
Generating Query Forms and Reports for
Semistructured Data: the QURSED Editor

Yannis Papakonstantinou 1, Michalis Petropoulos 1, and Vasilis Vassalos 2

1 Computer Science and Engineering Department
University of California, San Diego, USA

Email: {yannis, mpetropo}@cs.ucsd.edu
2 Computer Science Department, Athens University of Economics and Business

Athens, Greece
Email: vassalos@aueb.gr

Abstract. The wide adoption of semistructured XML databases requires the ex-
istence of systems for the generation and execution of web-based interactive da-
tabase query forms and reports. Such systems are most effective when they al-
low the construction of the query forms and reports without programming, via
the use of intuitive graphical tools. We describe the architecture of the
QURSED system for the declarative specification and automatic generation of
web-based query forms and reports (QFRs) for semistructured XML data. We
then focus on the QURSED Editor, a powerful GUI tool for the generation of
the declarative specifications of QFRs. We describe the Editor's architecture
and present the techniques and heuristics the Editor employs for translating vis-
ual designer input into meaningful specifications of query forms and reports. An
on-line demonstration of the system is available at
http://www.db.ucsd.edu/qursed

1. Introduction

XML is a simple and powerful data exchange and representation language, largely
due to its self-describing nature. Its advantages are especially strong in the case of
semistructured data, i.e., data whose structure is not rigid and is characterized by
nesting, optional fields, and high variability of the structure. An example is a catalog
for complicated products such as sensors: they are often nested into manufacturer
categories and each product of a sensor manufacturer comes with its own variations.
For example, some sensors are rectangular and have height and width, and others are
cylindrical and have diameter and barrel style. Some sensors have one or more protec-
tion ratings, while others have none. The relational data model is cumbersome in
modeling such semistructured data because of its rigid tabular structure.

The database community perceived the relational model’s limitations early on and
responded with labeled graph data models [1] that evolved into XML-based data
models [10]. XML query languages (with most notable the emerging XQuery stan-
dard [6]), XML databases [23] and mediators [12][17] have been designed and devel-
oped. They materialize the in-principle advantages of XML in representing and que-

 403

rying semistructured data. QURSED automates the construction of web-based query
forms and reports for querying semistructured, XML data.

Web-based query forms and reports are an important aspect of real-world database
systems [4], albeit semi-neglected by the database research community. They allow
millions of web users to selectively view the information of underlying sources. A
number of commercial tools, such as Macromedia Dreamweaver Ultradev, Macrome-
dia Coldfusion, and Microsoft Visual Interdev, facilitate the development of web-
based query forms and reports that access relational databases. However, these tools
are tied to the relational model, which limits the resulting user experience and im-
pedes the developer in his efforts to quickly and cleanly produce web-based query
forms and reports. We present the QURSED Editor that is, to the best of our knowl-
edge, the first web-based query forms and reports tool for semistructured XML data.

 The Editor is a powerful GUI tool that takes visual input by a form designer and
produces declarative specifications of query form and report pages that are called
Query Set Specifications (QSS). A QSS describes formally the complex query and
reporting capabilities [24] of a query form. These capabilities include the large num-
ber of queries that a form can generate to the underlying XML query processor and
the different structure and content of the query result. The Editor allows the transla-
tion of visual input into meaningful Query Set Specifications. The next section de-
scribes the QURSED system architecture, the process and the actions involved in
producing a QFR, and the process by which a QFR interacts with the end-user, emits
a query and displays the result. We also introduce terms used in the rest of the paper.

1.1 System Overview and Architecture

The QURSED system architecture is shown in Figure 1. QURSED consists of the
QURSED Editor, which is the design-time component and the main focus of this
paper, the QURSED Compiler, and the QURSED Run Time Engine. A detailed de-
scription of QURSED, including important features omitted from this overview, can
be found in [19].

QURSED
Run-Time Engine

QURSED
Compiler

XML Data
Server

QURSED
Editor

Query Set
Specification

(QSS) XQuery
Expressions XML/XHTML

Query
Form
Page

Report
Pages

APP SERVER

BROWSER

XHTML
Query Form

Page
(Optional)

XHTML
Template

Report Page

Query Form
Page

Query/Visual
Association Dynamic

Server Pages

WYSIWYG
XHTML
Editor

Deployment

XML
Schema

Developer

End-User

Expanded
Schema
Tree (EST)

Web Designer

Figure 1 QURSED System Architecture

The Editor inputs the XML Schema that describes the structure of the XML data
to be queried and constructs an Expanded Schema Tree (EST) out of it. The EST is a
visual abstraction of the XML Schema that the developer interacts with. The Editor
also inputs an XHTML query form page that provides the (XHTML) static part of the

 404

form page, including the XHTML form controls [22], such as select ("drop-down
menus") and text ("fill-in-the-box") input controls, that the end-user will be inter-
acting with. It may additionally input an optional template report page that provides
the XHTML structure of the report page. In particular, it depicts the nested tables and
other components of the page. It is just a template, since we may not know in advance
how many rows/tuples appear in each table. The query form and template report
pages are typically developed with an external “What You See Is What You Get”
(WYSIWYG) editor, such as Macromedia HomeSite. If a template report page is not
provided, the developer can build one using the Editor.

The Editor displays the EST and the XHTML pages to the developer, who uses
them to build the Query Set Specification (QSS) of the QFR and the query/visual
association. The specification focuses on the query capabilities of the QFR and de-
scribes the set of queries that the form may emit. It includes condition fragments and
the result tree. Each condition fragment stands for a set of conditions (typically navi-
gations, selections and joins) that contain parameters.

The query/visual association indicates how each parameter is associated with cor-
responding XHTML form controls [22] of the query form page. The form controls that
are associated with the parameters contained in a condition fragment constitute its
visual fragment. Finally, the result tree specifies how the source data instantiate and
populate the XHTML template report page.

The QURSED Compiler takes as input the output of the Editor and produces dy-
namic server pages, which control the interaction with the end-user. The dynamic
server pages, the query set specification, and the query/visual association are inputs to
the QURSED Run-time Engine. The dynamic server pages handle the navigation on
the report page. The engine, based on the query set specification and the query/visual
association, generates an XQuery expression when the end-user clicks “Execute”,
which is sent to the XML Data Server. The query results are expressed directly in
XHTML and are processed again by QURSED to generate the report pages.

The rest of the paper is organized as follows. Related work and the contributions
of the QURSED Editor are presented in Section 2. In Section 3 the running example
is introduced and the necessary QURSED system internals are presented, to allow for
the presentation of the Editor. Section 4 presents the Editor, including the architec-
ture, a description of the visual actions it supports, and the way they are translated
into meaningful query set specifications and query/visual associations.

2. Related Work and Novel Contributions of QURSED Editor

The QURSED Editor relates to four wide classes of tools, coming from both acade-
mia and industry:

Web-based Form and Report Generators create web-based interfaces that access
relational databases. Popular examples are Macromedia Dreamweaver UltraDev,
ColdFusion, and Microsoft Visual InterDev. These tools are excellent when flat uni-
form relational tables need to be displayed. However, the development of form and
report pages that query and display semistructured data requires substantial program-
ming effort.

 405

Visual Querying Interfaces are applications that allow the exploration of the
schema and/or content of the underlying database and the formulation of queries.
Typical examples are the Query-By-Example (QBE) [25] interface and Microsoft’s
Query Builder, which target the querying of relational databases. Recent visual front-
ends such as EquiX [8], BBQ [18], VQBD [7], and PESTO [5] target the querying of
XML and object-oriented databases. These systems provide an excellent visual para-
digm for the formulation of fairly complex queries. Note though that they and the
Editor have very different goals: The goal of the former is the development of a query
or a query template by a database programmer, who is familiar with database models
and languages. The goal of the latter is the construction from an average web devel-
oper of a form that represents and can generate a large number of possible queries.

Schema Mapping Tools are graphical user interfaces that declaratively transform
data between XML Schemas in the context of integration applications. IBM’s Clio
[20], Microsoft’s BizTalk Mapper, TIBCO’s XML Transform, and Enosys’s Query
Builder [10] are representative examples. QURSED’s Editor adopts part of the func-
tionality provided by the schema mapping tools for a different purpose: it creates
query/visual associations that map form controls on the XHTML query form page to
parameters of selection predicates, in order to generate queries that filter the data. It
also creates a transformation between a single XML Schema and an XHTML tem-
plate report page in order to construct the report pages.

Data-Intensive Web Site and Application Generators. Autoweb [15], Araneus [3]
and Strudel [13] are great examples of the ongoing research on how to design and
develop web sites heavily dependent on database content by decoupling the query
aspects of web development from the presentation ones. They all offer a data model, a
navigation model and a presentation model. An extensive discussion of this class of
systems can be found in [14].

2.1 Contributions

Forms and Reports for Semistructured Data. The QURSED Editor generates form
and report specifications that target the needs of interacting with and presenting
semistructured data. Multiple features contribute to addressing these needs:
1. QSS and QFRs support the generation of queries that handle the structural vari-

ance and irregularities of the source data by employing appropriate forms of dis-
junction. For example, consider a sensor query form that allows the end-user to
check whether the sensor fits within an envelope with length X and width Y, where
X and Y are end-user-provided parameters. The corresponding query has to take
into consideration whether the sensor is cylindrical or rectangular, since X and Y
have to be compared against a different set of dimension attributes in each case.

2. On the report side, data can be automatically nested according to the nesting pro-
posed by the source schema or can be made to fit XHTML tables that have vari-
ance in their structure and different nesting patterns. The Editor supports both
ways of producing nested data in report pages. Structural variance on the report
page is tackled by producing heterogeneous rows/tuples in the resulting XHTML
tables.

 406

Loose Coupling of Query and Visual Aspects. The QURSED Editor separates the
logical aspects of query forms and reports generation, i.e., the query form capabilities,
from the presentation aspects, hence making it easier to develop and maintain the
resulting form and report pages. The visual component of the forms can be prepared
with any XHTML editor. Then the developer can focus on the logical aspects of the
forms and reports: Which are the condition fragments? How should the report be
nested? etc. The coupling between the logical and the visual part is loose, simple, and
easy to build: The query parameters are associated with XHTML form controls, the
condition fragments are associated with sets of XHTML form controls, and the
grouped elements (see Section 3) of the result tree are associated with the nested
tables of the report.

sensors
manufacturer
name

product
part_number

“Turck”

“A123”
image
“A123.jpg”

specs
sensing_distance
“11”

body_type
cylindrical

barrel_style

diameter
“17”

“Smooth”
protection_ratings
protection_rating
“NEMA1”

operating_temp
min

max
“-20”

“200”

protection_rating
“NEMA3”

product
part_number
“B123”

specs
sensing_distance
“25”

body_type
rectangular

width

height
“10”

“30”
protection_ratings
protection_rating
“NEMA3”

operating_temp
min

max
“-30”

“350”

protection_rating
“NEMA4”

(a) Data Set (loto)

sensors
manufacturer

product

body_type

cylindrical

diameter

specs

protection_ratings

protection_rating

$PROD

CHOICE

rectangular

width

$DIA

$WID

$PROT

$REC

$CYL

$S

(d) Expanded Schema Tree (EST)

$MAN*

SEQ

SEQ+
SEQ

SEQ

SEQ

SEQ

$BODY

*
$PROTS

$SPEC

protection_rating $PROT1*

part_number $PART
image $IMG?

sensing_distance $DIST

barrel_style $BAR

height $HEI

operating_temp

min $MIN
ALL

$OPER

max $MAX

Figure 2 Example Data Set and Expanded Schema Tree

3. The QURSED System

This section describes an example XML Schema, the corresponding Expanded
Schema Tree and the data model of QURSED, and introduces as the running example
a QURSED-generated web interface. It also describes the end-user experience with
that interface and concludes by briefly presenting TQL, the internal query language
used by QURSED, and QSS, the specification produced by the Editor.

3.1 Data Model, XML Schema and Expanded Schema Tree

QURSED models XML data as labeled ordered tree objects (lotos), such as the sam-
ple data set shown in Figure 2a that describes two proximity sensor products. Each
internal node of the labeled ordered tree represents an XML element and is labeled
with the element’s tag name. The list of children of a node represents the sequence of

 407

elements that make up the content of the element. A leaf node holds the string value
of its parent node. If n is a node of a loto, we denote as tree(n) the subtree rooted at n.
Based on the XML Schema that describes the structure of the sample data set (not
shown), the Editor constructs the corresponding Expanded Schema Tree (EST) that
serves as the basis for building the query set specification. Figure 2b shows the repre-
sentation of the EST by the Editor. Note that the root node of an EST is a non-
repeatable element node. Also note that an EST can include multiple copies of the
same element node, to allow the developer to create “aliases” of element nodes, each
with unique element variables.

Figure 3 Example QFR Interface

3.2 Example QFR and End-User Experience

Using QURSED, a developer can easily generate a web interface like the one shown
in Figure 3 that queries and reports proximity sensor products. This interface will be
the running example and illustrates the basic points of the functionality and the ex-
perience that QURSED delivers to the end-user of the interface.

The browser window displays a query form page and a report page. On the query
form page form controls are displayed for the end-user to select or enter desired val-
ues of sensors’ attributes and customize the report page. For example, the user has
placed the equality condition “NEMA3” on “Protection Rating 1”. After the end-user
submits the form, she receives the report of Figure 3. The results depict the informa-
tion of product elements: the developer had decided earlier that products should be

 408

returned. By default, QURSED organizes the presentation of the qualifying XML
elements in a way that corresponds to the nesting suggested by their XML Schema.
Notice, for example, that each product display has nested tables for rectangular
and cylindrical values. Also notice that instead of the text of the manufacturer’s
name, a corresponding image (logo) is presented. Section 4 elaborates on the visual
steps the developer follows on the Editor interface to deliver query form and report
interfaces, like the one shown in Figure 3, using QURSED. The next section illustrates
the query model and specification language of QURSED.

3.3 Tree Query Language (TQL) and Query Set Specification (QSS)

User interaction with the query form page results in the generation of TQL queries.

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

PROT1 = “NEMA3”

name

part_number

protection_ratings
protection_rating

$PROD

OR
AND

rectangular

width
height

AND

$DIA <= 20 AND $DIA <= 40

$HEI <= 20 AND $WID <= 40

tr
td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME DESC, $DIST)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$IMG
td

img$PART

$DIST

$DIA

$HEI
$WID

$PROT

GROUPBY ($DIA)

$NAME

GROUPBY ($CYL)

GROUPBY ($REC)

$REC

$CYL

GROUPBY ($IMG)

$S

image $IMG

OR
AND true

AND true

barrel_style $BAR

$BAR
td GROUPBY ($BAR)

body
table

(a) Condition Tree

(b) Result Tree

table
tr
td

$HEI
GROUPBY ($HEI)

$WID
td GROUPBY ($WID)

table
tr
td

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

$N_BODY

GROUPBY ($PROD, $NAME, $DIST)

protection_rating $PROT1

$PROT

table
tr
td

td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

Figure 4 TQL Query Corresponding to Figure 3

A TQL query q consists of a condition tree and a result tree. An example of a
TQL query is shown in Figure 4, and corresponds to the TQL query generated by the
end-user’s interaction with the query form page of Figure 3. Variables are denoted by
the $ symbol. Note that conditions, in the form of Boolean expressions, are placed on
diameter of cylindrical sensors and on height and width of rectangular sensors. The
condition tree generates tuples of qualified bindings of variables and corresponds
intuitively to the WHERE part of XML query languages such as XML-QL [9], and
LOREL [21], and to the FOR and WHERE clauses of a FLWOR expression of the up-
coming XQuery standard [6]. The result tree corresponds to the CONSTRUCT clause
of XML-QL, the SELECT clause of LOREL, and the RETURN clause of a FLWOR
expression of XQuery. A result tree specifies how to build new XML elements using
the bindings provided by the condition tree. In particular, it specifies groupings of

 409

variables via group-by lists, and ordering via sort-by lists. Group-by and sort-by lists
are the TQL means of performing grouping and sorting. Figure 4b shows the result tree
for the example of Figure 3. Note that the rows of the XHTML tables that contain the
static column names are omitted from the result tree for presentation clarity.

tr
td

td
“A123”

“cylindrical”

“17”

html

td
“11”

td
table
tr
td

td
tr

“A123.jpg”
td

img

“Smooth”
td

body
table

table
tr
td

“turck.gif”
img

NEMA1

table
tr
td

td

NEMA3

tr
td

tr

td

td
“B123”

“rectangular”

“10”

td
“25”

td
table
tr
td

td
tr

“turck.gif”

td

img

“30”
td

table
tr
td

NEMA3

table
tr
td

td

NEMA4

tr
td

Figure 5 Resulting loto for Query of Figure 4 run on the data of the source loto of Figure 2a

Figure 5 shows the resulting loto of the TQL query of Figure 4 run on the data of
the source loto of Figure 2a. The TQL query generated by a query form page is a
member of the set of queries encoded in the query set specification of the QFR. The
QURSED system uses the TQL queries internally, but issues queries in XQuery [6]
by translating TQL queries to equivalent XQuery statements.

QURSED uses query set specifications to succinctly encode in QFRs large num-
bers of possible queries, as the query set specification can describe a number of que-
ries that is exponential in the size of the specification. The developer uses the Editor
to visually create a query set specification, like the one in Figure 6. We briefly present
the query set specification, as it is the underpinning of QFRs and the visual interfaces
and interactions performed using the Editor as described in Section 4.

A query set specification QSS is a triple <CTG, RTG, F>, where:
• CTG, the condition tree generator, is a condition tree with multiple Boolean ex-

pressions possibly labeling each AND node and with parameters, as well as literal
values, as operands of their predicates. Parameters are denoted by the $# symbol.

• RTG, the result tree generator, is simply a result tree with parameters, as well as
values, as operands of the Boolean expression possibly labeling each node.

• F is a non-empty set of condition fragments. A condition fragment f is a subtree of
the CTG, rooted at the root node of CTG, where each AND node is labeled with
exactly one Boolean expression. F always contains a special condition fragment
fR, called result fragment, that includes all the element nodes whose variables ap-
pear in RTG, all its AND nodes are labeled with the Boolean value true, and has
no parameters. The result fragment intuitively guarantees the “safety” of the result
tree.

 410

$DIA <= $#DIMX AND $DIA <= $#DIMY

$HEI <= $#DIMX AND $WID <= $#DIMY

$DIST

$DIA

$HEI

$WID

$CYL

$REC

$BAR

$IMG

$PART

$PROD

$NAME

$NAME = $#NAME

$PROT2

f1

tr

td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME $#O_NAME, $DIST $#DIST, $N_BODY
$#O_N_BODY)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$WID

$HEI

table

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($REC)

$DIST <= $#DIST

sensors

manufacturer

product

sensing_distance

body_type

cylindrical

diameter

AND

specs

name

part_number

protection_ratings

protection_rating

OR

AND

rectangular

width

height

AND

$PROT1 = $#PROT1

protection_rating $PROT1

max
min

operating_temp

image

OR
AND

AND true

true

$PROT2 = $#PROT2

barrel_style

$MIN <= $#MIN AND $MAX <= $#MAX

$MIN
$MAX

$BAR
td GROUPBY ($BAR)

f2 fR

body
table

(a) Condition Tree Generator (b) Result Tree Generator

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

$N_BODY

table GROUPBY ($CYL)

td
tr

GROUPBY ($PROD, $NAME, $DIST)

protection_rating $PROT

$PROT

td
table
tr
td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

Figure 6 Query Set Specification
For example, the query set specification of Figure 6 encodes, among others, the TQL
query of Figure 4. The CTG in Figure 6a corresponds partially to the set F of condi-
tion fragments defined for the query form page of Figure 3. Three condition fragments
are indicated with different shades of gray:
1. condition fragment f1 is defined by the dark grey subtree and the Boolean expres-

sion on the root AND node of the CTG that applies a condition to the name ele-
ment node;

2. condition fragment f2 is defined by the medium gray subtree and the Boolean ex-
pressions that apply conditions to the dimensions of cylindrical and rectangular
sensors ; and

3. condition fragment fR (the result fragment) is defined by the light grey subtree that
includes all the element nodes whose variables appear in RTG in Figure 6b, and
imposes no Boolean conditions.

QURSED Editor

Boolean
Expressions <D>

Schema Driven

Template
Driven

Expanded
Schema

Tree

XHTML
Query Form

Page

XHTML
Template

Report Page

Graphical User Interface

Developer

Dependencies

Report
Customization

Query/Visual
Association

QSS
<CTG,RTG,F,D>

Condition Fragment
Manipulation

Automatic Report
Construction

<RTG>

<CTG,F><F>

CTG Construction

Figure 7 QURSED Editor Architecture

 411

4. QURSED Editor

The QURSED Editor is the tool the developer uses to build QFRs. Figure 7 shows the
Editor’s architecture, how the developer interacts with the graphical user interface,
and how the Editor interprets these visual actions in order to construct the QSS and
the query/visual association of a QFR.

The developer builds a condition tree generator by constructing a set of Boolean
expressions based on the input XML Schema, in the form of an EST, and the input
XHTML query form page that are displayed to her. Internally, the Editor interprets
the set of Boolean expressions as both the set of condition fragments of the QSS and
the query/visual specification. The Editor constructs the CTG by building each condi-
tion fragment f, as if f was the only fragment of the condition tree generator, and then
merging f with the as-yet constructed CTG. A key step in the process is that the Editor
checks if f is meaningful by considering the presence of CHOICE elements in the EST
and, if necessary, manipulates f by heuristically introducing structural disjunction
operators (OR nodes). This process is described in Section 4.1.

For the construction of the result tree generation, the developer has two options.
Either an XTMHL template report page is automatically constructed based on the EST
(schema-driven), or one is provided as an input (template-driven). Either way, the
Editor constructs internally an RTG that becomes part of the QSS. Schema-driven
result tree generation is described in Section 4.2.

A key benefit of the Editor is that it enables the easy generation of semistructured
queries with OR nodes by considering the presence of CHOICE elements in the EST.
The following subsections describe the visual actions and their translation to corre-
sponding parts of the query set specification, using the QSS of Figure 6 and the QFR
of Figure 3 as an example.

4.1 Building Condition Tree Generators

Figure 8a demonstrates how the developer uses the Editor to define the condition
fragment f1 of Figure 6a. The main window of the Editor presents the sample EST of
Section 3.1 on the left panel, and the query form page on the right panel. The query
form page is displayed as an XHTML tree that contains a form and a set of form
controls, i.e., select and input element nodes [22]. The XHTML tree corre-
sponds to the page shown on Figure 8b rendered in the Macromedia HomeSite
WYSIWYG XHTML editor.

Based on this setting, the developer defines the condition fragment f1 of Figure 6a
that imposes an equality condition on the manufacturer’s name by performing the
four actions indicated by the arrows on Figure 8a. She starts by clicking on the “New
Condition Fragment” button (Action 1 of Figure 8a) and providing a unique ID, which
is manufacturer_name in this case. The middle panel lists the condition frag-
ments defined so far, and the expression editor at the bottom allows their definition,
inspection and revision. Then, the developer builds a Boolean expression in the ex-
pression editor, by drag ‘n’ dropping the equality predicate (Action 2) and setting its
left operand to be the element node name (Action 3). The full path name of the node

 412

appears in the left operand box and is also indicated by the highlighting of the name
element node on the left panel. As a final step, the developer binds the right operand
of the equality predicate to the select XHTML form control named
man_name_select (Action 4) thus establishing a query/visual association and
defining the visual fragment that includes the “Manufacturer” form control shown in
Figure 8b. Internally, the Editor creates the parameter $#NAME, associated with the
“Manufacturer” form control Figure 8b, and sets it as the right operand of the Boolean
expression, as Figure 6a shows.

Action 1

Action 2

Action 3 Action 4

(b) WYSIWYG HTML Editor(a) QURSED Editor
Figure 8 Building a Condition Fragment

In order to build more complex condition fragments, Actions 2, 3 and 4 can be re-
peated multiple times, thus introducing multiple variable and parameters and includ-
ing more than one XHTML form controls in the corresponding visual fragment. Note
that, even though the visual actions introduce variables and parameters in the condi-
tion fragment, the developer does not need to be aware of them. In effect, variables
correspond to path names and parameters to XHTML form control names. The Editor
interprets the Boolean expression as a condition fragment that contains all paths of the
expression.

Automatic Introduction of Structural Disjunction. The semistructuredness of the
schema (CHOICE nodes and optional elements) may render the Boolean expression
attached to a node meaningless and unsatisfiable. The Editor automatically, and by
employing a heuristic, manipulates a condition fragment f by introducing structural
disjunction operators (OR nodes) that render f meaningful. For example, consider the
query form page of Figure 8b, where the end-user has the option to input two dimen-
sions X and Y that define an envelope for the sensors, without specifying a particular
body type. Sensors can be either cylindrical or rectangular. The developer’s intention
is to specify that either the diameter is less than dimensions X and Y, or the height is
less than dimension X and the width less than Y. The developer constructs the follow-
ing Boolean expression:

($DIA <= $#DIMX ∧ $DIA <= $#DIMY) ∨
($HEI <= $#DIMX ∧ $WID <= $#DIMY)

 413

The $DIA, $HEI and $WID variables label the diameter, height and width
elements of the EST. The $#DIMX and $#DIMY parameters are associated with the
“Dimension X” and “Dimension Y” form controls.

However, the query where the above Boolean expression is interpreted as a condi-
tion fragment consisting of the paths to diameter, height and width elements is
unsatisfiable, since no sensor has all of them. The Editor captures the original inten-
tion by automatically manipulating the ∨ Boolean connective and treating it as an OR
node of TQL, as the condition fragment f2 in Figure 6a indicates. The OR node corre-
sponds to the CHOICE node in the EST of Figure 2c. Two AND nodes are also intro-
duced and are labeled with the conjunctions in the initial Boolean expression: ($DIA
<= $#DIMX ∧ $DIA <= $#DIMY) and ($HEI <= $#DIMX ∧ $WID <=
$#DIMY).

Figure 9 Schema-Driven Constructed Report Page

The Editor creates a condition tree generator by appropriately merging the condi-
tion fragments. The merging algorithm operates incrementally by merging each con-
dition fragment f with the condition tree generator already constructed from the previ-
ous condition fragments. The main step of the algorithm manipulates f by employing
a heuristic, such that f produces meaningful satisfiable queries given the Boolean
expression b. In particular, the algorithm introduces structural disjunction operators to
f by replacing Boolean connectives ∨ in b with OR nodes, as illustrated in the exam-
ple above. The manipulation is driven by the CHOICE nodes and optional elements
(either ? or * occurrence constraint).

The merging algorithm often creates redundancies in the CTG. As shown in [2],
efficiency of tree pattern queries depends on the size of the pattern, so it is essential to
identify and eliminate redundant nodes. The Editor eliminates redundancies on the
merged CTG in order to improve the performance of the generated TQL queries by
using a set of rewriting rules. The rules preserve the boundaries of condition frag-
ments as element nodes are being eliminated. The merging algorithm and the rewrit-
ing rules are described in [19].

4.2 Building Result Tree Generators

The Editor provides two options for the developer to build the result tree generator
RTG component of a query set specification, each one associated with a set of corre-

 414

sponding actions. For the first (and simpler) option, called schema-driven, the devel-
oper only specifies which element nodes of the EST she wants to present on the report
page. Then, the Editor automatically builds a result tree generator that creates report
pages presenting the source data in the form of XHTML tables that are nested accord-
ing to the nesting of the EST.

Action 2

Action 1

Figure 10 Selecting Elements Nodes and Constructing Template Report Page

If the developer wants to structure the report page in a different way, the Editor
provides a second option, called template-driven, where the developer provides as
input a template report page to guide the result tree generator construction. Template-
driven construction of an RTG is presented in [19].

Schema-Driven Construction of Result-Tree Generator. The developer can auto-
matically build a result tree generator based on the nesting of the EST. For example,
Figure 9 shows a report page created from the result tree generator for the data set and
the EST of Figure 2. The creation of the result tree generator and the template report
page is accomplished by performing the two actions that are indicated by the num-
bered arrows on the Editor’s window of Figure 10.

First, the developer uses the checkboxes that appear next to the element nodes of
the EST to select the ones she wants to present on the report page (Action 1 of Figure
10). This action sets the report property of the selected element nodes in the EST to
true and constructs the result fragment fR indicated in the condition tree generator of
Figure 11a. The variables that will be used in the result tree generator are also indi-
cated.

Then, the Editor automatically generates the template report page (Action 2) dis-
played on the right panel of Figure 10 as a tree of XHTML element nodes.

Figure 11c shows how a WYSIWYG XHTML editor renders the template report
page. The element nodes selected in Action 1 are presented using XHTML table
element nodes that are nested according to the nesting of the EST.
For illustration purposes, each table element node in Figure 11b is annotated with
the EST element node it corresponds to, e.g., the “product” table is nested in the
“manufacturer” table, as is the case in the EST. The table headers in Figure 11c are
created from the name labels of the selected element nodes. In the tables, the Editor
places the element variables of the element nodes selected in Action 1 as children of

 415

td (table data cell) element nodes. For example, in the result tree generator of Figure
11b the element variable $NAME appears as the child of the td element node of the
“manufacturer” table.

true

true

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

name

part_number
$PROD

OR
AND

rectangular

width
height

AND

$PART

$DIST

$DIA

$HEI
$WID

$NAME

$CYL

$REC

image $IMG

OR
AND

AND true

true

barrel_style $BAR

fR

product

manufacturer

cylindrical

rectangular

(a) Condition Tree Generator

(c) Template Report Page

$MAN
tr
td

td
$PART

$DIA

html

GROUPBY ($PART)

td
$DIST

td

$WID

$HEI

table

td

td

tr

GROUPBY ($PROD)

td
table
tr

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

$REC
$BAR

td GROUPBY ($BAR)

body
table

(b) Result Tree Generator

$NAME GROUPBY ($NAME)

table $CYL

td
tr

GROUPBY ($MAN)

$PROT

td
table
tr
td

GROUPBY ($PROT)

protection_ratings
protection_rating $PROT

GROUPBY ($DIST)

td
img
$IMG

GROUPBY ($IMG)

protection_rating

$PROT2protection_rating
protection_rating $PROT1

max
min

operating_temp
$MIN
$MAX

Figure 11 Automatically Generated Result Fragment, Result Tree Generator and Template

Report Page

We discuss next how repeatable element nodes are managed. The complete algo-
rithm, called AutoReport, for constructing the result fragment and the result tree gen-
erator, is presented in [19], and handles every structure of EST.

The Editor handles repeatable element nodes in the EST by automatically generat-
ing corresponding table elements and group-by lists in the result tree generator. For
example, the path from the root of the EST to the name element node that is selected
in Action 1 contains the manufacturer repeatable element node, which results in
the generation of the “manufacturer” table element node, shown in Figure 11b, and
the group-by list of its tr (table row) child element node. This group-by list will
generate one table row for each binding of the $MAN element variable.

 416

References

[1] S. Abiteboul, P. Buneman, D. Suciu: Data on the Web, Morgan Kaufman, CA (2000)
[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, D. Srivastava: Minimization of Tree Pattern

Queries, Proceedings ACM SIGMOD Conference, (2001)
[3] P. Atzeni, G. Mecca, P. Merialdo: To Weave the Web, Proceedings 23rd VLDB Confer-

ence, (1997)
[4] P. Bernstein et al.: The Asilomar report on database research, ACM SIGMOD Record

27(4) (1998)
[5] M. Carey, L. Haas, V. Maganty, J. Williams: PESTO: An Integrated Query/Browser for

Object Databases, Proceedings 22nd VLDB Conference (1996)
[6] D. Chamberlin et al.: XQuery 1.0: An XML Query Language, http://www.w3.org/TR/

xquery/
[7] S. Chawathe, T. Baby, J Yeo: VQBD: Exploring Semistructured Data (demonstration

description), Proceedings ACM SIGMOD Conference (2001)
[8] S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv, A. Serebrenik: EquiX – Easy Querying

in XML Databases, Proceedings ACM WebDB Workshop, (1999)
[9] Deutsch et al.: XML-QL: A Query Language for XML, W3C note (1998) http://

www.w3.org/TR/1998/NOTE-xml-ql-19980819/
[10] Y. Papakonstantinou, V. Vassalos: The Enosys Data Integration Platform: Lessons from

the Trenches, Proceedings 10th CIKM Conference, (2001)
[11] M. Fernández et al.: XQuery 1.0 and XPath 2.0 Data Model, http://www.w3.org/TR/

query-datamodel/
[12] M. Fernández, A. Morishima, D. Suciu: Efficient Evaluation of XML Middle-ware Que-

ries, Proceedings ACM SIGMOD Conference (2001)
[13] M. Fernández, D. Suciu and I. Tatarinov: Declarative Specification of Data-intensive Web

sites, Proceedings Workshop on Domain Specific Languages (DSL), (1999)
[14] P. Fraternali: Tools and Approaches for Data Intensive Web Application Development: a

Survey, ACM Computing Surveys 31(3) (1999)
[15] P. Fraternali, P. Paolini: Model-Driven Development of Web Applications: the Autoweb

System, ACM Transactions on Office Information Systems 18 (4) (2000)
[16] Levy, A. Rajaraman, J. D. Ullman: Answering Queries Using Limited External Proces-

sors, Proceedings PODS Symposium, (1996)
[17] Ludäscher, Y. Papakonstantinou, P. Velikhov: Navigation-Driven Evaluation of Virtual

Mediated Views, Proceedings EDBT Conference, (2000)
[18] K. Munroe, Y. Papakonstantinou: BBQ: A Visual Interface for Browsing and Querying

XML, Proceedings 5th Visual Database Systems Conference (2000)
[19] Y. Papakonstantinou, M. Petropoulos, V. Vassalos: Graphical Query Interfaces for Semis-

tructured Data: The QURSED system, submitted for publication
[20] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, R. Fagin: Translating Web Data,

Proceedings 28th VLDB Conference, (2002)
[21] D. Quass et al.: Querying Semistructured Heterogeneous Information, Proceedings 4th

DOOD Conference, (1995)
[22] D. Raggett, A. Le Hors, I. Jacobs: HTML 4.01 Specification, http://www.w3.org/TR/

html4/
[23] H. Schöning, J. Wäsch: Tamino - an Internet Database System, Proceedings EDBT Con-

ference (2000)
[24] V. Vassalos, Y. Papakonstantinou: Expressive Capabilities Description Languages and

Query Rewriting Algorithms, Journal of Logic Programming, 43(1) (2000)
[25] M. Zloof: Query By Example, Proceedings National Computer Conference, AFIPS, Vol.

44 (1975)

