
Tools for XML-based Maintenance of
Heterogeneous Software

Elaine Isnard, Jean-Charles Mathey
Prologue Software/MEMSOFT Multilog Edition, Sophia-Antipolis, Nice, France

Email: eisnard@prologue-software.fr
Radu Bercaru, Alexandra Galatescu, Vladimir Florian, Laura Costea, Dan Conescu

National Institute for R&D in Informatics, 71316 Bucharest 1, Romania
Email:{radu,agal,vladimir,laura,dconescu}@ici.ro

Enrique Perez
Virtual Desk, 28020 Madrid, Spain

Email: eperez@virtualdesk.es

Abstract. The paper presents research results related to an ongoing European
IST project called MECASP (Maintenance and improvement of component-
based applications diffused in ASP mode), aiming at developing a set of tools
for tracking the evolution of heterogeneous software (built using heterogeneous
development tools, such as Java IDEs, relational DBMSs, CASE tools, docu-
ment editors etc). MECASP cannot benefit from existing version management
tools like CVS or Microsoft VSS because these tools deal with versioning text
files only and have a primitive mechanism for change tracking and version
merge. The paper first presents the XML-based solution for software modeling
in MECASP. Then, the basic platform and the general architecture of MECASP
are given, along with the limits of the existing open source software for the im-
plementation of the XML repository manager, the core of MECASP. The paper
also presents the specific features of the MECASP browser, conversion tools
and merger.

1 Introduction

The paper presents a set of tools for tracking the evolution of heterogeneous software,
under implementation in an ongoing European IST project called MECASP (Mainte-
nance and improvement of component-based applications diffused in ASP mode).

MECASP specific features, that differentiate it from the existing version manage-
ment products, are:

• maintenance and adaptation of heterogeneous software, built using heteroge-
neous development tools, such as Java IDEs, relational DBMSs, CASE tools,
document editors etc.

• versioning XML descriptions of the applications or generic software (models
in MECASP), correlated with the changes in the corresponding physical pieces
of software;

• automatic merge of the versions for heterogeneous resources, relying on rule-
based automatic decisions for inconsistencies solving;

 610

• synchronous and asynchronous multi-user work on the same version of the
project;

• installation of a new version of a running application;
• uniform interface for editing heterogeneous types of resources allowed in

MECASP, using a MECASP-specific browser.
For managing the software evolution, MECASP cannot benefit from existing version
management tools like CVS or Microsoft VSS because these tools deal with version-
ing text files only and have a primitive mechanism for change tracking and version
merge.

In order to maintain and adapt heterogeneous software (Java projects, objects in
relational DBs, forms, reports, graphical objects, documents etc), an XML repository
is created and managed. This repository contains versioned XML models that describe
the existing (application or generic) software, subject to maintenance and adaptation
(i.e. creation and management of their versions). Each model should comply with an
existing meta-model in XML, predefined or imported from existing development
tools. The meta-models represent templates in XML for the types of projects allowed
in MECASP (e.g Java projects, database applications, graphical applications, Web
applications etc).

An implementation objective in MECASP is to rely on existing open source, stan-
dard and portable software. The architecture of the repository manager relies entirely
on open source software (see Section 3). For this reason, its implementation raises
many problems and implies additional work for the connection of the involved open
source software, for adding missing functionality (usually with a high degree of com-
plexity) and for wrapping it with MECASP-specific functionality.

In order to reach its intended features, MECASP is supposed to unify the most im-
portant research results and to integrate the most important related products/ software.
The main research fields to be considered for MECASP implementation and the au-
thors' conclusions on the existing research solutions in these fields are briefly enu-
merated below.

Regarding the software description using meta-models and models, the starting
point and the inspiration source for MECASP was Oxygene ++ [18], devoted to ap-
plication development using external descriptions (models) of the graphical objects
and interfaces, of the menus, reports and databases. Another project is PIROL (Project
Integrating Reference Object Library) [19] that relies on the Portable Common Tool
Environment (PCTE), the reference model of ECMA [20]. Concerto [21] is a project
for XML representation of parallel adaptive components. The components (described
in XML) gather from the environment information on the hardware or software re-
sources and dynamically create XML definitions for these resources. GraphTalk [22]
is a generator of graphical editors adapted to semi-formal and informal models. It
builds meta-models relying on design technologies (e.g. UML).

Also, research results have been obtained for the automatic generation of XML
documents from MOF meta-models [23], for the conversion between XML and rela-
tional schemas [24], for the semantic enhancement of the XML schemas [25], etc.

Software maintenance using XML-based software architecture descriptions is
treated in other projects as well. The representation languages for software architec-
tures (e.g. [12, 13, 14]) are now adapted to XML (e.g. [4, 5, 6]). Versioning and de-
tecting changes in XML documents are still subject to debates (e.g. [7, 8, 9]). Trans-

 611

action management and locking on XML databases (e.g. [26]) are still in an incipient
research stage and do not have practical results.

Important theoretical results have also been obtained in version management and
merge algorithms (e.g. [15, 16, 17]), unfortunately without practical results and tools.

One may notice that, most of today's research results treat separate aspects needed
in MECASP: software architecture representation, software meta-modeling, genera-
tion of XML meta-models from existing applications, version management and merge
algorithms, management of the changes in XML documents, transaction management
etc.
The paper presents the solution in MECASP for software modeling in XML (Section
2), the basic platform and general architecture of MECASP, as well as the limits of
the existing open source software for the implementation of the XML repository man-
ager (Section 3), the specific features of MECASP browser (Section 4), the types of
conversion tools in MECASP (Section 5), the basic features of the merger tool in
MECASP (Section 6).

2 Software Modeling in XML

For each application, the XML repository contains the application model and the
version graph for the application maintenance and adaptation. Each application is
seen as a MECASP project. The representation of the application architecture in
MECASP has three levels:

• XML schema, that describes the general architecture for all applications main-
tained with MECASP,

• XML meta-models (predefined or imported from existing development tools),
complying with the general architecture in the XML schema. The meta-models
represent templates in XML for the types of projects allowed in MECASP.
MECASP will provide meta-models for Java projects, database applications,
graphical applications, Web applications etc.

• XML models, that describe domain specific applications maintained with ME-
CASP. Each XML model externally represents a MECASP project and results
from the customization of the definitions in a certain meta-model provided by
MECASP.

The XML schema and XML meta-models are predefined in MECASP and the XML
models are user-defined and application-specific.

The XML meta-models (and implicitly, the models) integrate data, control and
presentation levels in the application architecture.

From the data point of view, the meta-models are object-oriented, hierarchically
organized in XML. Their common schema was conceived as general as possible, in
order to comply with any type of application. It contains the following types of ele-
ments:
Project
 Object …

Property …
 Attribute ...

 612

The project is composed of objects that are qualified by properties and can embed
other objects (atomic or container-like objects). The object properties are described
and managed by attributes. The relationships between objects are composition and
property inheritance.

Figure 1 exemplifies several types of objects allowed in the Oxygene++ meta-
model (application, package, component etc).

From the control point of view, the XML meta-models are based on actions. ME-
CASP manages predefined actions that represent change actions upon application
objects. These actions can be: (1) standard actions like "create", "delete", "update",
"move" objects or properties or (2) non-standard actions like "compile", "search and
replace" etc. In the application meta-model, the actions are represented as particular
types of properties of the objects upon which they act. These actions can be correlated
with scripts or external tools, represented in the meta-model as particular types of
objects.

From the presentation point of view, the objects are described in the meta-models
by default values of their properties that can be further changed by the users.

The meta-models in MECASP are generated using a Meta-model Generator tool
and, then, are integrated into the XML repository. Each XML meta-model provided in
MECASP can be further customized and transformed into models for domain specific
applications (see Figure 2). For one meta-model, many models can be built to create
many different applications.

When an application is changed, the application model is changed as well and a
new version is created and managed in the XML repository.

On the developer's request, a new version can also be created by merging two ex-
isting versions of the application (see Section 4).

Each new version of the XML model contains a delta structure composed of all
standard and non-standard change actions applied to the original version of the model.

Fig. 1 Types of objects in Oxygene++ meta-model

 613

3 MECASP Platform for Software Maintenance and Adaptation

3.1 Layers in MECASP General Architecture

MECASP platform is composed of tools spread on three layers (see Figure 3):
• an XML repository that includes descriptions of the software entities (applica-

tion, component, site, client, object, method, DBMS table, etc.) and of the re-
lationships between them;

• an open-ended set of horizontal (configuration management, browsing, ad-
ministration) and vertical (editors, compilers, merge manager etc) tools. All
the market tools can potentially be integrated with MECASP. The integration
level is dependent on the tool capability to interface with the outer world;

• a graphical browser that allows browsing through the XML models and their
visualisation. It also activates the various tools as appropriate.

 ….

<Application…> properties…

<Window…> properties…

<List…> properties…

<Table> properties…

<List…> properties…

<Application…> properties…

<Window…> properties…

<List…> properties…

<Table> properties…

Meta-Model Model

Fig. 2 Building software models based on the definitions in a MECASP meta-model

Fig. 3 The three layers in MECASP general architecture

Graphical Browser

C
on

fig
ur

at
io

n
 M

an
-

ag
em

en
t

 M
er

ge
 m

an
ag

em
en

t

So

ur
ce

 m
an

ag
e-

m
en

t

 Sc
re

en
 a

nd
 re

po
rt

m
an

ag
em

en
t

D

at
a

st
ru

ct
ur

e

m
an

ag
em

en
t

 Pr
ep

ara
tio

n,
ins

tal
lat

ion

an
d e

xp
loi

tat
ion

 m
an

ag
e-

m
en

t

XML Repository Manager

 614

3.2 Functional Architecture of MECASP

Figure 4 represents the basic functional architecture of MECASP.

The repository manager plays the central role in MECASP. All the other modules can
be considered its ‘slaves’. The repository manager handles the storage of the XML
models and meta-models and it also co-ordinates the action of the other pieces of
software in MECASP. It allows the extraction or building of an XML model or a part
of a model. It gives information on the model, manages versions, workspaces and
transactions. It sends the ‘Refresh’ message to clients.

The browser instantiates four graphical clients (model explorer, object editor,
property editor, action menu) which are graphical views on the information inside the
XML models. These clients allow the navigation of the model, object update in the
model (attributes of the objects and their structure, e.g. move an object, update a
property, etc) and launching actions or specific editors. The browser sends messages
to the repository manager providing the types of changes the user wants to perform.

The repository manager proceeds the updates and replies with a ‘refresh’ message
to all clients handling the updated nodes.

The scripts are used to code tools and to specialize MECASP generic behaviour.
They execute code when an action is launched or when a trigger is fired. When an
object is updated, the repository manager fires an update action on this object which,
in its turn, calls a script. A user can also launch directly an action, for example by
selecting an item in the menu.

The graphical library contains the physical graphical objects displayed in the
browser's panels and the functions to perform the graphical operations.

The security manager is accessed by the repository manager to establish a user ses-
sion or to check the access rights on the software object handled by the user.

MECASP builds a workspace for each user. The workspace is a view on the XML
model from the user viewpoint. It contains the current data on which the user works.

Fig. 4 Functional architecture of MECASP

Delta Manager
(Save…)

Security
Manager

Publish/
Subscribe

Configuration
Manager

Base Graphical Library

Browser
Scripts

(actions, triggers…)

Repository Manager Library
(API, triggers, inheritance, launch scripts…)

Environment
Workspace

Configuration Files
(XML definition of

global variables)

 615

When the user is versioning his work, a delta is calculated. It contains the user's
changes on the current version of the model.

When a physical resource is versioned, the configuration manager stores it physi-
cally in the repository.

A configuration file (represented as an XML tree) is created for each tuple (user,
environment). It contains specific configuration data for the user in his environment,
in order to specialize the model. The model is the same for all users, but can be spe-
cialized by substituting model parameters (e.g. path names for the working folders,
files etc) with specific values existing in the configuration file (the real physical path
name).

MECASP components are implemented in Java. Scripts are also written in Java
and can be called from an XML scripted definition (e.g. in Ant).

3.3 Open Source Platform for XML Repository Manager

For the implementation of the repository manager (RM), four open source software
products have been chosen:

• Castor, an open source data binding framework for Java [1]. It is used in
MECASP for the mapping between (1) XML schema and Java classes and be-
tween (2) XML documents and Java objects;

• Xindice, a native XML (semi-structured) database server [2]. It is used in
MECASP to store the XML meta-models and models.

• XML:DB API for accessing the XML database [10]. It is accepted by Xindice
and, at the same time, it brings portability to the XML database in MECASP,
because it is vendor neutral and can be used as an API for many existing XML
databases.

• Slide, a Jakarta project [3] for managing hierarchical content (version graphs
in MECASP). Its functions for content and structure management, and also for
security and locking, are wrapped with the MECASP repository manager func-
tionality.

In MECASP, CVS (Concurrent Versions System), an open source and portable ver-
sion management system [11] will be used as well. But its use will confine to the
maintenance of the black-box software (software that cannot be described in the ME-
CASP repository, by XML meta-models and models).

The implementation of the XML repository manager in MECASP raises many
problems with respect to the following aspects:

• connection and wrapping of open source software;
• population of the XML database with meta-models for real applications;
• versioning heterogeneous software;
• management of the deltas (changes from the initial version to the new one);
• locking and transaction management on hierarchical objects;
• synchronous and asynchronous multi-user work on MECASP projects;
• installation of a new version of a running application;
• recovery from crashes.

 616

In the following, the limits of the involved open source software in MECASP
repository manager will be analyzed, in accordance with the main problems to be
solved (see above).

Conversion of the application definitions/ schemas to XML. Most complex meta-
models in MECASP are obtained by the conversion from the definitions/ schemas of
the existing applications/ resource types (e.g. a database schema, a Java project,
graphical objects, etc). The conversion is accomplished in two conversion phases: (1)
from application schema into an XML document; (2) from the XML document into a
MECASP-specific meta-model.

The limit of the today's development tools (open source and also commercial prod-
ucts) is that they do not provide functions for the conversion of the application and
resource definitions/ schemas to XML (first step above). Until the generalization of
this capability, MECASP will provide a limited number of meta-models.

Versioning heterogeneous resources. MECASP cannot benefit from existing version
management tools like CVS or Microsoft VSS (VisualSource Safe), because (1) they
deal with the versioning of text files only and (2) they have a primitive mechanism for
tracking and merging changes. E.g., in CVS delta-like files (that contain differences
between two versions of the same software), any change is tracked by a combination
of 'delete' and/ or 'append' operations. In the case of a database, these two operations
are not appropriate to switch two columns, for example, in an already populated data-
base, because the existing data will be lost during 'delete'. So, a 'move' operation is
necessary, along with an algorithm for the semantic interpretation of the change
(standard and non-standard) actions. Also, a MECASP specific delta representation
and processing have been implemented in order to maintain non-text resources.

Delta management. Slide [3] helps manage versions of XML models, but it does not
help manage deltas (changes between two versions). In MECASP, a model is stored
along with the list of changes. MECASP RM provides its own mechanism for delta
management. Deltas are bi-directional, suitable for both forward and backward merge
and version restoration, in comparison with the existing tools, that allow only the
version backward restoration.

Also, MECASP RM has its own mechanism for delta interpretation and merge.
E.g., suppose a field is deleted in a table. This action fires a trigger and launches a
script that deletes the reference to the field in all windows in the application. In the
delta, the delete action is stored only once. During the application's version restoration
or merge process, the trigger is fired to adapt the change to the current context, de-
pending on the object relationships.

Locking and transaction management on hierarchical objects. Because, multi-
user work will be the basic work method with MECASP, it must implement powerful
locking and transaction mechanisms. The hierarchical representation of the XML
models leads to the need for specific mechanisms for locking and transaction man-
agement on XML hierarchical objects. These mechanisms are not implemented yet in
the existing open source XML database servers (including Xindice) [26]. In MECASP

 617

RM, these mechanisms are implemented with a high degree of generality (to cope
with a potential further substitution of Xindice with other XML server).

Synchronous and asynchronous multi-user work on MECASP projects. In ME-
CASP, the implementation of the multi-user work is directed to:
• asynchronous sharing of the same version, by independent users. Save operations

are independent, resulting into different versions of the project.
• synchronous sharing of the same version, by users in the same team. A Pub-

lish/Refresh mechanism is implemented to synchronize the work of all users.
This is not appropriate while the users work on text documents (e.g. source code),
when the first solution is suitable. The source code should not be synchronized in
real time (in standard cases) but, a web server or a database definition could be.

Because several tools can access the same resource, the locking must be implemented
even in the single user mode in order to prevent data corruption.

Installation of a new version of a running application. Besides the initial installa-
tion of the repository and RM, using an existing installer, MECASP provides for the
installation of a new version of a running application, by the installation its changes
relative to the schema of the original version. It uses the results of the merge opera-
tion (change files). E.g., for installing a new version of a database application, the
following operations are needed: (1) change the schema of the running application, by
executing the SQL scripts resulting from the merge of the two versions; (2) import the
data from the running version into the new one; (3) discard the old version and start
the new one. Schema transformation and data import are supposed to run without
schema inconsistencies (all solved during the previous merge).

Recovery from crashes. Repository and RM crashes are prevented by a specific
mechanism for: (1) the management of temporary files for the currently used versions
and the current changes, not saved yet in the XML database; (2) the restoration of the
user/ team working space.

4 MECASP-specific Graphical Browser

The graphical browser is a generic tool representing the user interface in MECASP. It
allows the visualization (in a graphical form) and the management of all elements in
the XML meta-models and models.

The graphical browser has four visual parts:
• meta-model and model explorer. The user navigates the list of existing meta-

models and models, the hierarchy of the software components, the objects in
each component etc (see the left side in Figure 5)

• object editor. The user visualizes or edits the object selected in the explorer
panel. This editor displays, using a unitary graphical representation, objects of
different types (source code, DBs, forms, etc) (see the right side in Figure 5).

 618

This editor displays, using a unitary graphical representation, objects of differ-
ent types (source code, databases, forms, reports, etc).

• contextual menu. The user selects an action from a pop-up menu containing
the actions allowed on the element selected in the explorer panel.

• property editor. The user changes the properties of the selected element in the
explorer panel. In the case of a complex property, a specific editor is launched
to edit that property (e.g a style editor).

The four components of the browser rely on a graphical library that contains (1)
graphical objects displayed in the panels and (2) functions to perform the operations
on the graphical objects. The browser also includes a call-back graphical service, a
call-back requests service and a communication layer with RM.

 Fig. 6 Property editor in MECASP

Fig. 5 Explorer (left) and object editor (right) in MECASP

 619

5 Conversion Tools in MECASP

The conversion process of the existing software to and from the XML repository
includes two functions (see Figure 7):

• import of the user's files into an MECASP-compliant XML model. The files
can contain descriptions of 4GLs, java code, forms, reports, database struc-
tures etc. The import has two steps: (1) conversion of the user's file into a
standard XML file and (2) transformation of the XML file into an XML model
in MECASP.

• generation of a file from a part of an MECASP-compliant XML model. When
a user modifies an object (e.g. java source code, menu, screen etc), he needs to
compile, execute or view the corresponding physical object. The generation
process will convert the nodes in the model into the corresponding files.

6 Merge of Versions in MECASP

The existing version management products (among them, CVS is the most important
open source product) have a primitive merge mechanism that only specifies the dif-
ferences between two lines in the compared (only) text files, without any rule for
automatically solving the inconsistencies between them.

MECASP has its own representation of the deltas (enhanced with the semantics of
the change operations) and its own mechanism for delta management and for merging
two versions of an application. When the user changes the definition of a physical
object (e.g. the schema of a table in a database), automatically the changes are re-
flected into the XML model of the respective object. The merge operation applies to
the versions of the application XML models, not to the versions of the physical appli-
cations. This strategy allows the merge of versions for any type of objects, not only
for text files.

Other distinctive features of the MECASP Merger are:
• it semantically interprets and processes the change actions stored in deltas (e.g.

move an object, delete an object, delete or change a property, etc);

Fig. 7 Convertion tools in MECASP

MECASP
XML Model

4GL (.4gl)
Java (.java)
GUI (.ecr)
Menu (.men, .ctx, .key)
Report (.eta)
Database

Generation of file
Java (.java)
4GL (.4gl)
GUI (.ecr)
Menu (.men, .ctx, .key)
Report (.eta)
Database

Standard XML file Import I
nt

eg
ra

tio
n

 620

• it implements an automatic rule-based decision mechanism for conflicts reso-
lution. According to these rules, the list of change actions is simplified and the
change operations of several users are chronologically interleaved. Special
types of change operations (e.g. compile, search and replace etc), also tracked
in deltas, are treated by specific merge rules.

• it creates change files, further used for the installation of a new version of a
running application. These files depend on the type of application. For exam-
ple, for a database application, they are SQL scripts and for a Java project,
they might represent the new executable file.

The MECASP Merger implements two kinds of merge (see Figure 8):

• merge by integration. In this case, the merge of B with C is an adaptation of B.
• complete merge. In this case, the new version is generated starting from A, by

applying the changes in 'delta1' and 'delta2'. The new version D becomes the
child of A, the parent of the merged versions.

The sequence of change actions on the same element is simplified according to prede-
fined rules. For example, the sequence 'move'/'update' + 'delete' becomes 'delete', the
sequence 'create + 'move'/'update' + 'delete' becomes an ineffective operation, etc.

The automatic decision on inconsistencies solving and on the merge result also re-
lies on predefined rules. These rules depend on the type of change actions, on the type
of objects they act upon, and on the role of the version in the merge operation: dona-
tor or receptor. These premises impact on the type of merge and on the merge result:
fully automatic merge, merge after user decision, refused merge, recommended
merge.

The graphical user interfaces (GUIs) involved in the merge process are :

• a browser tree, representing a model, with a red mark for the nodes in conflict.
When clicking on this mark, a specialized panel is opened explaining the na-
ture of the conflict and proposing choices. This panel can call, via an interface,
a specialized window to refine the choice. When a choice is made, the browser
tree is updated and so are the edition panels.

Fig. 8 Two kinds of merge: by integration and complete merge

A

B C

Integration Complete Merge

D

delta2 delta1delta 1 delta 2

C

A

B

A

C

D = B + delta2 = A+ delta1 + delta2

 621

• three grouped edition panels. Two panels represent the current state of the
original versions (non editable) and the third one represents the merged ver-
sion (editable). This third panel can be used to edit the new merged version
during the merge process. When clicking on the red mark in the browser tree,
the panels are also auto-positioned on the selected object.

Each time a choice is made, the tables of deltas in memory are recalculated, and the
GUIs are refreshed automatically.

7 Conclusions

The paper gives a brief presentation of the basic features and general architecture of
MECASP. It also presents the basic elements for software description using XML
meta-models and models. The most important benefit drawn from the external de-
scription of the software is the possibility to maintain heterogeneous types of soft-
ware, in comparison with the existing tools for version management that maintain
only text files.

Among the tools for managing the software evolution with MECASP, the paper
presents the basic features of the browser, the conversion tools and the merger. Also,
related to the implementation of the repository manager, the paper enumerates the
limits of the open source software with respect to the problems to be solved. It reveals
the fact that, for most of MECASP intended features and functionality, the developers
cannot benefit from existing (even theoretical) solutions. Most of the functionality has
been solved from scratch, by MECASP specific implementation ideas.

References

1. Exolab,"Castor project", http://castor.exolab.org/index.html
2. Apache, "Xindice Users Guide", http://xml.apache.org/xindice/
3. Jakarta, Slide project, http://jakarta.apache.org/
4. E.M. Dashofy, A. Hoek, R. N. Taylor, "A Highly-Extensible, XML-based Architecture

Description Language", Proceedings Working IEE/IFIP Conference on Software Architec-
ture, (2001)

5. E.M. Dashofy, "Issues in Generating Data Bindings for an XML Schema-based Lan-
guage", Proceedings. XML Technology and Software Engineering, (2001)

6. R.S. Hall, D. Heimbigner, A.L. Wolf, "Specifying the Deployable Software Description
Format in XML", CU-SERL-207-99, University of Colorado

7. S-Y. Chien, V.J. Tsotras, C. Zaniolo, "Version Management of XML Documents", Pro-
ceedings 3rd International Workshop on the Web and Databases (WebDB), Dallas, TX,
(2000)

8. Marian, S. Abiteboul, G. Cobena, L. Mignet, "Change-Centric Management of Versions in
an XML Warehouse", Proceedings 27th International Conference on Very Large Data-
bases (VLDB), Roma, Italy, (2001)

9. Y. Wang, D.J. DeWitt, J. Cai, "X-Diff: An Effective Change Detection Algorithm for
XML Documents", Proceedings 19th International Conference on Data Engineering
(ICDE), Bangalore, India, (2003)

 622

10. XML:DB, "XML:DB Initiative", http://www.xmldb.org/
11. Cederqvist P. et al., "Version Management with CVS", http://www.cvshome.org/
12. Open Group, "Architecture Description Markup Language (ADML)", (2002), http://

www.opengroup.org/
13. Kompanek A. "Modeling a System with Acme", (1998), http://www-2.cs.cmu./~acme/

acme-home.htm
14. Garlan D., Monroe R., Wile D. (2000). "Acme: Architectural Description of Component-

Based Systems". In Foundations of Component-based Systems, Cambridge University
Press, (2000)

15. Conradi R., Westfechtel B. "Version Models for Software Configuration Management". In
ACM Computing Surveys, 30(2), (1998), .http://isi.unil.ch/radixa/

16. Christensen H.B. "The Ragnarok Architectural Software Configuration Management
Model". Proeedings 32nd Hawaii International Conference on System Sciences, (1999).
http:// www.computer.org/proceedings/

17. Christensen H. B. Ragnarok: An Architecture Based Software Development Environment.
PhD Thesis, 1999, Centre for Experimental System Development Department of Com-
puter Science Univ. of Aarhus DK-8000 Arhus C, Denmark. http://www.daimi.aau.dk/

18. Prologue-Software. "Documentation of Oxygene++". Technical documentation at Pro-
logue Software/MEMSOFT Multilog Edition.

19. Groth B., Hermann S., Jahnichen S., Koch W. "PIROL: an Object-oriented Multiple-View
SEE". Proceedings Software Engineering Environments Conference (SEE), The Nether-
lands, (1995)

20. ECMA (European Computer Manufacturers Association). "Reference Model for Frame-
works of Software Engineering Environments". Technical Report, ECMA, (1993)

21. Courtrai L., Guidec F., Maheo Y. "Gestion de Ressources pour Composants Paralleles
Adaptables". Journees "Composants adaptables", Grenoble, (2002)

22. Parallax (Software Technologies). "GraphTalk Meta-modelisation Manuel de Reference,
(1993)

23. Blanc X., Rano A., LeDelliou. "Generation Automatique de Structures de Documents
XML a Partir de Meta-models MOF", Notere, (2000)

24. Lee D., Mani M.,Chu W. W. “Efective Schema Conversions between XML and Relational
Models”, Proceedings European Conference on Artificial Intelligence (ECAI), Knowledge
Transformation Workshop, Lyon, France, (2002)

25. Mani M., Lee D., Muntz R. R.. "Semantic Data Modeling using XML Schemas", Proceed-
ings 20th International Conference on Conceptual Modeling (ER), Yokohama, Japan,
(2001)

26. Helmer S., Kanne C., Moerkotte. "Isolation in XML Bases". Technical Report, The Uni-
versity of Mannheim, (2001)

