(y); as h functional, f(x)=f(y)⇒h(f(x))=h(f(y)),
which, by h definition, implies that g(x) = g(y); this trivially means that the assump-
tion is false and, consequently, f → g q.e.d.

Proposition 2: → is a pre-order:
(i) f → f
(ii) f → g ∧ g → h ⇒ f → h.
Proof:
 (i) trivial, as Kerf ⊆ Kerf, for any mapping f.
 (ii) f→g ∧ g→h ⇒ Kerf ⊆ Kerg ∧ Kerg ⊆ Kerh ⇒ Kerf ⊆ Kerh ⇒ f → h q.e.d.
Let O∈Ω and f, g∈Ω O totally defined; if f → g for any f, then g is called minimal;

conversely, if g → f for any f, then g is called maximal.
Proposition 3: (i) f minimal ⇔ |Imf | = 1

(ii) f maximal ⇔ f one-to-one.
Proof:
(i)(⇒) Assume |Imf | > 1; it follows that ∃x,y∈O such that f(x)≠f(y); let g∈Ω O be

any mapping such that g(x) = g(y), i.e. (x,y)∈Kerg; as f is minimal, g → f ⇒ Kerg ⊆
⊆Kerf ⇒ (x,y)∈Kerf ⇒ f(x)=f(y), which proves that the initial assumption is false.

 578

(i)(⇐) |Imf | = 1 ⇒ ∀x,y∈O, f(x)=f(y) ⇒ ∀x, y∈O, (x,y)∈ Kerf ⇒ Kerf =O 2; let
g∈ Ô ; trivially, Kerg ⊆ O 2 = Kerf ⇒ g → f ⇒ f minimal.

(ii)(⇒) Assume f is not one-to-one; it follows that ∃x,y∈O, x≠y, such that f(x)=f(y),
i.e. (x,y)∈Kerf; let g∈Ω O such that g(x)≠g(y); as f is maximal, it follows that f → g ⇒
⇒ Kerf ⊆ Kerg ⇒ (x,y)∈Kerg ⇒ g(x)=g(y), which proves that the initial assumption
is false.

(ii)(⇐) f one-to-one ⇒ Kerf ={(x,x)|x∈O}; it follows that, for any g∈Ω O, Kerf ⊆
⊆Kerg ⇒ f → g ⇒ f maximal q.e.d.

Extension of fds from mappings to mapping products is straightforward due to the
following Lemma:

Lemma 4: Kerf•g = Kerf ∩ Kerg.
Proof: f•g : S → Imf × Img, xa (f(x),g(x)), ∀x∈S.
(⊆) Let (x,y)∈Kerf•g; f•g(x) = f•g(y) ⇒ (f(x),g(x)) = (f(y),g(y)) ⇔ f(x) = f(y) and

g(x) = g(y) ⇒ (x,y)∈Kerf and (x,y)∈Kerg ⇒ (x,y)∈Kerf ∩ Kerg.
(⊇) Let (x,y)∈Kerf ∩ Kerg ⇒ f(x)=f(y) ^ g(x)=g(y) ⇒ (f(x),g(x))=(f(y),g(y)) ⇒

(x,y)∈Kerf•g q.e.d.
Proposition 5: (i) f•g → f; f•g → g
 (ii) h → f ∧ h → g ⇒ h → f•g.
Proof: (i) By Lemma 4, Kerf•g = Kerf ∩ Kerg; Kerf ∩ Kerg ⊆ Kerf ⇒ f•g→f; si-

milarly, Kerf ∩ Kerg ⊆ Kerg ⇒ f•g → g.
(ii) h → f∧h → g ⇒ Kerh ⊆ Kerf∧Kerh ⊆ Kerg ⇒ Kerh ⊆ Kerf∩Kerg=Kerf•g ⇒

h → f•g q.e.d.
Theorem 6: (i) f1•…•fn → fi, ∀i∈{1,…,n}
 (ii) g → fi, ∀i∈{1,…,n} ⇒ g → f1•…•fn.
Proof: (i) By Lemma 4, Kerf1•…•fn = Kerf1∩…∩Kerfn; as Kerf1∩…∩Kerfn ⊆

⊆Kerfi ∀i∈{1,…,n} ⇒ f1•…•fn → fi, ∀i∈{1,…,n}.
(ii) g→fi, ∀i∈{1,…,n}⇒Kerg⊆Kerfi, ∀i∈{1,…,n}⇒Kerg ⊆ Kerf1∩…∩Kerfn⇒

⇒ g → f1•…•fn q.e.d.
By notational abuse, if, for example, X = f1•f2•… •fk, we also denote by X the set

{f1, f2,…, fk} and/or the string f1f2…fk.
Proposition 7: ∀ Ô , ∀K ⊆ Ô , K key ⇒ ∀m ∈ Ô , K → m.
Proof: By Proposition 3(ii) K is maximal ⇒ ∀m∈ Ô , K→m q.e.d.
Corollary 8: ∀ Ô , ∀K ⊆ Ô , K key ⇒ K → Ô .
Proof: By Proposition 7, ∀m ∈ Ô , K → m; by Theorem 6(ii), K → Ô q.e.d.
Example 5: In Example 1, if O = FUNCTIONS and K = FunctionName•Domain,

FunctionName•Domain→#F•FunctionName•Total•Injective•Domain•Codomain.
Corollary 9: If K is a key of Ô , then ∀S ∈ Ô – K, S ≠ ∅, KS cannot be a key of Ô .

Proof: K key ⇒ K is minimal ⇒ KS is not minimal ⇒ KS cannot be a key of Ô .
Theorem 10: K key ∧ K' → K ⇒ K' one-to-one.
Proof: Assume K' is not one-to-one; it follows that ∃x,y∈O, x≠y, such that K'(x)=

=K'(y), i.e. (x,y)∈KerK'; K' → K ⇒ KerK'⊆ KerK ⇒ (x,y)∈KerK ⇒ K(x)=K(y) ⇒ K
is not one-to-one, which proves that the initial assumption is false q.e.d.

 579

Any two mappings f, g are said to be functionally equivalent (denoted f ↔ g) iff
f→g and g→f; obviously, ↔ is an equivalence relation. For example, all minimal
mappings are equivalent, as well as all maximal ones. Trivially, f ↔ g ⇔ Kerf =
Kerg.

Proposition 11: (i) (f•g)•h ↔ f•(g•h)
 (ii) f•g ↔ g•f
 (iii) f•f ↔ f.
Proof: (i) By Lemma 4, Ker(f•g)•h = Kerf•g ∩ Kerh = Kerf ∩ Kerg ∩ Kergh =

=Kerf ∩ Kerg•h = Kerf•(g•h) ⇔ (f•g)•h ↔ f•(g•h)
(ii) Kerf•g = Kerf ∩ Kerg = Kerg ∩ Kerf = Kerg•f
(iii) Trivial, as Kerf•f = Kerf ∩ Kerf = Kerf q.e.d.
Proposition 12: ∀K,K' keys, K ↔ K'.
Proof: (⇒) Let k'∈K'; by Proposition 3(ii), K maximal ⇒ K → k'; by Theorem

6(ii), it follows that K → K'.
(⇐) Let k∈K; by Proposition 3(ii), K' maximal ⇒ K' → k; by Theorem 6(ii), it fol-

lows that K' → K q.e.d.
In [9] it is proved that the mappings quotient set with respect to ↔ is a finite com-

plete lattice, whose first element is the class of minimal mappings, last element is the

keys class, and sup{ f̂ , ĝ }=
∧
fg . Also shown is that any type is in DKNF [6].

Let O be a type and card(O\{#O}) = n ≥ 0.
Proposition 13: Ô has (2n – 2) proper subsets.
Proof: Ô powerset has n

n
n
nnn CCCC ++++ −110 ... =2n elements, out of which 2 are

not proper: ∅ and Ô itself q.e.d.

Proposition 14: Ô has at most






2
n

nC simultaneous keys.
Proof: (the following proof is inspired by the Sperner lemma proof from [2])
A chain of length n made up of subsets of Ô is a sequence M1 ⊂ M2 ⊂ …⊂ Mn-1 ⊂ Ô

such that Mi= i , for i=1,2,…,n-1. Trivially, the number of chains of length n that
can be constructed in Ô is n!. Let X ⊂ Ô ,X= r, r < n; the number of chains of
length n that include X and have form M1 ⊂ …⊂ Mr-1 ⊂ X ⊂ Mr+1 ⊂…. ⊂ Ô is equal to
r!(n-r)!.

Let 1≤i,j≤n, i≠j; by definition, Xi and Xj might simultaneously be keys iff Xi ⊄ Xj
and Xj ⊄ Xi. Obviously, if Xi and Xj are not ⊆-comparable, then any chain containing
Xi is different of any chain containing Xj.
Denoting by p the number of possible simultaneous keys and by Mi=ni, it follows

that)!(!
1

i

p

i
i nnn −∑

=

≤ n!. As
nni ≤≤1

max in
nC =







2
n

nC , this implies that:

c
n

n

p






2

≤ ∑
=

p

i
n

nc i
1

1
≤ 1 ⇒ pmax ≤ 





2
n

nC .

 580

Conversely, by considering Ô subsets family having m= 




2
n

elements, it can be

easily proved that pmax ≥ 





2
n

nC . Consequently, it follows that pmax =






2
n

nC

q.e.d.

1.4 Relationships

∀A ∈Æ, A = (SA, GA), where SA = (MSA ;MKA) is its scheme (with MSA ⊆ Ω being a
nonempty set of sorts, whereas MKA ⊆ P (MSA) a nonempty set of structural keys)
and the graph GA is a nonempty subset of the Cartesian product of the sets in MSA
(generally omitted in standard EMDM notation).

Note that in EMDM all structural keys of a relationship are declared together with
that relationship, between accolades, following its sort names set [4].

Example 6: PROG_COMP from Example 1 could have been modeled as a rela-
tionship having the following scheme: PROG_COMP = (PROGRAMS, INF_RULES;
{PROGRAMS, INF_RULES}), where:

MSA = {PROGRAMS, INF_RULES }
MKA = {{PROGRAMS, INF_RULES }}.
By common notational abuse, any of its graph instances are also denoted by

PROG_COMP. �
Note that for mathematical relations MSA is an ordered list of sets, while in

EMDM it is a set of set names; this means that if a same set is required several times
as a relationship sort, distinct synonyms should be provided for each of its instances.

Example 7: Let SET_EQUALITIES ⊆ CONSTRAINTS; if we are modeling it as a
relationship, we need at least one synonym for SETS: let EQUAL_SETS ∈ SETS,
Synonym(EQUAL_SETS) = SETS; then SET_EQUALITIES = (SETS, EQUAL_SETS;
{SETS, EQUAL_SETS}) . �

Mathematically speaking, relationships are elements of the Cartesian products
quotient set with respect to their base sets permutation equivalence relation (see [4]).

Let A ∈Æ be any relationship set and n its arity (i.e. the cardinality of MSA); let
S1, S2, …, Sn be the sorts of A, and #S1, #S2, ..., #Sn their corresponding object identifi-
ers. Let us canonically extend #Si, 1 ≤ i ≤ n, from their sorts to the relationship graph
GA (thus obviously obtaining the canonical projections of the corresponding Cartesian
product): Ai : GA → NAT, Ai(o1, …, oi, …, on) = #Si(oi), ∀ok ∈ Sk, 1 ≤ i, k ≤ n. Note
that, generally, they are not one-to-one anymore.

However, their product is always one-to-one, ∀A∈Æ, but generally not a key (i.e.
not minimally one-to-one). When, however, also minimal, it constitutes the only
structural key of the corresponding relationship type object set.

Syntactically, in such simple cases where the whole projections product is the
structural key, EMDM provides an abbreviation, by implicitly assuming it and letting
db designers omit MKA (e.g. PROG_COMP = (PROGRAMS, INF_RULES)).

 581

[10] proves that relationships are not fundamental, but merely derived concepts
and that, from the data modeling point of view, the only “interesting” relations are the
binary functional ones.

2 An Algorithm for Computer Aided Design of Key Type
 Constraints

Based on results presented in Section 1, we devised the following algorithm for as-
sisting db designers in specifying all keys of an object set O:

Algorithm 15:
In: K\{#O}, the set of “semantic” keys of object set O (i.e. not including its object id),
having |K|=k ≥ 0.
Out: K’ ⊇ K, the set of all “semantic” keys of O, |K’|=k’
Algorithm:
K’ = K; k’ = k;
if Ô ∉ K’

 repeat until all






2
n

nC keys have been asserted
 or all 2n-2 subsets have been analyzed
 i=1
 repeat until i=n
 repeat for all p products containing i mappings
 if p∉K’ and p does not include any key
 then ask db designer whether p is a key
 if answer is yes
 then K’ = K’ ∪ {p};

 k’=k’+1;
 endif;
 endif;
 endrepeat;
 i=i+1;
 endrepeat;
 endrepeat;
endif;
if K’==∅ // no key was asserted
 then k’=1;

 K’=
Oadom =

Π
)(

a:O\{#O}→codomain(a)

endif;

Abstract program:

K’= K; k’ = k; kmax =






2
n

nC ; i = 1;

 582

if Ô ∉ K’
 then
 dowhile i ≤ n - 1 and k’ < kmax
 j = 1; jmax = i

nC ;
 dowhile j ≤ jmax

generate Ti,j , the j-th subset with i elements of Ô ;
if Ti,j ∉K’
 then l = 1; superkey = false;
 dowhile l ≤ k’ and not superkey
 if K’(l) ⊆ Ti,j
 then superkey = true;
 else l = l + 1;
 endif;
 enddowhile;
 if not superkey
 then ask db designer if Ti,j is a key;
 if answer is yes
 then k’ = k’ + 1;
 K’(k’) = Ti,j;

 endif;
 endif;
 endif;
j = j + 1;

 enddowhile;
 i = i + 1;
 enddowhile;
end if;
if k’==0 // there is no asserted key other than object id #O

 then k’ = 1;
 K’=

Oadom =
Π

)(
a:O\{#O}→codomain(a)

endif;
endAlgorithm 15; �

Example 8: If Algorithm 15 were to be applied to an object set Ô =A•B•C, as-

suming that it starts with an empty key set and db designer answers are all no, it
would obviously generate the following sequence: A, B, C, AB, AC, BC; finally, it
would then automatically add the default key ABC.

If, for example, answer were yes for A, then db designer would not be asked any-
more whether AB and AC are keys, and so on. �

Theorem 17 (Algorithm 15 characterization)

 (i) Algorithm 15 complexity is O(2n 





2
n

nC)
 (ii) Algorithm 15 is sound and complete.

 583

 (iii) Algorithm 15 is optimal, i.e. it asks db designers the minimum possible num-
ber of questions.

Proof:
(i) Trivial, as it has three embedded loops, all of them finite (hence it never loops

infinitely) and the first one depending on n, but together with the second taking at

most =++ −11 ... n
nn CC 2n-2 steps, while the third one is taking at most







2
n

nC steps.
(ii)(Completeness) All possible keys are considered, as the algorithm is generating

all 2n-2 subsets of any type having cardinal n, or all of the maximum






2
n

nC number of
possible simultaneous keys.

 (Soundness) Moreover, as each one of them is first checked to ensure that it is
not a superkey and only then db designer is asked whether it is a key, it follows that
the algorithm is computing only possible remaining keys.

(iii) In the worst case (that is if K is initially void and db designer answers are all
no) there should obviously be 2n-2 questions asked (both the empty set and Ô are
excluded), which is exactly the number of questions asked by Algorithm 15, as no
possible key is processed more than once. In all other cases, as Algorithm 15 starts
with atomic keys and is adding in each outmost loop step one more mapping (up to at
most n-1), it follows that each key is eliminating the maximum possible number of
further questions q.e.d.

3 Conclusions

The paper presents the EMDM notions of objects, attributes, structural functions, and
keys. An algorithm for assisting db designers in specifying all of and only the possi-
ble keys of any object type is then introduced. Moreover, it is proved that this algo-
rithm is optimal, in that it asks the minimum number of questions possible.

Obviously, this algorithm can guarantee only syntactic correctness of keys; the
semantic one is the responsibility of db designers.

We believe that Algorithm 15 is worthwhile considering by any db designer, even
if a non-empty set of semantic keys has already been asserted for any object set: run-
ning it ensures rechecking, in order not to forget any of them.

Note that, even if it was introduced in the EMDM framework, this algorithm
should be embedded in any other data model, as keys are probably the most important
constraints. For example, in order to use it in RDM, one should simply replace object
sets with relations and mappings with attributes.

Algorithm 15 is implemented in MatBase [4, 8, 9], a prototype knowledge-base
management system based on EMDM. Moreover, MatBase is also incorporating
another similar algorithm for helping db designers in asserting relationships structural
keys [11].

Trivially, this algorithm is not optimal when considering the number of steps (on
the contrary, it is rather a “brute force” type one!). Further research will be done in
order to optimize it in this respect too, by not generating subsets that include existing

 584

keys. Anyhow, even this exponential one runs fast enough in MatBase as type cardi-
nalities are generally under 10 and in worst cases under 100.

Acknowledgements

This research was jointly sponsored by BluePhoenix Solutions, Cary, NC
(www.bluephoenixsolutions.com) and Datasis ProSoft srl, Bucharest, Romania
(www.datasis.ro).

References

1. Abiteboul S., Hull R., Vianu V.: Foundations of Databases. Addison-Wesley
(1995)

2. Lubell D.: A Short Proof of Sperner’s Lemma. J. Combinatorial Theory, 1 (1966)
299

3. Chen P.P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Trans. on Database Syst. 1(1) (1976) 9-36

4. Mancas C.: Conceptual Data Modeling. Ph.D. Thesis, Bucharest “Polytechnic”
University (1997)

5. Mancas C.: On Modeling Closed Entity-Relationship Diagrams in an Elementary
Mathematical Data Model., Proceedings 6th East-European Conference on Ad-
vances in Databases and Information Systems (ADBIS), Bratislava, Slovakia,
(2002) 165-174.

6. Mancas C.: On Modeling the Relational Domain-Key Normal Form Using an Ele-
mentary Mathematical Data Model. Proceedings IASTED Int. Conf. on Software
Engineering and Applications (SEA), Cambridge, MA (2002) 767-772

7. Mancas C: On Knowledge Representation Using an Elementary Mathematical Data
Model. Proceedings IASTED Int. Conf. on Information and Knowledge Sharing
(IKS), St. Thomas, V.I. (2002) 206-211

8. Mancas C., Dragomir S., Crasovschi L.: On Modeling First Order Predicate Calcu-
lus Using the Elementary Mathematical Data Model in MatBase DBMS. Proceed-
ings 21st IASTED Int. Conf. on Applied Informatics (AI), Innsbruck, Austria
(2003) 1197-1202

9. Mancas C.: Databases and Data Structures. Volume I: Conceptual Data Modeling
and Querying. To be published by Ovidius University Press (2003)

10. Mancas C., Dragomir S.: On the Equivalence of Functional and Entity-
Relationship Data Modeling. Paper submitted at IASTED SEA2003 International
Conference, to be held November 2003 at Marina del Rey, CA

11. Mancas C., Dragomir S.: An Optimal Algorithm for Structural Keys CAD in the
Elementary Mathematical Data Model. Paper submitted at IASTED SEA2003 In-
ternational Conference, to be held November 2003 at Marina del Rey, CA

