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Abstract. This paper presents a friendly visual tool for HAP, a rule-
configurable planning system, which automatically adapts to each problem, in 
order to achieve best performance. HAP analyzes the problem and uses a rule 
system in order to configure the planning parameters in a way that best suites 
the morphology of the problem. The visual tool enables the user to use the plan-
ning system, get advice from the built-in rule system and even interfere with it. 
ViTAPlan also contains a visual designer, based on the Planning Domain 
Definition Language, that enables the user to create new planning domains and 
problems in a graphical way and get visual representations of existing ones. 
Furthermore the tool contains a module that simulates the execution of the plan 
and illustrates the changes in the world, which follow the application of each 
action in the plan.  

1 Introduction 

Automated Planning has been an active research topic for almost 40 years and during 
these four decades a great number of papers describing new methods, techniques and 
systems have been presented that mainly focus on ways to improve the efficiency of 
planning systems. However, there are not many successful examples of planning sys-
tems adapting to industrial use. From a technical point of view, this can be mainly 
explained by two facts: a) the planning systems are not yet efficient enough to handle 
real-world problems and b) since the end-user of a planning system in the industry 
will not be a planning-expert, systems must be accompanied by user friendly inter-
faces.  

Concerning the efficiency of planning systems, the major part of researchers focus 
on domain–independent planning systems trying to make them as efficient as possi-
ble, concerning both planning time and length of produced plans. Although, there 
have been examples of really efficient systems, during the last decade, there are still 
open issues to be addressed. Little systems support aspects of planning that are crucial 
to industry, such as temporal planning or efficient handling of resources. For instance, 
Advisor (Marinagi et al 1996) is a successful case of applying a planning system in 
real world applications. The planning system embodies a symbolic constraint solver 
and a temporal reasoning mechanism in order to allow the expressiveness needed for 
encoding the problems. Another obstacle in the application of planning systems is the 
fact that they exhibit instabilities in their efficiency among different domains or even 
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problems of the same domain. A planner may be very good in specific domains and 
problems but there is no planning system that guaranties a general top performance. 

As far as user interfaces are concerned, there have been several approaches from 
institutes and researchers to create visual tools for defining problems and running 
planning systems, such as the GIPO system1, the SIPE-22 and the ASPEN3 graphical 
user interfaces. Moreover, there is a number of approaches in building visual inter-
faces for specific applications of planning. The PacoPlan project4 aims in building a 
web-based planning interface for specific domains. AsbruView (Kosara and Miksch, 
2001) is a visual user interface for time-oriented skeletal plans representing complex 
medical procedures. Another example of visual interfaces for planning is the work of 
the MAPLE research group at the university of Maryland (Kundu et al, 2002), which 
concerns the implementations of a 3D graphical interface for representing hierarchical 
plans with many levels of abstractions and interactions among the parts of the plan. 
Although these approaches are very interesting and provide the community with use-
ful tools for planning, there is still a lot of work to be done in order to create an inte-
grated system that meets the needs of the potential user. 

This paper describes ViTAPlan, a visual tool for a the HAP (Highly Adjustable 
Planner) system, which enables the user to setup it by tuning several planning pa-
rameters. The system is also equipped with a rule system able to automatically fine-
tune the planner based on the morphology of the problem in hand. The graphical in-
terface enables the user to setup and run HAP, get advice from the rule system and 
also design new domains and problems. Finally the tool enables the user to view vis-
ual representations of the plan and preview a simulation of the execution of it in the 
problem’s world. The graphical interface is a first prototype of a project aiming in 
producing an integrated planning system for use in real world situations.  

2  Using HAP 

HAP, is a highly adjustable planning system that can be customized by the user 
through a number of parameters. These parameters concern the type of search, the 
quality of the heuristic and several other features that affect the planning process. The 
HAP system is based on the BP (Bi-directional Planner) planning system (Vrakas and 
Vlahavas, 2001) and uses an extended version of the ACE (ACtion Evaluation) heu-
ristic (Vrakas and Vlahavas, 2002). 

HAP is capable of planning in both directions (progression and regression). The 
system is quite symmetric and for each critical part of the planner, e.g. calculation of 
mutexes, discovery of goal orderings, computation of the heuristic, search strategies 
etc., there are implementations for both directions. The direction of search is the first 
adjustable parameter of HAP used in tests, with the following values: a) 0 (Regression 
or Backward chaining) and b) 1 (Progression or Forward chaining). 
                                                 
1 http://scom.hud.ac.uk/planform/gipo/ 
2 http://www.ai.sri.com/~sipe/gui.html 
3 http://www-aig.jpl.nasa.gov/public/planning/aspen/aspen_index.html 
4 http://lpis.csd.auth.gr/projects/pacoplan/ 
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As for the search itself, HAP adopts a weighted A* strategy with two independent 
weights: w1 for the estimated cost for reaching the final state and w2 for the accumu-
lated cost of reaching the current state from the starting state (initial or goals depend-
ing on the selected direction). For the tests with HAP, we used four different assign-
ments for the variable weights which correspond to different assignments for w1 and 
w2: a) 0 (w1=1, w2=0), b) 1 (w1=3, w2=1), c) 2 (w1=2, w2=1) and d) 3 (w1=1, w2=1). 

The size of the planning agenda (denoted as sof_agenda) of HAP also affects the 
search strategy and it can also be set by the user. For example, if we set sof_agenda to 
1 and w2 to 0, the search algorithm becomes pure Hill-Climbing, while by setting 
sof_agenda to 1, w1 to 1 and w2 to 1 the search algorithm becomes A*. Generally, by 
increasing the size of the agenda we reduce the risk of not finding a solution, even if 
at least one exists, while by reducing the size of the agenda the search algorithm be-
comes faster and we ensure that the planner will not run out of memory. For the tests 
we used three different settings for the size of the agenda: a) 1, b) 100 and c) 1000 

 The OB and OB-R functions introduced in BP and ACE respectively, are also 
adopted by HAP in order to search the states of the search for violations of orderings 
between the facts of either the initial state or the goals, depending on the direction of 
the search. For each violation contained in a state, the estimated value of this state that 
is returned by the heuristic function, is increased by violation penalty, which is a con-
stant number supplied by the user. For the experiments of this work we tested the 
HAP system with three different values of violation_penalty: a) 0, b) 10 and c) 100.  

The HAP system employs the heuristic function of the ACE planner, plus two 
variations of it, which are in general more fine-grained. There are implementations of 
the heuristic functions for both planning directions. All the heuristic functions are 
constructed in a pre-planning phase by performing a relaxed search in the opposite 
direction of the one used in the search phase. During this relaxed search the heuristic 
function computes estimations for the distances of all grounded actions of the prob-
lem. 

The user may select the heuristic function by configuring the heuristic_order pa-
rameter. The three acceptable values are: a) 1 for the initial heuristic, b) 2 for the first 
variation and c) 3 for the second variation. 

HAP also embodies a technique for simplifying the definition of the sub-problem 
in hand. This technique eliminates from the definition of the sub-problem (current 
state and goals) all the goals that have already been achieved in the current state and 
do not interfere in any way with the achievement of the remaining goals. In order to 
do this the techniques performs, off-line before the search process, a dependency 
analysis on the goals of the problem. The parameter remove_subgoals is used to turn 
on (value 1) and off (value 0) this feature of the planning system. 

The last parameter of HAP is equal_estimation, which defines the way in which 
states with the same estimated distances are treated. If equal_estimation is set to 0 
then between two states with the same value in the heuristic function, the one with the 
largest distance from the starting state (number of actions applied so far) is preferred. 
If equal_estimation is set to 1, then the search strategy will prefer the state, which is 
closer to the starting state. 

The proposed graphical interface enables the user to use HAP with a friendlier and 
more accurate way. From the initial screen of the interface, which is shown in Figure 
1, the user uses common dialogues in order to browse for the domain and problem 
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files. The plan is also presented in the same screen along with statistics concerning the 
planning process (planning time, length of solution, examined states). Optionally, the 
user may select to configure HAP, through the window shown in Figure 2, by select-
ing through a number of options for each planning parameter. 
 

 
Figure 1. Selecting Domain and Problem 

 
Figure 2. Configuring HAP 

3  Automatic Configuration of HAP 
HAP-RC (Vrakas et., al 2003) is an extension to the HAP planning system, which 
uses a rule system in order to automatically select the best settings for each planning 
parameter, based on the morphology of the problem in hand. HAP-RC, whose archi-
tecture is outlined in Figure 3 is actually HAP with two additional modules (Problem 
Analyzer and Rule System) which are utilized off-line, just after reading the represen-
tation of the problem in order to fine tune the planning parameters of HAP.  
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Figure 3. HAP-RC Architecture 

The role of the Problem Analyzer is to identify the values of a specific set of 19 
problem characteristics (noted as B1 to B19). These characteristics include measur-
able attributes of planning problems, such as number of facts per predicate or branch-
ing factor of the problem e.t.c. After the identification of the values of the attributes, 
which may requires a limited search in the problem, the analyzer discretizes the re-
sults in three categories (small, medium and large) and feeds the Rule system with a 
vector containing the discretized values for the 19 problem attributes. 

The Rule system contains a number of rules that combine specific values of the 
problem attributes with settings of the planning parameter that result in better plan-
ning performance (shorter plans in less planning time). These rules have been ex-
tracted from Machine Learning techniques on data produced by thorough experiments 
with the HAP system. More specifically, we tested all the possible combinations of 
the parameters of HAP on a set of 150 problems and for each run we kept record of 
the values of the problem attributes, the specific setup for HAP and the value for a 
metric combining planning time and plan length. The data set was then fed to a Ma-
chine Learning tool in order to learn a rule-based classification model that would dis-
criminate between good and bad value of the metric based on the rest of the attributes. 

ViTAPlan also provides the user with the option to use the Problem Analyzer and 
the Rule System of HAP-RC in order to automatically fine-tune the planning parame-
ters of HAP. The relevant window of the interface is shown in Figure 4. This window 
is divided in three parts: a) the first part shows the discretized values for the 19 prob-
lem characteristics, as produced by the Problem analyzer, along with a description for 
each one through hot spots. b) the second part provides the user with the list of the 
triggered rules, i.e. the rules which refer to values for B1 to B19 that comply with the 
values produced by the Problem Analyzer. c) the last part provides the user with the 
proposed values for the planning parameters of HAP. 

Problem file Domain file

Parser 

Problem Analyzer 

Rule system 

HAP 

Problem representation

Values of B01 to B19 

Values of planning parameters 
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Apart from the obvious usage of the specific part of the interface, which is to auto-
matically fine-tune HAP, it can also help an advanced user (knowledge engineer) to 
better understand the morphology of the problem by looking at the values of the 
problem attributes. It also enables the advanced user to alter the results of applying 
the rules, by manually selecting the subset of the triggered rules that will be eventu-
ally fired. The rule system embodies a conflict resolution strategy, which is based on 
the confidence and the support of each rule. The interface enables the user to see the 
subset initially selected for firing through check boxes at the left of each rule. The 
user can deselect and select rules, while the interface automatically deactivates all the 
other rules that are in conflict with the selected ones.  
 

 
Figure 4. Using the Rule System 

Consider for instance, the example of Figure 5, where there are four triggered 
rules, since {B4, B6, B8, B9, B10, B11, B13, B16, B17, B18} = {medium, medium, 
large, medium, small, large, small, large, small, small} in the problem being analyzed. 
However, rules 1 and 3 are in conflict, since the first rule proposes value Forward for 
the Direction parameter, while the third one proposes a different value (Backward) for 
the same parameter. 
 

 
Figure 5. Initial firing subset 

The rules in HAP-RC have been sorted in decreasing order of confidence and sup-
port and the conflict resolution strategy works in a greedy way, selecting for firing the 



 173

first rule from the top of the list that is not in conflict with the rules already selected 
for firing. Therefore, the rules proposed for firing are indicated with ticks in the corre-
sponding check boxes. By clicking in the third rule the interface automatically in-
cludes it in the firing subset and removes the rules that are in conflict with the selec-
tion of the user resulting in the selection shown in Figure 6. 
 

 
Figure 6. Final firing subset 

4  Designing Domains and Problems 

The proposed visual tool enables the user to view and design new domains and prob-
lems through a visual representation. In order to build a new domain or problem the 
user can add new structural elements, like object classes, predicates or operators, and 
make all the necessary assignments with simple movements of the mouse. The inter-
face is responsible for checking the validity of the user’s design and generating the 
appropriate PDDL (Ghallab et al 1998) files. 
 

 
Figure 7. The predicates design for the Gipper domain 

 The first step for creating a new domain, is to create a design containing the ob-
jects, the predicates and the connections between them. Figure 7 illustrates this design 
for the Gripper domain, which was used in the AIPS-98 planning competition. There 
are three object classes in the domain, namely room ball and gripper, that are repre-
sented with circles. The domain has four predicates (at, at-robby, holding and free) 
that are represented with rectangles. Note here that although PDDL, requires only the 
arity for each predicate and not the type of objects for the arguments, the interface 
obliges the user to connect each predicate with specific object classes and this is used 
for the consistency check of the domain design. According to the design of Figure 7, 
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the arity of predicate holding, for example, is two and the specific predicate can only 
be connected with one object of class ball and one object of class gripper. 

The constraints imposed by the design of predicates and object classes are dy-
namically inherited in the design of operators and problems. For example if the user 
want to add a fact f in the initial state of a problem, which makes use of the holding 
predicate, f will have two available edges that will be able to connect with an object of 
class ball and another object of class gripper. However, the interface enables the user 
to dynamically change the design of the predicates. In such a case, all the operators 
and states that make use of altered predicates and object classes are automatically 
updated accordingly. 
 

 
Figure 8. Operator Pick for the Gripper domain 

The second step in generating a new domain is the designing of the domain’s op-
erators. Each operator, in the interface, is represented with a labeled frame, which 
contains a column of object classes in the middle, two columns of predicates at the 
two sides of it and connections between the object classes and the predicates. Figure 
8, for example, illustrates the design of the pick operator for the gripper domain. The 
object classes in the middle column of the operator, represent the parameters of the 
operator, which in the case of the pick operator are three, one of each object class. In 
the left column the predicates, along with the connected variables, represent the pre-
conditions of the operator, while the predicates in the right represent the effects of the 
operator. The interface adopts the declarative schema for designing operators, i.e. the 
right column of each operator represents the state of the world after the application of 
the operator and not the facts that will be added and deleted to it. However, the crea-
tion of the add and delete lists of the operator is straightforward, since the facts that 
appear in the right column but not in the left constitute the add list. Similarly, the de-
lete list contains the facts that appear in the left column but not in the right. The 
choice of the declarative model versus the procedural one, was based on the fact that 
the first usually results in simpler designs. 

The three lists of facts for the pick operator in Figure 8 are the following: 
Preconditions = {at-robby(room1), free(gripper1), at(room1, ball1)} 

Add-list = {holding(ball1, gripper1)} 
Delete-list { free(gripper1), at(room1, ball1)} 
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Figure 9. The design for a problem in the Gripper domain 

The designing of problems in the interface follows a similar model with that of 
operators. Problems can be formed by creating a list of objects, two lists of predicates 
and a number of connections among them. Figure 9 illustrates the design of a problem 
in the Gripper domain. The objects in the middle represent the objects of the problem, 
the facts created by predicates of the left column represent the facts of the initial state 
of the problems, while the predicates in the right column represent the goals of the 
problem. The two states that correspond to the design of Figure 9 are the following. 

Initial state = {at-robby(room3), at(room3, ball1), at(room2, ball2), free(gripper1)} 
Goals = {at(room2, ball1), at(room3,ball2)} 

5  Execution Simulation 

One of the most important capabilities of ViTAPlan is that it visualizes the execution 
of the plan found by HAP. The visual tool enables the user to get visual representa-
tions of each action in the plan independently and of the whole plan. Through the first 
option, which is shown in Figure 10, the user may select an action from the plan and 
view the states of the problem’s world before and after the application of the action. 
Therefore, the user can have a step-by-step visual representation of each intermediate 
state between the initial one and the goals of the problem. 

The second option for the user is to view the actions of the plan on a timeline, as 
shown in Figure 11. The timeline for the plan presents for each action the point in 
which it is scheduled to be executed and the facts in its precondition and add lists. 
Moreover, the visualization shows the interactions between the actions in the plan. 
More specifically, for each action the user is able to see the preceding actions that 
achieved its preconditions. For instance, in the example presented in Figure 11 the 
third action in the plan is “drop ball1 gripper1 room2”, which has two preconditions: 
“at-robby room2” and “holding gripper1 ball1”. The first one was achieved by the 
second action of the plan (i.e. “move room3 room2”) and the second one by the first 
action (“pick gripper1 ball1 room3”).  
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Figure 10. Visual Representation of Actions 

The arcs showing the relations between the actions in the plan are very useful in 
order for the user to understand the complexity of the plan, find possible paralleliza-
tions and also alternatives plans. In order for the user to test if two subsequent actions 
can be executed in parallel he just needs to check if there are any arcs connecting 
these actions. Furthermore, the arcs in the graphic allow the user to understand the 
role of each action in the plan. In other words, he can get an idea of the objectives of 
each step and the reasons for the specific order in which the steps are put. For exam-
ple, it is easy to see from Figure 11 that the first three actions are needed in order to 
have both the robot and ball1 in room2. Therefore, the user could replace this part of 
the plan with a possible alternative.  
 

 
Figure 11. Plan Representation 

6  Conclusions and Future Work 
This paper reported on ongoing research in the field of friendly user interfaces for 
planning. It mainly focuses on the development of a composite interface for an adap-
tive planning system, which can automatically fine- tune its parameters based on 
rules, extracted from Machine Learning techniques, that associate planning parame-
ters with problem attributes. 

The current result of the research is ViTAPlan, a first prototype of a graphical in-
terface for the HAP planning system, which has four main functions: a) using the 
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planning system through a number of windows, controls and common dialogues, 
which make it much easier for a non – programmer to use the planner and experiment 
with different setups of the planning parameters, b) use the Problem analyzer and the 
Rule system of HAP-RC in order to acquire useful knowledge about the morphology 
of each problem and automatically fine tune the planner with the most appropriate 
values for the planning parameters c) generating new domains and problems using a 
visual tool which saves the domain expert from the strict syntactic rules of PDDL, 
makes the definition of domains and problems more understandable, even for a non-
planning-expert, and makes a number of consistency checks on the designs in order to 
generate PDDL files with as little flaws as possible and d) produce visual representa-
tions of the plans found by the planning system, which enable the user to better un-
derstand each step in the plan and also intervene and alter the plan at will. 

In the future we plan to improve the interface in all functions of it and introduce 
others that will make it a complete tool for planning both for academic and industrial 
use. It is in our direct plans to enhance the tool for designing domains and problems 
with the ability to handle advanced aspects of the PDDL2.1(Fox and Long 2002), 
such as treatment of numerical values, explicit representation of time and duration, 
conditional effects e.t.c.  
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