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Abstract. We present an integrated clinico-genomics environment. The proposed 
reference architecture provides for the seamless integration of clinical and ge-
nomic information, and aims towards the future genetic-medicine environment. 
Intelligent processing operations (i.e., data mining) are in the heart of this envi-
ronment. In this context, we also present a novel graph-theoretic hybrid cluster-
ing approach that utilizes information about the functional classification of genes 
in order to achieve more knowledgeable, and by though, more naturally inter-
pretable clustering arrangement of the genes. The clustering approach was tested 
on an indicative real-world datasets with satisfactory and interpretable results. 

1 Introduction 

The completion of DNA sequences for various organisms re-orient the related R&D 
agenda from static structural genomics activities to dynamic functional genomics 
ones. In this context microarray technology offers a promising alternative towards 
the understanding of the underlying genome mechanisms [22]. With the recent ad-
vances in microarray technology, the potential for molecular diagnostic and prognos-
tic tools seems to come in reality. In such an integrated environment, the need to 
extend the standard clinical decision-making references to reliable genomic estab-
lishments raises as a major demand [3, 14]. 

In this paper we present the architecture and the needed operational infrastructure 
of an integrated environment where, clinical and genomic knowledge are appropri-
ately fused. The aim is the accomplishment of an integrated clinico-genomics opera-
tional framework targeting the future individualized genetic medicine environment. In 
this respect, functional genomics and disease compacting research (e.g., inquires for 
disease gene-markers) are coupled and guided by related medical knowledge. An 
endeavor founded on the synergy between Medical Informatics and Bioinformatics 
[11], and oriented around the promising microarrays technology. 

In this context the need to devise, develop and test flexible and reliable techniques 
for the analysis of microarray or, gene-expression data is raised [2]. Gene-expression 
data analysis is heavily depended on Gene Expression Data Mining (GEDM) tech-
nology, and in the very-last years a lot of related research efforts are in progress. 
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GEDM is used to identify intrinsic patterns and relationships in gene expression data 
(a brief outline of gene-expression data and how they are set is given in section 3.1). 

The identification of patterns in complex gene expression datasets provides two 
benefits: (i) generation of insight into gene regulation, and (ii) characterization of 
multiple gene expression profiles in complex biological processes, e.g. pathological 
states [23]. 

GEDM activities are based on two approaches: (a) hypothesis testing- to investi-
gate the induction or perturbation of a biological process that leads to predicted re-
sults, and (b) knowledge discovery- to detect ‘internal structure’ in biological data.  

In this paper we present an integrated methodology that combines both. It is based 
on a hybrid graph-theoretic clustering approach able to compute and utilize different 
distances (or, similarities) between the objects to be clustered. In this respect the 
whole exploratory data analysis process becomes more knowledgeable in the sense 
that pre-established domain-knowledge is used to guide clustering. 

Next section presents a proposal for an integrated clinico-genomics environment, 
with a focus on the ways that gene-expression profiling is adapted around the clinical 
decision making context. Section three, introduces the hybrid clustering approach and 
its utilization in the context of microarray data analysis aspects. In section four, ex-
perimental results a real-world gene-expression case study are presented. Last section 
concludes and presents topics for the future R&D agenda of the field. 

2 Towards and Integrated Clinico-Genomics Environment 

Bioinformatics enables us to understand the fundamental knowledge about biological 
processes. At the same time, it becomes evident that in order to fully grasp the mecha-
nisms of a disease we do not only need an understanding of the genetic base of the 
disease- dealing with large amounts of data and related functional genomics ap-
proaches (such as gene-expression profiling), but we also need to integrate the 
knowledge normally processed in the clinical setting. In other words the respective 
R&D agenda should be forwarded towards the delivery of an Integrated Clinico-
Genomics Environment (ICGE) with the combined genetic and individualized medi-
cine being the target [14]. 

The Building Blocks 
We envisage seven basic building blocks for the realization of the proposed ICGE 
(see Figure 1). 
1. A set of clinical information systems to keep patients’ clinical information: clini-

cal, laboratory and patholoanatomical information systems. These systems should 
be coupled with an information system to keep patients’ genomic information, i.e., 
the genomic information system. 

2. A middleware layer for information and data integration and intelligent process. 
3. Seamless and efficient extraction of data from the various data and information 

sources (clinical and genomic). 
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Fig. 1. The integrated Clinico-Genomics environment: Reference Architecture & Opera-
tional Components 

4. Uniform information modeling- enabled by the utilization of standard clinical and 
genomic data models, as well as respective ontologies- the COAS (Clinical Object 
Access Service, by CORBAmed [4], HL7 [10], UMLS [25], and LOINC [12]) 
standard clinical interfaces and ontologies; as well as the GO (Gene Ontology, 
[8]), GEML, MGED and MIAME genomic/gene-expression modeling standards 
[7, 15, 16], offer the appropriate schemes and the needed infrastructure. 

5. Uniform representation schemes- enabled by the utilization and the appropriate 
customization of RDF/XML technology. 

6. Intelligent data processing and visualization component - enabled by a suite of 
data-mining components and tools. 

The demanding clinical and genomic data integration environment post the need to 
elaborate on the concept of integrated electronic health care record (IEHCR) architec-
tures [9, 24], and utilize the respective technological advances extending the standard 
clinical data models to genomic ones. 

The Services 
The following basic services should be offered by ICGE. 
* GEDMS: GENE EXPRESSION DATA MINING SUITE: A repository of data-mining 

systems and tools appropriately customized for the task of gene-expression data 
analysis and respective knowledge discovery operations, i.e., data-preprocessing 
and normalization, clustering and classification, statistical methods for gene-
selection and visualization tools. The operationalization and adaptation of data-
mining operations in distributed and heterogeneous information sources is a spe-
cial demand [20]. The aim is to offer an environment where both molecular biolo-
gists and clinicians could easily adapt their data-analysis needs towards the identi-
fication of reliable gene-markers for diagnostic and prognostic needs. 
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* ICGIS: INTEGRATED CLINICO-GENOMICS INFORMATION SERVICES: To offer the 
seamless access and retrieval of patients’ clinical and genomic profiles. Clinical in-
formation refers to the standard patients’ electronic health care record, i.e., from 
demographic, physiological, and historical/hereditary data to laboratory and tissue-
based pathologo-anatomical findings. Genomic information refers to patients’ ge-
nomic findings, i.e., dna-sequences, gene-expression profiles, gene-markers etc. 
The anonymity, security, authentication and authorization issues should be also 
addressed [19].  

* EXTERNAL INFORMATION SOURCES. A key requirement is the integration of ICGIS 
with external information and knowledge sources, as offered by clinical practice 
and research (e.g., sites for breast-cancer guidelines and protocols), and functional-
genomics research (e.g., Human Genome Project’s related Web-based information 
services and respective data banks). 

3 Knowledgeable Gene-Expression Profiling 

3.1 The Settings of Gene-Expression Profiling 

By measuring transcription levels of genes in an organism under various conditions, 
in different tissues, we can build up gene expression profiles, which characterize the 
dynamic functioning of each gene in the genome. The gene-expression data are repre-
sented in a matrix with rows representing genes, columns representing samples (e.g., 
developmental stages, various tissues, treatments etc), and each continuous-valued 
cell characterizing the expression level of the particular gene in the particular sample 
[2]. 

There are two straightforward ways how gene expression matrix can be studied: 
(1) comparing expression profiles of genes by comparing rows in the expression 
matrix; and (2) comparing expression profiles of samples by comparing columns in 
the matrix. Additionally, both methods can be combined (provided that the data nor-
malization allows it). When comparing rows or columns, we can look either for simi-
larities or, for differences and accordingly form clusters. 

Clustering: An Unsupervised Intelligent Data Analysis Approach.  The goal of 
clustering is to group together objects (genes or samples) with similar properties. 
This can also be viewed as the reduction of the dimensionality of the system or, the 
discovery of ‘structure in the data’. By comparing gene-expression profiles, and 
forming clusters, we can hypothesize that the respective genes are co-regulated and 
possibly functionally related.  

3.2 Hybrid Clustering: Methodology Outline 

A novel hybrid clustering approach, suitable for gene-expression data analysis, is 
devised. It follows three steps [21]: 
a. A distance is computed between all the objects (genes) to be clustered. The dis-

tance may be computed taking in consideration various modalities. For microarray 
data the distance between two genes may reflect their functional classification (i.e., 
their known assignment to the same or similar functional activity during the meta-
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bolic process) or, the occurrence of transcriptional-factors (i.e., pre-specified and 
established motifs in the corresponding DNA-sequences of the genes).  

b. A fully connected weighted graph is devised with the objects as nodes and the 
computed distances as the edges/links weights. The minimum spanning tree (MST) 
of the graph is found. The computed MST reserves the minimum distance between 
objects. So, objects that exhibit low distances (e.g., similar functional activities for 
genes or, similar expression patterns) are arranged in neighboring areas of the tree 
with the potential of ‘isolating’ parts of the tree and forming groups. 

c. The MST is cut to sub-trees following an iterative partition process resulted into a 
Graph-Theoretic Clustering (GTC) algorithm. The final outcome is a hierarchical 
clustering-tree organization of the objects. 

Coping with Sequential Data 
Most of the gene-expression data are sequential, i.e., the conditions under which the 
expression of the different genes is studied are ordered in time. In this case we are 
confronted with a time-series clustering situation.  

Discovering sequential relationships in a time sequence is important to many ap-
plication domains. In data mining applications, it is often necessary to search within a 
series database for time-series that matches a pre-specified query series. This primi-
tive is needed, for example, for prediction and clustering purposes. Clustering of 
time-series data contributes to the problem of inducing and forming categories 
(classes) of events. During the last years a great-deal of work is devoted on such 
research aspects [1, 5]. 

Measuring the similarity between objects is a crucial issue in many data retrieval 
and data mining applications. The typical task is to define a function dist(a,b) (or, 
sim(a,b)), between two sequences a and b, which represents how ‘distant’ (or, ‘simi-
lar’) they are to each other. A simple starting point would be to measure the distance 
by using a normal distance metric (e.g., Euclidean). Most of the gene-expression 
clustering studies follow this simple approach.  

But, for time-series this way of measuring distance is not appropriate, since the se-
quences can have outliers, different scaling factors, and baselines. As it is noted in 
[1], reliable time-series matching and clustering operations should take in considera-
tion the following functions: (i) ignore small or not-significant parts of the series; (ii) 
translate the offset of the series in order to align them vertically; and (iii) scale the 
amplitude of the series so that each of the respective segments lies within an envelope 
of fixed width. For complex objects, designing such functions and algorithms to com-
pute them, is by no means trivial. 

Qualitative Dynamic Discretization of Time Series 
The problems about identifying significant parts in time-series; offset translation and 
amplidute scaling could be tackled by a ‘discretization’ transformation of the time-
series. That is, each value of a time-series is transformed into a representative 
nominal value. The nominal value depends on the discretization of the time-series 
values, i.e., separation of the time-series values into respective time-point intervals. 
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In this paper we follow and adjust the qualitative dymanic discretization- QDD 
method presented in [13] (see Figure 2). The basic idea behind this method is the use 
of statistical information about the preceding values observed from the series in order 
to select the discrete value for a new continuous value from the series. A new con-
tinuous value will be assigned to the same discrete value as its preceding values if the 
continuous value belongs to the same population (to be decided with a Student’s t-
statistic). Otherwise a static discrete transformation method (discr function in the 
lower part of Figure 2) will assign a new discrete value to this new continuous value. 

Fig. 2. Time series nominalization: (a) the Qualitative dynamic discretization algorithm; and 
(b) computation and assignment of discrete values. 

Constant patterns. With the QDT method it is very difficult to model ‘constant’ 
time-series, i.e., series with values fluctuating in ‘small’, i.e., non-significant ranges. 
We refined and enhanced the QDT method by computing a threshold value for these 
fluctuations.  

First, each series TS(X) = {X1, X2, ... Xn} is transformed to range in the [0,1] inter-
val, TS[0-1](X) = {X[0-1], , X[0-1],2 , ... X[0-1],n}. Dividing all the values of the series by 
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the series’ maximum value does this. Then, we use the formula below to compute the 
threshold value. 
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If the minimum value of the [0-1]-ranged series transform is greater than the com-
puted threshold then the series is considered as constant, and the discrete value s (i.e., 
the user specified maximum number of discrete values) is assigned to all its values 
(see first if condition in part a of Figure 2). Otherwise the discretization process is 
triggered (part b of Figure 2).  

Notice that in Figure 2 the distance between objects is computed by matching their 
corresponding nominal values (the NOM_dist in part b of Figure 2). The current GTC 
implementation includes a variety of distance methods that implements: the normal 
and square-rooted Euclidean metrics; the Pearson linear- and rank-correlation met-
rics; the Edit distance metric, and the Value Difference Metric. 

The Value Difference Metric: a Knowledgeable Distance  
The VDM metric could be utilized in order to combine information about the objects 
that originates from different modalities. For example, the functional classification of 
genes for various organisms is known in advance (at least for organisms with com-
pleted genomes, like yeast) [17]. The VDM distance metric (formula below) takes 
into account this information, i.e., the assignment of objects to classes [27].  
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where, Va= x: the value of feature a is x; Na;x: the number of objects value x for at-
tribute a; Na;x;c : the number of objects value x for attribute a and assigned to class c; 
and C: the total number of classes. 

Assuming that the assignment of objects to classes is known in advance then, the 
VDM metric is used to utilize information that comes from external (to the feature-
based description of the objects) modality. Now the clustering is to be performed on a 
(potentially) different distance-based arrangement of the objects, and the final hierar-
chical clustering outcome reflects both: (a) the feature-based description of the ob-
jects, and (b) their class assignments; in a way that the one is used to confirm/reject 
hypotheses about the other. So, pre-established domain-knowledge is utilized in order 
to discover regularities and confirm/reject hypotheses. In that sense, the presented 
clustering process presents a knowledgeable exploratory data analysis approach. 

Graph Theoretic Clustering 
Having on our disposal two different sources of information, (a) a set of discretised 
time-series (i.e., their feature-based description), and (b) a matrix comprising the 
distances between the series, the question is how we utilize both of them in order to 
form a reliable clustering of the series. The problem could be generalized to different 
kind of objects, other than time-series, and its statement has as follows: 



 424 

Given:  
(i) A fully-connected weighted graph, G(V,E), with each node in V representing an 

object, and each weighted link in E, representing the distance between the linked 
objects. 

(ii) A feature-based description of the objects (in our case the feature-based descrip-
tion refers to the discretised representation of time-series). 

 

Find: A clustering of the objects that utilizes both (i) and (ii). 
In other words we are confronted with the problem of inventing and forming cate-

gories of objects with information coming from different modalities, i.e., from dis-
tances and from feature-based descriptions of the objects. Towards this end, we 
elaborate on an innovative graph-theoretic clustering – GTC approach, realized 
within the following two steps. 
1. Minimum Spanning Tree (MST) construction. Given a set E of n objects, the 

minimum spanning tree- MST of the fully-connected weighted graph of the ob-
jects is constructed; the MST contains exactly (n-1) edges. A basic characteristic 
of the MST is that it keeps the shortest distances between the objects. This guar-
antees that objects lying in ‘close areas’ in the tree exhibit low distances. So, find-
ing the ‘right’ cuts of the tree could result in a reliable grouping of the objects. 
This is the method followed by Zahn, [29]. But, Zahn’s MST-based clustering ap-
proach does not utilize the feature-based description of the objects, a crucial 
source of information for deciding where to cut (especially for ‘borderline’ cases). 
The method follows a ‘one-shot’ partition of the formed MST - appropriate 
‘weak’ (or, ‘inconsistent’ in Zahn’s terminology) links are identified and cut; the 
nodes in the separated parts of the MST compose the formed clusters. Because of 
its ‘one-shot’ clustering approach the method could not identify special underly-
ing relations in the data, as for example the potential of a hierarchical organiza-
tion. With this in mind, we devised an iterative MST partition process concluding 
into a hierarchical clustering structure. Similar approaches for the clustering of 
gene-expression data have also being introduced [28]. 

2. MST Partition 
(i) Binary Splitting. For a current sub-cluster of objects (i.e., a node in the hierar-

chical tree), each of the edges in the corresponding MST is cut. A binary split 
of the objects is formed (i.e., split objects in two groups; note that if we have n 
objects then n-1 such splits are formed). The resulted two sub-clusters plus the 
sub-clusters formed so far (excluding the current node), compose a potential 
partition.  

(ii) Best split. The Category Utility- CU (see below), for all such n-1 partitions, is 
computed. The split that exhibits the highest CU is selected as the best parti-
tion of the objects. 

(iii) Iteration & Stopping criterion. Steps i, and ii are iteratively performed on all 
nodes of the tree following a breath-first tree growing approach. The category 
utility of the current partition (as formed when a node is split), CUcurrent, is 
tested against the so far partition, CUso_far. If CUcurrent > CUso_far then, the node 
is split, otherwise we stop partitioning on this part of the tree. 

The final outcome is a hierarchical clustering of the input objects. GCT exhibits a 
time-complexity of ~O(n2 x F), with n the number of objects and F the number of 
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features [21]. This figure is for the worst case; in all experiments conducted, and for 
datasets with ~1000-5000 objects and ~10-20 features the real execution time ranges 
from 2 to 30 minutes (on 1.7MHz, 2G RAM PC). 

Category Utility. For the computation and estimation of the utility that each set of 
clusters exhibits, we rely on the established and well-known Category Utility formula 
[6]. The CU metric resembles information-theoretic one, and it is based on the distri-
bution of the objects’ feature-values in a set of sub-clusters. 
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The hybrid nature of the clustering approach. The formation of the MST is based 
on the distances between objects (step 1 of the algorithm). These distances may be 
computed on the basis of different modalities. Here is where the hybrid nature of the 
clustering process is introduced. Take as example a collection of genes with known 
functional classification, and given expression profiles. After the QDD is performed, 
the corresponding feature-based description of the expression-profiles is formed. We 
may use the VDM distance, with classes the functions assigned to the genes, to form 
the minimum-spanning tree. Then, for the partition of the objects and the formation of 
the hierarchical clustering tree the CU is computed with reference just to the distribu-
tion of feature-values (ignoring the functional classification of genes). With this sce-
nario, we may conclude to groups of genes that have similar expression patterns and 
similar functions as well. Moreover, we may test various hypotheses. For example, in 
the case of a high CU for the final clustering then, we may hypothesize a strong-
relation between the expression of the genes and their functions.  

4 Experiments 

We applied the presented GTC algorithm on an indicative gene-expression dataset. 
The specific study was selected because the functions of the genes are provided, and 
the dataset is relatively small so that the utility of the CTG algorithm is shown in a 
more coherent way making the interpretation of results more transparent. 

Central Nervous System Development (CNSD). The CNSD gene-expression data-
set presents the mRNA expression levels of 112 genes during rat central nervous 
system development, focusing on the cervical spinal cord. The development course is 
extended in nine stamped time intervals; E11, E13, E15, E18, E21 (embryonic days); 
P0, P7, and P14 (postnatal days); and A (or, P90- adult) (for the original the case-
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study, dataset, and publication see [26]). Moreover, the assignment of the 112 genes 
to four main functional classes; divided further to fourteen sub-classes (i.e., 
Main_Class: Neuro-Glial-Markers with Sub_Classes: Markers, Neuro-
transmitter–Metabolizing-Enzymes).  

 

Fig. 3. Plots of the clusters’ mean expression level, for Wen and GTC-VDM clustering. Gene 
expression patterns for the GTC-VDM clustering (for three discretization intervals). 

Results and Discussion 
The presented clustering approach, using the NOM_dist metric, was applied on the 
data. The results are almost identical to the ones published by Wen et al., [26]. That 
is, five clusters are induced: w1/c22- early, w2/c2112 – mid_late, w3/c2111 – mid, 
w4/c212 – late, and w5/c22 = constant gene-expression patterns. The same applies 
when we use the VDM metric (GTC-VDM clustering approach; see Figures 3, and 
4). This result shows that the presented clustering approach is well formed, reliable 
and stable, producing similar results with the standard dendogram-based clustering 
approaches (as followed by Wen’s clustering approach where, a joining-neighboring 
clustering technique is followed). Referring to the functional classification of genes 
(also reported in the Wen publication), and accordingly utilizing the VDM metric, we 
were able to induce five clusters of genes that exhibit, not only similar expression-
profiles but similar functions as well. Figure 4 shows the formed minimum spanning 
tree and its partition to five clusters. Nodes in different shaded colors and shapes 
indicate the different functions of the clustered genes. 
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Fig. 4. (a) The MST for the CNSD domain; the five resulted sub-clusters are indicated; (b) the 
corresponding hierarchical clustering tree (the different colors correspond to gene functions). 

To further validate the GTC-VDM clustering results, we computed an impurity-
index (II) for each of the genes’ function-class, relative to the induced clusters. The 
index is based on the distribution of the different classes into the discovered clusters, 
and it is computed by the following information-theoretic formula. 

)plog(pII k,f

C

1k
k,ff ∑−=

=
 

where, k the cluster index, C the total number of induced clusters, and pf,k the 
number of function-class f genes that belongs to cluster k, divided by the total number 
of genes assigned to function-class f.   

The impurity index formula is based on a ramification of the well known diversity 
index formula [18]. It measures the degree to which the resulted clustering ‘explains’ 
the underlying function classification of the genes. If the genes of a specific function-
class are equally distributed among the clusters then, the function is highly divertive 
(i.e., high impurity-index). In the inverse case where, the functional-classes are un-
equally distributed among the clusters we may conclude that the induced gene-
expression cluster profiles follow the corresponding functional-classification of the 
genes. In other words, impurity-index helps to give answers to questions like: “do 
genes assigned to the ‘neuro_glial_markers’ function-class follow a mid_late 
gene expression profile?” 

In Table 1 below, the impurity-indices that show a difference between the Wen 
and GTC-VDM clustering approaches are listed. The average index for GTC-VDM is 
superior (1.64 compared with 1.86 for Wen clustering). So, the GTC-VDM clustering 
approach induces more ‘compact’, with respect to the genes’ functions, clusters. 

One of the fundamental problems in gene-expression clustering is the right choice 
of the clustering parameters that influence the assignment of genes to clusters, and to 
the corresponding indicative expression patterns.  

 
 



 428 

GENE FUNCTION Wen 
GTC- 
VDM 

diverse_CELL_CYCLE 2.06 1.68 
neurotransmitter_receptors_GLUTAMATE 1.68 1.34 
peptide_signaling_NEUROTROPHINES 2.27 2.00 
diverse_INTRACELLURAL_SIGNALING 1.77 1.68 
diverse_NOVEL_EST 1.68 1.48 
diverse_TRANSCRIPTION_FACTOR 1.77 1.68 
neuro_glial_markers_MARKERS 2.16 1.93 
neurotransmitter_receptors_ACETYCHOLINE 1.69 1.45 
neurotransmitter_receptors_GABA_A 1.63 1.55 

AVERAGE 1.86 1.64 
Table 1. Impurity indices (2nd column) for the functions that have different distributions (col-
umns 3-7) among the clusters of the Wen and GTC-VDM clustering approaches (‘w<n>’: the 
‘w’aves in Wen’s terminology; ‘c<nnnn>’: the GTC-VDM clusters’ index number). 

Especially, in hierarchical clustering approaches it is difficult to identify the 
‘borderline’ patterns, i.e., genes with expression profiles that lie between two or more 
clusters. This is the situation with the w2/c2112 and w3/c2111 clusters (refer to Fig-
ure 3, above). In Wen clustering there are some genes that are assigned to cluster w2, 
even if their expression patterns fits more-or-less to the w3/c2111 pattern. The GTC-
VDM clustering approach remedies this, and groups the genes within cluster 
w3/c2111.  

Special cases of ‘bordeline’ cases are the ‘unclassified’ ones (i.e., it is not clear to 
which cluster the expression-patterns of genes fit better). For example, a set of genes 
assigned to the ‘neuro_glial_markers’ function, remained unclassified with the 
Wen approach (the ‘other’ pattern in his terminology). With the GTC-VDM cluster-
ing approach most of these genes are assigned to cluster w3/c2111 in which, most of 
the genes are assigned to the ‘neuro_glial_markers’ function. So, with the utili-
zation of background-knowledge (i.e., knowledge about the function of genes) it is 
possible to solve the ‘borderline’ problem, and make the interpretation of the final 
clustering result more natural. 

5 Conclusion 

We have presented an integrated clinico-genomics environment. The proposed refer-
ence architecture provides for the seamless integration of clinical and genomic infor-
mation, and aims towards the future genetic-medicine environment. Intelligent proc-
essing operations (i.e., data mining) are in the heart of this environment. In this con-
text, we presented a novel graph-theoretic hybrid clustering approach that utilizes 
information about the functional classification of genes in order to achieve a more 
knowledgeable, and by though, more naturally interpretable clustering arrangements 
of the genes.  

The presented clustering approach is based on the discrete transformation of the 
gene-expression temporal profiles (a method appropriate for sequential / time-series 



 429 

data), and the VDM (value difference metric) formula for the computation of dis-
tances between genes. 

The approach was tested on an indicative real-world domain that refers to the 
large-sale gene-expression profiling of the central nervous system. The results are 
comparable to the original published case study Moreover, with the graph-theoretic 
clustering approach, and utilizing the VDM distance metric, we were able to tackle 
the ‘borderline’ cluster assignment problem and achieve more naturally interpretable 
results. 

Our future research and development plans are moving towards two directions: (a) 
extensive and large scale experimentation with various gene-expression profiling 
domains, as well with other domains (i.e., time-series of economic interest), in order 
to test the effectiveness and the scaling-up of the approach; and (b) incorporation of 
the approach in the presented integrated clinico-genomics environment (an endeavor 
being under-way within our group in the Institute of Computer Science, FORTH, 
Heraklion, Crete, Greece). 
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