
Management of Continuous Spatial Changes

Jose R.R. Viqueira1
, Nikos A. Lorentzos2, Nieves R. Brisaboa1

1 Computer Science Department, University of A Corunia
Castro de Elvinia S/N, A Corunia, Spain.

Email: {joserios,brisaboa}@udc.es
2 Informatics Laboratory, Agricultural University of Athens

Iera Odos 75, 11855 Athens, Greece.
Email: lorentzos@aua.gr

Abstract. Two distinct approaches can be identified in the modelling of spatial
data, one that considers discrete spatial objects and another that considers con-
tinuous spatial changes. The first approach fits better cartographic applications
whereas the second is commonly used in the modelling of continuous changes
of physical phenomena such as temperature, elevation, atmospheric pressure,
etc. Due to the fact that the two approaches aim at satisfying distinct user re-
quirements, distinct algebras have also been defined. The present paper aims at
bridging the gap between these two approaches. In particular, it considers an
SQL extension that has been defined in previous research work for the man-
agement of discrete spatial objects and shows that it can be applied for the
management of continuous spatial changes.

1 Introduction

Two distinct approaches can be identified in spatial data modelling, object-based and
field-based [1]. The former view geographic space as being populated by discrete spa-
tial objects, e.g. points, lines, surfaces, that have a position in space. Examples of
such spatial objects are wells, rivers and countries. The latter consider spatial data as
mappings from spatial points to domains that represent spatial properties. One such
domain can be either discrete or continuous. Examples of discrete domains are soil
and vegetation type. Examples of continuous domains are temperature, atmospheric
pressure and elevation. Most of research has been dedicated to the definition of mod-
els in the first approach but few efforts have been made in the second, from which the
most representative piece of work is that by Tomlin [8]. Although the set of opera-
tions defined in [8] have not been formalized, they represent a potential standard [6]
and serve as a basis for raster based tools [3]. This paper aims at filling in the gap be-
tween the two research approaches. In particular, it is shown that an SQL extension
defined for the management of interval [4] and spatial data [9, 10] can be applied for
the management of continuous spatial changes. The remainder of this paper is out-
lined as follows: In Section 2, spatial quanta are defined and, based on them, spatial
data types are formalized. Spatial predicates and functions are defined in Section 3. In
Section 4, two additional relational algebra operations are defined, Unfold and Fold.
The recursive capabilities of SQL:1999 and part of an SQL extension is outlined in
Section 5. In Section 6 it is shown how this extension can be applied to express repre-
sentative operations of Tomlin’s map algebra. Conclusions are drawn in the last sec-
tion.

 432

2 Spatial Quanta and Spatial Data Types

Consider some n ∈ I, n > 0, with a fixed value. Let In = {0, 1, …, n−1} and let i, j ∈
In. Then there is exactly one integer k, 0 ≤ k ≤ n2−1, such that k = n*j + i. Inversely, it
is known that for each such k there is exactly one such pair (i, j) satisfying k = n*j + i.
Each pair (i, j), equivalently each k, can then be represented in R×R by a dot (Fig.
1(a)). It is said that k is the ordinal number of (i, j) and that (i, j) are the coordinates
of k. Based on this, three types of spatial quanta can then be defined.

Name G

Marathon lake
Aoos river
Crystal spring

g
g
g

1

2

3

R

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

Marathon lake

Aoos river

Crystal spring

U
Name G

Marathon lake
.
.
.
Marathon lake
Aoos river
.
.
.
Aoos river
Crystal spring

g
.
.
.
g
g
.
.
.
g
g3

1,1

1,225

2,1

2,21

(Marathon lake,)g1,1

pure surfaces pure lines points

gU1

gU2
gU3 gU4

gU5

gA1 gA2

gB1

gB2

gB6

gA4

gB3

gB4

gB5

gA6

gA5
3gA

g2

g3

g4

g1

g5

g6

gC1

gC2

(b) Example relation and geometric representation.

(c) Illustration of .Unfold

(d) Illustration of .Fold (e) Illustration of Complementation.

Input Relation Result Relation Input Relation Result Relation

(a) Spatial quanta and spatial objects.

Fig. 1. Spatial Quanta, Spatial Data Types and Spatial Relational Formalism.

Quantum Point: Given an integer k, the singleton Pk = {k | k ∈ 1-n2I } is called a 2-
dimensional (2-d) spatial point or a 2-d quantum point or simply point.

 433

The set of all quantum points is denoted as QPOINT. The coordinates of Pk are those
of k. The geometric representation of Pk is that of its coordinates (i, j). Fig. 1(a) shows
the geometric representation of Pk, for k = 0, 1, ..., 224.

Quantum Line: Let Pk ∈ QPOINT have coordinates (i, j) and let the coordinates of
another point be (i+1, j). Then a pure horizontal quantum line is defined as the set

Hk ≡ {(x, y) ∈ R2 | i ≤ x ≤ i+1 ∧ y = j}.
Similarly, if Pk has coordinates (i, j) and those of another point are (i, j+1) then a

pure vertical quantum line is defined as the set
Vk ≡ {(x, y) ∈ R2 | x = i ∧ j ≤ y ≤ j+1}.

Finally, pure quantum line is called any pure horizontal or any pure vertical quan-
tum line. The set of all pure horizontal (pure vertical) quantum lines is denoted as QPH
(QPV). The set of all pure quantum lines is denoted as QPL. A pure quantum line can
geometrically be interpreted as a line segment. Hence, (a) and (b) in Fig. 1(a) are two
pure quantum lines, H183, a pure horizontal quantum line, and V187, a pure vertical
quantum line.

Quantum Surface: Let Pk have coordinates (i, j) and let the coordinates of three
other points be (i+1, j), (i, j+1), (i+1, j+1). Then a pure quantum surface is defined as
the set

Sk ≡ {(x, y) ∈ R2 | i ≤ x ≤ i + 1 ∧ j ≤ y ≤ j+1 }.
The set of all pure quantum surfaces is denoted as QPS. A pure quantum surface can

geometrically be interpreted as a square. Hence, (c) in Fig. 1(a) depicts a pure quan-
tum surface, S191.

QLINE ≡ QPL ∪ QPOINT is called set of all quantum lines. QSURFACE ≡ QPS ∪ QLINE is
called the set of all quantum surfaces. An element in QSURFACE is called quantum of
space or spatial quantum.

Quantum Set: If ∅ ≠ S = q1 ∪ q2 ∪ … ∪ qn ⊂ R2, where qi ∈ QSURFACE ∀ i = 1, 2,
…, n, then S is called a quantum set.

Spatial Connectivity: A quantum set S ⊂ R2 is connected iff for every pair of reals
x, y ∈ S there exists a sequence of quanta q1, q2, ..., qn ⊆ S satisfying the following
two properties:

1. x ∈ q1 and y ∈ qn.
2. qi ∩ qi+1 ≠ ∅ for i = 1, 2, …, n-1.

Spatial Data Types: Let g be a non-empty, connected quantum set. It is then de-
fined that g is of a (2-d spatial) type
− POINT ⇔ g ≡ qi, qi ∈ QPOINT (e.g. {0}, {2}, ..., {224})
− QPLINE ⇔ g ≡ qi, qi ∈ QPL (e.g. (a), (b))
− QPSURFACE ⇔ g ≡ qi, qi ∈ QPS (e.g. (c))
− PLINE ⇔ g ≡ ∪iqi, qi ∈ QPL (e.g. (a), (b), (d) (e))
− LINE ⇔ g ≡ ∪iqi, qi ∈ QLINE (e.g. any pure line and point)
− PSURFACE ⇔ g ≡ ∪iqi, qi ∈ QPS (e.g. (c), (f), (g))
− SURFACE ⇔ g ≡ ∪iqi, qi ∈ QSURFACE (e.g. any of the above and (h)).

 434

An element of one of the above types is called, respectively, (2-d spatial) point,
pure quantum line, pure quantum surface, pure line, line, pure surface and surface.
The geometric interpretation of the example objects above is depicted in Fig. 1(a).

3 Predicates and Functions

The definitions given below restrict only to those that are used in the remainder sec-
tions. If g1 and g2 are spatial objects, the following predicates are defined:
• g1 = g2 ⇔ (∀ q ∈ QSURFACE)((q ⊆ g1 ⇒ q ⊆ g2) ∧ (q ⊆ g2 ⇒ q ⊆ g1)).
• g1 <> g2 ⇔ ¬(g1 = g2).
• g1 cp g2 ⇔ g1 ∩ g2 ≠ ∅ (g1 and g2 have common points).
• g1 contains g2 ⇔ g1 ⊂ g2.
• is_point(g) ⇔ g ∈ POINT.

Predicates is_pure_qline, is_pure_qsurface, is_pure_line, is_line, is_pure_surface
and is_surface are defined similarly.

If q is a spatial quantum of any type, i.e. either Pk or Vk or Hk or Sk, then the fol-
lowing functions are defined:
• ord(q) ≡ k, p(k) ≡ Pk, h(k) ≡ Hk, v(k) ≡ Vk, s(k) ≡ Sk.
• If q is a point Pk (pure quantum surface Sk) then function north(Pk) (north(Sk)) re-

turns the point (pure quantum surface) closest to the north of Pk (Sk). Functions
south, west, east, northeast, etc are defined in a similar manner.
If Pk1, Pk2 are points with coordinates (ik1, jk1), (ik2, jk2), the two functions below re-

turn, respectively, their Euclidian distance and the slope of the line segment that con-
nects them:

• distance(Pk1, Pk2) = 2
k1k2

2
k1k2)j - (j)i - (i +

• angle(Pk1, Pk2) = atan(ik2 – ik1, jk2 – jk1),
where atan(x, y) is the function that returns the angle α in the interval [0, 360) whose
tangent is defined as tan(α) = y/x. If,

iBP ∈ POINT ∧
iAP ⊆ gA ∧

iBP ⊆ gB then func-
tion distance is extended so as to apply to any two objects, as follows:
• distance(gA, gB) = min(distance(

iAP ,
iBP))

4 Relational Formalism

A relation is defined the known way, except that the domain of one or more of its at-
tributes can now be of some spatial data type. G is used to denote an attribute of some
spatial data type. A denotes a set of attributes of any data type. R(A, G) denotes a re-
lation scheme with attributes A ∪ {G}. Finally, (a, g) denotes a tuple of a relation
with scheme R(A, G). Fig. 1(b) shows the contents of a relation R(Name | CHAR(20),
G | SURFACE), as well as the geometric representation of the spatial objects recorded
in it. The known set of relational algebra operations is now extended by two more,
Unfold and Fold:

 435

Unfold: It decomposes spatial objects into the set of spatial quanta they consist of.
Formally, if R is a relation with scheme R(A, G) then

U = Unfold[G](R)
has scheme U(A, G), and extension

{(a, qi) | qi ∈ QSURFACE ∧ qi ⊆ g ∧ (a, g) ∈ R}.
As an example, if R is the relation in Fig. 1(b), then U = Unfold[G](R) yields rela-

tion U in Fig. 1(c).
Fold: It merges spatial objects. Formally, if R is a relation with scheme R(A, G)

then relation
F = Fold[G](R)

has scheme F(A, G) and extension
{(a, U

n
1 i ig g ==) | (g is connected) ∧ ((a, gi) ∈ R, i = 1, 2, ..., n) ∧

 ((∃/ (a, gk) ∈ R, k ≠ 1, 2, …, n)(g ∪ gk is con-
nected))}.

As an example, if R(A, G) consists of the set of tuples {(a, gAi)} ∪ {(a, gBj)},
where the spatial objects gAi and gBj are those depicted in Fig. 1(d), then F =
Fold[G](R) consists of the set of tuples {(a, gUk)}, where the spatial objects gUk are
also shown in Fig. 1(d).

Many other operations of practical interest for the management of spatial data can
be expressed in terms of the previous seven [9]. One of them is operation Comple-
mentation, whose functionality is illustrated in Fig 1(e). An equivalent SQL:1999
shorthand of this operation in given in Subsection 5.2.

5 Recursion in SQL:1999 and Spatial Extension

In this section it is illustrated how the recursive capabilities of SQL:1999 can be com-
bined with an extension of it, which is based on the algebraic operations defined in
the previous section, in a way that enables the management of continuous changes in
space.

5.1 Recursive Queries in SQL:1999

Consider relation EMPLOYEE in Fig. 2 and the following query recursive SQL:1999
query:

WITH RECURSIVE DEPENDANT (Emp, Sal, Mgr) AS (1)
((2)
 SELECT Name AS Emp, Salary AS Sal, Manager AS Mgr (3)
 FROM EMPLOYEE (4)
 WHERE E.Manager = ‘Susan’ (5)
 UNION (6)
 SELECT E.Name AS Emp, E.Salary AS Sal, D.Mgr AS Mgr (7)
 FROM EMPLOYEE AS E, DEPENDANT AS D (8)
 WHERE E.Manager = D.Emp (9)
) (10)
SELECT sum(Sal) (11)
FROM DEPENDANT (12)

 436

EMPLOYEE

John
Susan
Peter
Tom
Mary
Nicole
Jim
Jack
Alex

Susan

John
Susan
John
Tom
Tom
Alex

Name Manager

NicolePeter Mary Jim

(a) (b)

Salary
10k
20k
15k
12k
40k
200k
12k
190k
15k

Jack

Alex

John Tom

Susan

Fig. 2. Illustration of recursive queries in SQL:1999.

The SQL statement in lines (3)-(9) is executed recursively until the contents of re-
lation DEPENDANT, which is obtained, does not change in two consecutive recur-
sion rounds. It is noticed that during the first execution round, lines (3)-(5) yield the
set of tuples

r1: {(John, 10k, Susan), (Tom, 12k, Susan)}
whereas lines (7)-(9) retrieve the empty relation.

In the second round, lines (3)-(5) yield again the tuples of the previous round but
now lines (7)-(9) yield the set of tuples {(Peter, 15k, Susan), (Mary, 40k, Susan),
(Nicole, 200k, Susan), (Jim, 12k, Susan)}. Therefore, the relation resulting from this
round consists of

r2: {(John, 10k, Susan), (Tom, 12k, Susan),
(Peter, 15k, Susan), (Mary, 40k, Susan),
(Nicole, 200k, Susan), (Jim, 12k, Susan)}.

A final third round does not add any new tuples to relation DEPENDANT, hence
the recursion phase terminates. Then the statement in lines (11)-(12) is executed,
which yields the single tuple {(289k)}, which answers the query “Give the sum of the
salaries of all the employees who are supervised either directly or indirectly by
Susan.”

Given that only linear recursion is allowed, a recursive relation (DEPENDANT in
this example) may not appear more than once in either the FROM clause or in sub-
queries of the same query specification. An in depth description of the recursive ca-
pabilities of SQL:1999 can be found in [5].

5.2 Spatial Extension

Based on the relational formalism of Section 4, a part of an SQL:1999 extension for
spatial data management [9, 10] is now defined, use of which is made in Section 6.
This extension supports all the spatial data types, predicates and functions defined in
Section 2.

Query Specification: The extended syntax allows the application of operations Un-
fold and Fold to the result of a query specification. Thus, if <select> denotes the SQL
expression SELECT-FROM-WHERE-GROUP BY-HAVING, and G is a spatial at-
tribute that appears after the keyword SELECT of <select>, then the expressions

 437

<select> <select>
REFORMAT AS UNFOLD G REFORMAT AS FOLD G

apply, respectively, operations Unfold and Fold to the result obtained by <select>, on
attribute G.

Complementation: It enables obtaining the spatial complementation of spatial ob-
jects. Thus, if <table reference> is a reference to a table with scheme T(A, G), and
SURF_ALL(G | QPSURFACE) is a relation consisting of all the pure quantum sur-
faces in QSURFACE, then

<table reference> COMPLEMENTATION OF (G)
is defined as a shorthand of the expression

SELECT T.A, S.G
FROM <table reference> AS T, SURF_ALL AS S
WHERE S.G NOT IN (SELECT T1.G
 FROM <table reference> AS T1
 WHERE T1.A = T.A
 REFORMAT AS UNFOLD T1.G)
REFORMAT AS FOLD G

As an example, if R(A, G) consists of the set of tuples {(a, gi)}, where the geometric
representation of gi is shown in Fig. 1(e), then the next expression yields the set {(a,
gCi)}, where each gCi is also shown in Fig. 1(e).

R COMPLEMENTATION OF (G).

6 Application to Continuous Spatial Changes

Now it is shown that the SQL:1999 extension of the previous section can be applied
to express the most representative operations of Tomlin’s map algebra. In this algebra
a map is composed of zones. Each zone is composed of a set of locations (elements of
the underlying 2-d space) and has an associated numeric value. The algebra consists
of about 50 operations, classified into four groups, Local, Zonal, Focal and Incre-
mental:
− Local Operations: The result value of each location p depends on the value of the

same location p in one or various input maps.
− Zonal Operations: The result value of each location p depends on the values of the

locations contained in the zone of p in one or various input maps.
− Focal Operations: The result value of each location p depends on the values of the

locations contained in the neighbourhood of p in one or various input maps.
− Incremental Operations: They extend the set of Focal operations. They take into

account the type of zone at each location (point, line or surface).
Some of the these operations are illustrated in Figs. 3 and 4. With respect to the

formalism developed, a map m can be seen as a relation R with scheme R(A | REAL,
G | QPSURFACE). Each tuple of R records the A value of each location (pure quan-
tum surface) in map m. A zone of R is a set of tuples with the same value for attribute
A. A Digital Elevation Model (DEM) [1] is a map where the value of each location
represents an elevation above sea level. Although the operations are general, in that
they can be applied to any kind of continuous spatial changes, the illustrations pro-
vided in this paper restrict to the management of data derived from the DEM of a sur-
face s.

 438

6.1 Operation FocalGravitation

FocalGravitation makes use of the Inverse Distance Weight (IDW). It is an interpola-
tion method that obtains a map m of continuous changes in space from a sparse set of
pairs (ai, pi), where pi is a location and ai is a numeric value. Given a fixed real num-
ber d, in the general case, the value a of each location p of the output map m is given
by the formula

d)ip (p, id0 where),i i1/d)/(i i/dia(a <=<∑∑= distance .
Now let R(A | REAL, G | POINT) be a DEM and let d be a real number. Assume

also that S(G | QPSURFACE) is a relation consisting of all the pure quantum surfaces
of a given rectangular surface s, such that all the points in R are contained in s. Then
the following SQL statement assigns a real value number to each quantum surface in
S by the use of the IDW interpolation method.

SELECT min(R.A), S.G (1)
 FROM R, S (2)
 WHERE R.G cp S.G (3)
 GROUP BY S.G (4)
UNION (5)
 SELECT sum(R.A/distance(R.G, S.G)) / (6)
 sum(1/distance(R.G, S.G)) AS A, S.G (7)
 FROM R, S (8)
 WHERE not R.G cp S.G and distance(R.G, S.G) < d (9)
 GROUP BY S.G (10)

In lines (1)-(4) each pure quantum surface in S that contains some point in R.G is
assigned the respective R.A value. In case that more than one point is contained in a
given pure quantum surface, the minimum A value is assigned. The value of those
pure quantum surfaces, which do not contain any point in R, is approximated in lines
(6)-(10). For an example, consider relation CONTOUR(A | REAL, G | PLINE) con-
taining the altitude above sea level of each contour line of a given surface s. The
geometric representation of these lines is depicted in Fig. 3(a). If the above SQL ex-
pression is applied to the result of

 (a) Contour lines (b) FocalGravitation

Fig. 3. Contour lines and DEM obtained with IDW interpolation method.

SELECT *
FROM (SELECT *
 FROM CONTOUR

 439

 REFORMAT AS UNFOLD G)
WHERE is_point(G)

with a value of d = 20 then the result is a relation with attributes (A | REAL, G |
QPSURFACE) whose contents record the DEM depicted in Fig. 3(b) (darker grey has
been chosen to represent lower altitude).

6.2 Operation FocalMean

To implement operation FocalMean, let DEM(A | REAL, G | QPSURFACE) be a re-
lation recording the DEM whose geometric representation is depicted in Fig. 3(b).
Then the following statement retrieves a new DEM, where the value of each pure
quantum surface q is calculated as the average of the values of all the pure quantum
surfaces in DEM whose distance from q is less than a given value d.

SELECT avg(R2.A), R1.G
FROM R AS R1, R AS R2
WHERE distance(R1.G, R2.G) < d
GROUP BY R1.G
As a result of the application of this statement the DEM in Fig. 3(b) becomes

smoother, by the elimination of possible errors produced by the IDW interpolation
method. The functionality of other Focal operations such as FocalMinimum, Focal-
Maximum, and FocalSum can be achieved by just the use of the respective aggregate
functions min, max and sum, in place of avg of the above SQL statement.

6.3 Operation ZonalMean

For operation ZonalMean, let R(A | REAL, G | QPSURFACE) be a relation recording
the DEM obtained from operation FocalMean of the previous subsection. Assume
also that PCENTRE(ID | REAL, G | QPSURFACE) is a relation that records a zone
(set of pure quantum surfaces with the same ID value) for each population centre, i.e.
city, town, village, in s. The geometric representation of PCENTRE is depicted in Fig.
4(a). The next statement assigns to each pure quantum surface q in each population
centre c the average of the altitudes in c.

SELECT A, G (1)
FROM (SELECT avg(R.A), P.G (2)
 FROM R, (3)
 (SELECT G (4)
 FROM PCENTRE (5)
 REFORMAT AS FOLD G) AS P (6)
 WHERE P.G contains R.G or P.G = R.G (7)
 GROUP BY P.G (8)
 REFORMAT AS UNFOLD G) (9)
WHERE is_pure_surface(G) (10)

The geometric representation of the result of the previous statement is depicted in
Fig. 4(b) (darker grey has been chosen to represent lower average altitude). The func-
tionality of other Zonal operations such as ZonalMinimum, ZonalMaximum and Zon-
alSum can be achieved by just the use of the respective aggregate functions min, max
and sum in place of avg in the above statement.

 440

 (a) Zones (b) ZonalMean

 (c) LocalRating (d) IncrementalAspect

 (e) IncrementalDrainage (f) IncrementalDrainage with Spreading option

Fig. 4. Illustration of examples of Zonal, Local and Incremental operations.

6.4 Operation LocalRating

Operation LocalRating assigns specific output A values to specific input A values.
Considering for example the previous relation R, the following statement assigns an
output value of 1 (2, 3, 4, 5) to input values less than 250 (ranging from 250 to 299,
ranging from 300 to 349, ranging from 350 to 399, greater than 400).

 441

SELECT CASE
 WHEN A<250 THEN 1
 WHEN A>= 250 and A < 300 THEN 2
 WHEN A>= 300 and A < 350 THEN 3
 WHEN A>= 350 and A < 400 THEN 4
 WHEN A>400 THEN 5
 END AS A,
 G
FROM R
The geometric representation of the result relation is shown in Fig. 4(c) (Darker

grey represents lower values of A). Other Local operations such as LocalSum, Lo-
calDifference, LocalProduct etc. can be achieved by applying some arithmetic opera-
tions to the respective A values of the same pure quantum surface in various input re-
lations.

6.5 Operation IncrementalAspect

Aspect: The aspect of a pure quantum surface q, in a DEM m, is defined as 0, if the
slope of the surface is 0, and as the direction (angle in the range (0, 360º]) to which
the lowest part of q is oriented (Fig. 5).

0º

90º

180º

270º

360º

slope

aspect q

Fig. 5. Illustration of the aspect of a pure quantum surface.

If aSW denotes the elevation of the pure quantum surface southwest(q) etc., the as-
pect α of q can be approximated by the elevation of the neighbours of q, by use of the
formula [2]:

x = NEESENWWSW a - 2a - a - a 2a a ++ , y = NENNWSESSW a - 2a - a - a 2a a ++

α =

=
==

otherwise | y) (x,
0 y) (x, if | 360

 0 y and 0 x if | 0

atan
atan

Now let R be again the relation obtained by operation FocalMean in Subsection
6.2. The next statement retrieves the aspect of each pure quantum surface in R and
matches the functionality of operation IncrementalAspect.

SELECT CASE (1)
 WHEN LEFT.A = RIGHT.A and BOTTOM.A = TOP.A THEN 0 (2)
 WHEN atan(LEFT.A – RIGHT.A, BOTTOM.A – TOP.A) = 0 THEN 360(3)
 ELSE atan(LEFT.A – RIGHT.A, BOTTOM.A – TOP.A) (4)
 END AS A, LEFT.G (5)
FROM (SELECT sum(R1.A * (6)
 (CASE (7)
 WHEN angle(p(ord(R.G)), p(ord(R1.G))) = 180 THEN 2 (8)
 ELSE 1 (9)
 END)) AS A, R.G (10)

 442

 FROM R, R AS R1 (11)
 WHERE v(ord(R.G)) cp R1.G (12)
 GROUP BY R.A, R.G) AS LEFT, (13)
 (SELECT sum(R1.A * (14)
 (CASE (15)
 WHEN angle(p(ord(R.G)), p(ord(R1.G))) = 0 THEN 2 (16)
 ELSE 1 (17)
 END)) AS A, R.G (18)
 FROM R, R AS R1 (19)
 WHERE v(ord(east(R.G))) cp R1.G (20)
 GROUP BY R.A, R.G) AS RIGHT, (21)
 (SELECT sum(R1.A * (22)
 (CASE (23)
 WHEN angle(p(ord(R.G)), p(ord(R1.G))) = 90 THEN 2 (24)
 ELSE 1 (25)
 END)) AS A, R.G (26)
 FROM R, R AS R1 (27)
 WHERE h(ord(north(R.G))) cp R1.G (28)
 GROUP BY R.A, R.G) AS TOP, (29)
 (SELECT sum(R1.A * (30)
 (CASE (31)
 WHEN angle(p(ord(R.G)), p(ord(R1.G))) = 270 THEN 2 (32)
 ELSE 1 (33)
 END)) AS A, R.G (34)
 FROM R, R AS R1 (35)
 WHERE h(ord(R.G)) cp R1.G (36)
 GROUP BY R.A, R.G) AS BOTTOM (37)
WHERE LEFT.G = RIGHT.G and LEFT.G = TOP.G (38)
 and LEFT.G = BOTTOM.G (39)
For each pure quantum surface q in R, relation LEFT in lines (6)-(13) retrieves the

value computed by the formula aSW+2aW+aNW. Similarly, RIGHT, TOP and BOT-
TOM retrieve, respectively, the values of the formulas (aSE+2aE+aNE), (aNW+2aN+aNE)
and (aSW+2aS+aSE). The condition in lines (49)-(51) associates the A values retrieved
from the above relations to each pure quantum surface. Finally, the expression in lines
(1)-(5) retrieves the final value of α for each q.

As an example, if R stores the smooth version of the DEM depicted in Fig. 3(b),
then the result obtained from the above SQL statement is a relation whose geometric
representation is shown in Fig. 4(d). Specifically, the white colour represents value 0
and, for the remainder values, the darker a colour is the less the value it represents.

In a similar manner, operations like IncrementalSlope (retrieves the slope of each
pure quantum surface instead of its aspect) can also be expressed in the proposed
SQL extension.

6.6 Operation IncrementalDrainage

A depression in a DEM is a set of adjacent pure quantum surfaces, with the same
value a for attribute A, that are surrounded by pure quantum surfaces whose values
for A are greater than a. Depressions typically define the position of lakes, however,
they might also be the result of errors of the interpolation method. A depression is
filled when its altitude value is raised up to the altitude value of its minimum outlet1.

1 Functionality for filling depressions in DEM is typically provided in systems designed for the

management of continuous changes in space.

 443

Assuming that a relation R is depressionless, the following statement retrieves, for
each quantum surface q in R, the flow direction (either of 0, 45, 90, 135, 180, 225,
270, 315) through which q would drain water.

WITH RECURSIVE S(N, A, D, G) AS (1)
 ((2)
 SELECT 0 AS N, R1.A, angle(p(ord(R1.G)), p(ord(N.G))) AS D, R1.G(3)
 FROM R AS R1, R AS N (4)
 WHERE R1.G cp N.G and R1.G <> N.G and R1.A > N.A (5)
 and N.A = (SELECT min(A) (6)
 FROM R (7)
 WHERE R.G cp R1.G and R.G <> R1.G) (8)
 and 1 = (SELECT count(*) (9)
 FROM R (10)
 WHERE R.G cp R1.G and R.G <> R1.G and R.A = N.A) (11)
 UNION (12)
 SELECT 0 AS N, R.A, CASE avg(angle(p(ord(R.G)), p(ord(C.G)))) (13)
 WHEN 120 THEN 0 (14)
 WHEN 117 THEN 45 (15)
 WHEN 171 THEN 315 (16)
 ELSE avg(angle(p(ord(R.G)), p(ord(C.G))))(17)
 END AS D, R.G (18)
 FROM R, (SELECT G (19)
 FROM R COMPLEMENTATION OF (G) (20)
 REFORMAT AS UNFOLD G) AS C (21)
 WHERE is_pure_surface(C.G) and R.G cp C.G (22)
 and R.A <= (SELECT min(A) (23)
 FROM R AS TR (24)
 WHERE R.G cp TR.G and R.G <> TR.G) (25)
 GROUP BY R.A, R.G (26)
 UNION (27)
 SELECT S.N+1 AS N, R.A, angle(p(ord(R.G)),p(ord(S.G))) AS D, R.G (28)
 FROM R, S (29)
 WHERE R.G cp S.G and R.G <> S.G and R.A > S.A (30)
 and S.A = (SELECT min(A) S.A (31)
 FROM R AS TR (32)
 WHERE TR.G cp R.G and TR.G <> R.G) (33)
 and 1 < (SELECT count(*) (34)
 FROM R AS TR (35)
 WHERE TR.G cp R.G and TR.G <> R.G and TR.A = S.A) (36)
 and angle(p(ord(S.G)), p(ord(R.G))) <> S.D (37)
) (38)
SELECT min(D), G (39)
FROM S (40)
WHERE S.N = (SELECT min(TS.N) (41)
 FROM S AS TS (42)
 WHERE TS.G = S.G) (43)
GROUP BY G (44)

The set of pure quantum surfaces in R are classified in three different groups that
are treated with a different method. Each pure quantum surface q1 in the first group
has only one adjacent pure quantum surface q1’ whose value for attribute A is the
least of all the neighbours of q1. In this case, q1 drains to the direction of q1’, that is, to
the direction of the steepest drop. A pure quantum surface in this group is treated in
lines (3)-(11). The second group concerns some of the pure quantum surfaces in the
boundary of the rectangular surface s. In particular, it concerns those q2 whose value
for A is less than or equal to the least value for A of all its neighbours. In this case,
the flow direction of q2 is to the outside of surface s. The pure quantum surfaces of

 444

this group are treated in the lines (13)-(26). Note that the flow direction of q2 is com-
puted in lines (13)-(18) as the average of the various angles that point p(ord(q2))
forms with the points p(ord(qci)), where qci are the pure quantum surfaces of the com-
plementation of s which satisfy q2 cp qci. It has to be noted that this average does not
work for three cases that correspond to the pure quantum surface to the northwest
corner of s, the pure quantum surface to the southeast corner of s and to all the pure
quantum surfaces to the east side of s. The flow direction of each of the remainder
pure quantum surfaces q3 is obtained, recursively, in lines (39)-(56). Each q3 drains to
that q3’ of all its neighbours, for which the following conditions hold:
1. q3’ has already a flow direction.
2. q3’ does not drain to the direction of q3.
3. the value for A of q3’ is the least of the values for attribute A of all the neighbours

of q3.
4. If more than one q3’ exists, then q3 drains to that direction that was calculated in

the earliest recursive round. The value of this recursion round is recorded in attrib-
ute N of relation S. In case that more than two q3’ have been calculated in the same
recursive round, then the least angle is chosen (see lines (39)-(44)).
For an example, assume that relation R records a depressionless version of the

DEM depicted in Fig. 3(b). Then the result of the above SQL statement is a relation
whose geometric representation is shown in Fig. 4(e) (a different degree of grey is as-
signed to each of the possible directions).

The above functionality resembles the functionality of Tomlin’s operation Incre-
mentalDrainage. The difference is that more than one flow directions can be assigned
to a single location in IncrementalDrainage whereas only one is assigned to each pure
quantum surface by the above SQL expression. A detailed description of the problem
can be found in [7].

Spreading option. Once the flow direction of each pure quantum surface has been
approximated, it is possible to obtain, for a given pure quantum surface q, the number
of pure quantum surfaces in a direct uphill path, starting from q. This functionality,
commonly called flow accumulation, resembles the one achieved by operation
IncrementalDrainage spreading in and can be obtained by the following recursive
SQL statement.

WITH RECURSIVE S(C, D, G) AS (1)
 ((2)
 SELECT R.D, 1 AS C, R.G (3)
 FROM R (4)
 WHERE not EXISTS (SELECT * (5)
 FROM R AS TR (6)
 WHERE R.G cp TR.G and R.G <> TR.G (7)
 and TR.D = angle(p(ord(TR.G)),p(ord(R.G)))) (8)
 UNION (9)
 SELECT R.D, sum(S.C) + 1 AS C, R.G (10)
 FROM R, S (11)
 WHERE R.G cp S.G and R.G <> S.G (12)
 and S.D = angle (p(ord(S.G)), p(ord(R.G))) (13)
 GROUP BY R.D, R.G (14)
) (15)
SELECT C, G (16)
FROM S (17)

 445

In lines (3)-(8) the pure quantum surfaces which do not receive flow from any
neighbour are assigned the value of 1. Then, in the recursive part, the value of each
pure quantum surface q is calculated as the sum of the values of all the neighbours
that drain to the direction of q. If R records the result of the SQL statement that im-
plements operation IncrementalDrainage, then the above statement retrieves a rela-
tion whose geometric representation is shown in Fig. 4(f) (darker grey represents
lower value).

7 Conclusions

It has been shown that an SQL extension, originally defined for the management of
discrete spatial data, can be applied for the management of continuous changes in
space. This was illustrated by expressing representative operations for continuous
spatial changes in this extension. It is estimated that all the operations of Tomlin's
map algebra [8] can be expressed in a similar manner. Moreover, it is estimated that
additional operations, not included in this algebra, can also be supported. The SQL
extension actually enables the uniform management of both interval, temporal, spa-
tial, and spatio-temporal data. At the physical level, vector representations can mainly
be used to implement the spatial types POINT, PLINE and PSURFACE of the present
paper whereas raster representations fit better the QPSURFACE and QPLINE types.
Implementation, in conjunction with optimization techniques, is an issue of further re-
search.

References

[1] P.A. Burrough, R.A. McDonnell, Principles of Geographical Information Systems, Spatial
Information Systems Series, Oxford University Press, (1998)

[2] B.K.P. Horn, “Hill Shading and the Reflectance Map”, Proceedings of the IEEE 69(1):14-
47, (1981)

[3] MFWorks, URL: http://www.keigansystems.com/tech.html, Keigan Systems, (2002)
[4] N.A. Lorentzos, Y.G. Mitsopoulos, “SQL Extension for Interval Data”, IEEE Transactions

on Knowledge and Data Engineering 9(3):480-499, (1997)
[5] J. Melton, A.R. Simon, SQL:1999 - Understanding Relational Language Components,

Morgan Kaufmann Publishers, Academic Press, (2002)
[6] The OpenGIS Abstract Specification Topic 6: The Coverage Type and its Subtypes, ver.6,

OpenGIS Project Document 00-106, Open GIS Consortium Inc., (2000)
[7] D.G. Tarboton, D.P. Ames, "Advances in the Mapping of Flow Networks from Digital

Elevation Data," World Water and Environmental Resources Congress, (2001)
[8] C.D. Tomlin, Geographic Information Systems and Cartographic Modeling, Prentice Hall,

(1990)
[9] J.R.R. Viqueira, Formal Extension of the Relational Model for the Management of Spatial

and Spatio-temporal Data, Ph.D. Thesis, Computer Science Department, University of A
Corunia, (2003)

[10] J.R.R. Viqueira, N.A. Lorentzos, “Spatio-temporal SQL Extension”, Proceedings 8th Pan-
hellenic Conference on Informatics, Vol.1, Cyprus, November, (2001) 264-273

