
Single-pass Static Semantic Check for Efficient
Translation in YAPL

Zafiris Karaiskos, Panajotis Katsaros and Constantine Lazos

Department of Informatics, Aristotle University
Thessaloniki, 54124, Greece

Email: {karaisko,katsaros,clazos}@csd.auth.gr

Abstract. Static semantic check remains an active research topic in the con-
struction of compiler front-ends. The main reasons lie into the ever-increasing
set of semantic properties that have to be checked in modern languages and the
diverse requirements in the timing of checks during the compilation process.
Challenging single-pass compilers, impose the development of appropriate
parse-driven attribute evaluation mechanisms. LR parsing is amenable to L-
attributed definitions, where, in every syntax tree, the attributes may be evalu-
ated in only one left to right depth-first-order traversal. In such definitions, for
every production of the grammar, the inherited attributes on the right side de-
pend only on attributes to the left of themselves. When the LR-parser begins to
analyze a word for a non-terminal, the values of its inherited attributes must be
made available. This outstanding difficulty constitutes the major concern of the
existing attribute evaluation mechanisms, found in the literature. We review
them and then we introduce the evaluation mechanism, which we successfully
utilized in YAPL, a complete programming language build exclusively for edu-
cational purposes. Our approach takes advantage of an effective attribute-
collection management scheme, between a parse-driven symbol node stack and
the symbol table, for delivering synthesized and inherited attribute values. Fi-
nally, we demonstrate the applicability of the suggested approach to representa-
tive problems of enforcing language rules for declaration and scope related
properties and in type checking of assignments.

1 Introduction

The main problem in parser controlled attribute evaluation is the design of an efficient
mechanism for delivering the inherited attributes involved in semantic check compu-
tations. In LR parsing, these values may be only determined, when the grammar rule
to be used becomes known. Thus, all attribute evaluation actions, should be associ-
ated, with reductions of the LR-parser.

Let us consider an LR-state item

]......[210 ni XXXXX ⋅→

with a non-terminal Xi. Then, one possible interpretation for this state is that a word
for Xi is next to be analysed. To evaluate the attributes in the sub-tree of Xi, which
must then be constructed, the values of the inherited attributes of Xi must be available.

 624

Since, by assumption, the attribute grammar is L-attributed ([5,6]), we may suppose
that all arguments of the inherited attributes of Xi are somehow available in the pars-
ing stack.

Yacc-like parser generators, support the use of the %union declaration for defin-
ing possible data types of the symbols pushed into and popped out of the parsing
stack. In addition, access to non-positive positioned symbols ($0, $-1 etc.) is al-
lowed, for obtaining the arguments of the inherited attribute computations. However,
an important limitation of the Yacc maintained parsing stack, is that due to its fixed
access scheme, there is no way to alter symbol values and push them back into the
stack.

Alternatively, in [7] the authors suggest the use of a stack made by lists of attrib-
utes and maintained, in parallel to the parsing stack. However, this complex structure
is still non applicable to grammars, where the positions of the arguments to be used in
inherited attribute computations, may not be predicted (see [1] for such an example
grammar). Thus, a new non-terminal, say N, is suggested to be placed before Xi and a
new production rule ε→N to be added to the grammar. If reduction to this non-
terminal N occurs, the attribute evaluator obtains the arguments for the inherited at-
tribute computations at stack positions, addressed relative to the top of the stack,
evaluates the attributes and leaves the values behind, at the top of the stack. In any
case, this transformation yields attribute values, placed in known stack positions.

It is important to note that a similar behavior in respect to the parsing stack is also
supported, by the Yacc generated parsers, when using actions embedded into the
grammar rule productions. However, this approach could even lead to the transformed
grammar to exhibit artificially introduced parsing conflicts, except of the more re-
stricted class of the LL(1) based L-attributed definitions. In response to this limita-
tion, Wilhelm & Maurer suggest, in [7], a complicated LR-property preserving
grammar transformation, based on the previously described attribute lists stack.

In this work, we introduce the static semantic check mechanism that we have suc-
cessfully implemented in YAPL (Yet Another Programming Language). YAPL is a
programming language build exclusively for educational purposes:
• it supports a rich set of C-like language constructs (almost all the widely used),
• it uses four instances of a carefully designed symbol table structure, for the effi-

cient delivery of inherited attribute values (one for variables and functions, one for
structures and unions, one for enumerations and the last one for control flow la-
bels),

• its semantic check mechanism is based on an effective composite data structure,
which provides a means for by-passing the need for embedded actions and their
aforementioned side-effects.
Next section describes the basic symbol table and the overall attribute-collections

management structure. In section 3, the introduced semantic check mechanism is ap-
plied to problems of enforcing language rules, for declaration and scope related prop-
erties. Section 4 demonstrates the applicability of the suggested approach, in a repre-
sentative type checking problem and the paper concludes with a summary of its main
advantages and a short note on its future research prospects.

 625

2 Static Semantic Check in YAPL

The basic symbol table structure (Figure 1), is based on the use of a separate chaining
Hash table, in conjunction with a composite symbol node cross-link structure that
connects all symbols recognized in the same nested scope level.

0

1

2

3

4

5

6

7

8

9

10

11

i

temp

j

k

size

Hash table

cross-links head

Fig. 1. The basic symbol table structure in YAPL.

Each symbol node is expressed as an attribute-collection, double linked to a spe-
cific Hash table chain. At the same time, it is also linked to another chain, associated
with the cross-link head of the nested scope level, where the symbol was recognized.
The hash function used in our compiler is the one suggested in [1].

YAPL’ s extensible symbol table structure supports the use of highly complex C-
like declarations ([3,4]). Focusing in variable declarations, each one of them is com-
posed of two parts: the specifier, which is basically a list of keywords (int, long, ex-
tern, struct etc.) and the declarator that is made up of the variable’s name and an arbi-
trary number of stars, array-size specifiers and/or parentheses (used both for grouping
and as a reference to a function). There is only a limited number of legal keyword
combinations for the specifier and they are expressed based on a fixed number of en-
try fields in the attribute-collection, referred to the corresponding symbol (sclass,
type, user_type, short, sign). In Figure 2, we present the attribute-collection corre-
sponding to the array of pointers declaration:

static unsigned short int *ap[4];

The array bracket, indirection and structure member selection operators generate
temporary variables, whose types may be derived from the original type representa-
tion, possibly, by removing the first element of the declaration list. As an example
consider the expression ap[2] that generates a temporary variable represented as in
Figure 3.

 626

The overall mechanism is completed by a parse-driven symbol node stack, which
is maintained in parallel to the Yacc generated parsing stack, for delivering synthe-
sized attribute-collections.

STATIC

INT

apname

type

dcl_ptr

4

ARRAY

sclass

SHORT

UNSIGNEDsign

short

POINTER

Fig. 2. Symbol node attribute-collection structure.

STATIC

INT

apname

type

dcl_ptr

sclass

SHORT

UNSIGNEDsign

short

POINTER

Fig. 3. Temporary attribute-collection corresponding to a pointer array element.

3 Declarations

There may be more than one independent declarations of the same name, in different
parts of the source program. The portion of the program, where a declaration applies,
is the scope of that declaration. Language scope rules determine which declaration of
a given name is applied, when the name appears in the program text.

In YAPL, we have implemented four types of scope (as in C):

 627

• Function scope, which applies only for label names, followed by “:” and a state-
ment. The label name must be unique within a function and may be referenced
anywhere within that function.

• File scope, for declarations placed outside of any block that is not part of a parame-
ter declaration. File scope extends to the end of file.

• Block scope, for declarations placed within a block, extended to the portion of the
program between “{” and the right brace “}” that terminates the block.

• Function prototype scope, for names contained within the list of parameter declara-
tions in a function prototype that is not part of a function definition. Function pro-
totype scope extends to the end of the function declarator.
The linkage property forces a name that is declared in more than one scope or more

than once in the same scope, to refer to the same object or function. We discriminate
three types of linkage: external, internal and no linkage. The type of linkage for a par-
ticular name depends on whether it is a function or an object and on its storage class.
Table I summarizes the scope linkage properties that have been implemented in
YAPL.

STORAGE
CLASS FILE SCOPE BLOCK

SCOPE
None If the declared name is a function, then it has the same

linkage as any visible file scope declaration of that name
or, if none exists, it has external linkage. Names repre-
senting any other type of object (variable, struct etc.) have
external linkage.

No link-
age.

Extern The name being declared has the same linkage as any
visible file scope declaration of that name or, if none ex-
ists, it has external linkage.

As in
file
scope.

Static Internal linkage. No link-
age.

Table 1. Scope Linkage.

The suggested semantic check mechanism delivers the described declaration re-
lated properties, as following:
• The parser actions create symbol attribute-collections, which are appropriately up-

dated and pushed into the parse-driven symbol node stack (not the Yacc generated
one).

• For a list of declarators, a separate attribute-collection is created for each of them
and they are all connected by their cross-link dedicated attribute. Only the last one
remains in the stack.

• When parsing proceeds with a declaration statement reduction, then two attribute-
collections are popped out of the stack: the one that corresponds to the specifier
part and the one that corresponds to the declarator that was last encountered. The
non-null valued attributes of the specifier part are copied to the corresponding at-
tributes of the delivered declarator and propagated by its cross-link, to the previ-
ously encountered declarators, contained in the same statement. Thus, by delaying
all the attribute-collections updates up to the declaration statement reduction, we

 628

avoid non-positive positioned stack accesses or use of embedded actions, with pos-
sibly undesirable side effects.

• The following static semantics is then checked:
i. only one storage class may be specified,
ii. only one type may be specified,
iii. if the type is STRUCT, UNION or ENUM, the corresponding attribute val-

ues can not be short, long, signed or unsigned,
iv. if there is a user-defined type, the respective attribute value can not be short

or long,
v. if there is a character type, the respective attribute value can not be short or

long,
vi. if there is a float or a double type, the corresponding attribute values can

not be short, long, signed or unsigned and
vii. if there is a void type, the corresponding attribute values can not be short,

long, signed or unsigned.
• The properties of Table I, are then enforced, together with other declaration spe-

cific semantic properties. These include top level or local variable declaration se-
mantics, structure and union declaration semantics, enumeration declaration se-
mantics, function definition and declaration semantics accompanied by appropriate
compatibility checks and label declaration semantics. In this paper, we do not pro-
ceed to the detailed description of them, due to space limit reasons.

• Finally, the declared names’ attribute-collections are inserted into the appropriate
symbol table instance, for later use.

4 Type Checking

The suggested attribute-collections representation made also feasible the incorpora-
tion of type compatibility checks, in an elegant way. In YAPL, the notion of type
compatibility is summarized in the following language rules:
• Two arithmetic types are compatible only if they are the same type. If a type can be

written using different combinations of type specifiers, all the alternate forms are
considered to refer to the same type. Thus, the types short and short int are
the same, but the types unsigned, int and short are all different.

• Each enumerated type definition yields a new integral type. There is no case, for
two different enumerated types that are defined in the same source file, to be com-
patible.

• Two array types are compatible, if their element types are compatible. If both types
specify sizes, the sizes must be the same. However, if only one of them specifies a
size - or if neither do - the two types are still compatible.

• Two function types are compatible, if they define compatible return types.
• Each occurrence of a type specifier for a structure or a union type definition intro-

duces a new structure or union type that is neither the same nor compatible to any
other such type, in the same source file. Any type specifier that is a structure, un-
ion, or enumerated type reference is the same type as the one introduced in the cor-
responding definition. The type tag is used to associate the reference to the defini-

 629

tion and in this sense it may be considered as the name of the type. As an example
we have the following:

struct S {char c; int i;} u;
struct S v;

• Two pointer types are compatible if they point to compatible types.
We proceed to the description of the type checks that are to be applied to the com-

plicated assignment expression of the following code fragment:

 typedef struct s2 {
 struct { int i, j; } arr[123];
 int b;
 } strct_type;
 strct_type met[30], drt;

 void main(void)
 {
 . . .
 met[14].arr[28].j=drt.b;
 . . .
 }

In YAPL, an expression may either specify the computation of a value or designate
an object or a function or generate side effects or combine any of them. It is expressed
as a sequence of operators and operands that is possibly containing one or more bal-
anced pairs of parentheses. Expressions are build-up from primary expressions, which
may take the form “(” expression “)” or may be simply represented by an identifier or
a literal. The evaluation order is affected by the operators’ precedence and associativ-
ity properties, as well as the parentheses and it is defined exclusively in the language
syntax.

Thus, type checking makes use of the operands’ attribute-collections and proceeds
in a parse-driven incremental fashion: starting with identifier and literal attribute-
collections, each operator occurrence causes the generation of a new intermediate
attribute-collection, carrying the results of the type compatibility checks applied to the
operands. The whole type checking process is completed, when the parser encounters
a statement’s occurrence.

As regarding the expression contained in the previously stated code fragment, Fig-
ure 4 shows the attribute-collection corresponding to the identifier “met”.

The square-brackets operator is then encountered and applied to the identifier
“met”. However, as in C, the expression met[14] is equivalent to *(met+14) and
results in enforcing first, the language rules for ‘+’ and then, the rules associated to
the indirection operator. This yields the lvalue attribute-collection shown in Figure 5.

Next, the parser invokes the semantic actions associated to the dot operator, for
checking the expression met[14].arr: the attribute-collection has to refer to a
structure or a union type and the name next to the dot to coincide to one of its compo-
nents (connected to each other by the cross-link attribute). The result is the named
component shown in Figure 6.

 630

met

STRUCT

ARRAY
30

arr

STRUCT

ARRAY
123

i

INT

j

INT

b

INTFALSE

fields

lval

dcl_ptr

fields

cross-link

dcl_ptr

cross-link

Fig. 4. The attribute-collection of the identifier “met”.

met

STRUCT

arr

STRUCT

ARRAY
123

i

INT

j

INT

b

INTTRUE

fields

lval

fields

cross-link

dcl_ptr

cross-link

Fig. 5. The lvalue attribute-collection for the expression met[14].

STRUCT

FALSE

ARRAY
123

i

INT

j

INT

fields

cross-link

dcl_ptr

cross-link

lval

Fig. 6. The named component met[14].arr.

 631

INT INT

lval TRUE

Fig. 7. Attribute-collections for the met[14].arr[28].j and drt.b operands.

The type checking proceeds in the same way and concludes to the attribute-
collections (Figure 7) for the operands met[14].arr[28].j and drt.b of the
initial expression. The left-hand side attribute-collection corresponds to an lvalue and
both of them refer to compatible types that happen to be permissible in an assignment
operation. The expression’s type check terminates successfully.

5 Conclusion

This paper introduces a novel composite data structure that provides a means for by-
passing the use of embedded actions that may cause undesirable side effects in the
parsing procedure. The resulted semantic check mechanism is based on an effective
attribute-collection management scheme, between a parse-driven symbol node stack
and the symbol table, for delivering synthesized and inherited attribute values. The
overall approach has been successfully applied in a C-like educational language com-
piler, named YAPL. For the whole language implementation,
• we did not make use of any non-positive positioned stack accesses and
• we used just a single embedded action, for changing the nested scope level, in

compound statement blocks.
Finally, we demonstrate the use of the suggested mechanism for semantic checking

of declaration related properties and in a representative types checking problem.
The only alternative found to be related, to the problems attacked, is the data struc-

ture, suggested in [7], together with a complicated LR-property preserving grammar
transformation, to avoid the introduction of parsing conflicts.

Future research work will focus on two distinct directions, namely,
• the formal description of the introduced semantic check framework and
• the appropriate customization, for use in static semantic checks of object-oriented

and concurrent programming language constructs [2].

References

1. Aho A.V., Sethi R. and Ullman J. D. Compilers: Principles, Techniques and Tools. Addi-
son-Wesley, (1986)

 632

2. Baiardi F., Ricci L., Vanneschi M. Static Type Checking of Interprocess Communication
in ECSP. Proceedings ACM SIGPLAN Symposium on Compiler Construction, (1984) 290-
299

3. Harbison S.P., Steele G.L. Jr: C. A Reference Manual, 4th edition, Prentice-Hall, (1995)
4. Kernighan B.W., Ritchie D.M. The C Programming Language, 2nd edition, Prentice-Hall,

(1988)
5. Knuth D.E. Semantics of Context-free Languages, Mathematical Systems Theory, 2(2):

127-145 (1968)
6. Knuth D.E. Semantics of Context-Free Languages: Correction. Mathematical Systems

Theory, 5(1):95, (1971)
7. Wilhelm R., Maurer D. Compiler Design, Addison-Wesley, (1995)

