
Multinomial Logistic Regression Applied on Software
Productivity Prediction

Panagiotis Sentas, Lefteris Angelis, Ioannis Stamelos

Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

Email: {sentas,lef,stamelos}@csd.auth.gr

Abstract. In software cost estimation various methods have been proposed to
yield a prediction of the productivity of a software project. Most of the methods
produce point estimates. However, in practice it is more realistic and useful to
have a method providing interval predictions. Although some methods accom-
pany a point estimate with a prediction interval, it is also reasonable to use a
method predicting the interval in which the cost will fall. In this paper, we con-
sider a method called Multinomial Logistic Regression using as dependent vari-
able the predefined cost intervals and as predictor variables the attributes, simi-
lar to the ones characterizing completed projects of the available data set. The
method builds a model, which classifies any new software project, according to
estimated probabilities, in one of the predefined intervals. The proposed method
was applied to a well-known data set and was validated with respect to its fit-
ting and predictive accuracy.

1 Introduction

Software Cost Estimation (SCE) is a crucial activity in the initial project phases.
Usually, by SCE we mean the prediction of the necessary project development effort,
time or productivity. A lot of methods for SCE have been proposed in the literature,
and they can be classified in three classes: Expert Judgment, which is the most
commonly used approach and is based on the experience of a team of experts [1, 2],
Estimation by Analogy, where the manager uses the notion of distance to find
neighbors of the new project among completed ones and then produces a prediction
based on their efforts [3], and finally Algorithmic Models, where the estimation
involves the generation and application of a cost model, which is derived through
statistical data analysis [1, 4, 5]. This last approach needs a historical cost database in
order to estimate the model’s parameters, e.g. coefficients of a regression model. In
this paper we propose a method, which belongs to the class of algorithmic models.

In SCE, it is safer [6] to produce interval estimates, i.e. to predict that the actual
cost of a project will fall within an interval consisting of a lower value (optimistic
estimate), and a higher one (pessimistic estimate) along with a probability value.
Some methods, for example the Ordinary Least Squares (OLS) regression models
produce, along with the point estimate, a prediction interval with a certain confidence
level.

 650

In this paper, we explored an alternative approach, namely the definition of a
certain number of cost intervals with certain bounds in advance and then the building
of a model predicting in which of the intervals the cost of the new project will fall.
Such a method is based on a set of historical data with completed projects, which will
be used to predefine the cost intervals and build the model. Specifically, we
investigated the use of a regression method, called Multinomial Logistic Regression
(MLR), which uses as dependent the categorical variable with the predefined cost
intervals and as predictor (independent) variables the numerical or categorical
attributes characterizing completed projects of the available data set. The proposed
method builds a model, which is able to classify any new software project, according
to estimated probabilities, in one of the predefined intervals.

In Section 2, we review some methods related to the one presented here. In
Section 3, we describe the data set used for building the model. In Section 4, we give
the principles of MLR and we describe in detail the process of building and validating
the model. Finally, in Section 5, we provide conclusions and directions of future
research.

2 Related Work

Most of the methods proposed in the area of software cost estimation, produce point
estimates. One of these methods is the Ordinary Least Square regression [7]. Maxwell
[8] builds regression models based on a data set from a bank, while Kitchenham [9]
proposes a method for analyzing unbalanced data sets, applied on the COCOMO81
dataset [1]. Her method is based on the successive application of Analysis of variance
(ANOVA) or OLS, depending on the scale of the independent variable examined each
time. The ultimate purpose is to build a model using the factors that mostly affect
productivity. One drawback of the method is that it is very human-intensive, i.e. the
analyst must work iteratively and build successive cost models. Another method that
uses point estimates is Categorical regression or regression with Optimal Scaling [10],
where a particular model was built based on the International Software Benchmarking
Standards Group (ISBSG) [11] database.

Methods that propose interval estimates are less frequent in the literature. One
method that proposes interval estimates based on expert judgement opinion is illus-
trated in [12]. In [13], a simulation tool for efficient analogy based cost estimation
was suggested producing interval estimates. Another approach that produces interval
estimates for project portfolios is reported in [6]. Also, in [14], predefined interval
estimates have been used for a Bayesian Belief Network (BBN) in order to predict
software productivity.

Comparative studies of software development cost modelling techniques can be
found in [15, 16, 17]. In [15], the comparison of two cost modelling techniques based
on multi-organizational and company-specific datasets is reported, while in [16] and
[17] the comparison of ANOVA, OLS, Classification and Regression Trees (CART)
and estimation by analogy based on multi-organizational databases is performed.

 651

3 Description of the data

The database we used in our analysis is the COCOMO81 database. We selected CO-
COMO81 because it is a public domain database and various methods have been
already applied on it [1]. The dataset we used is illustrated in Table 1 and is taken
from [9].

Variable Full Name Levels
TYPE Type of project 1-BUS

2-CTL
3-HMI
4-SCI
5-SUP
6-SYS

RELY Reliability 1-Extra Low
2-Very Low
3-Low
4-Nominal
5-High
6-Very High

DATA Data base size 1-Low
2-Nominal
3-High
4-Very High
5-Extra High

CPLX Complexity 1-Very Low
2-Low
3-Nominal
4-High
5-Very High
6-Extra High
7-Super High

TIME Execution time constraints 1-Nominal
2-High
3-Very High
4-Extra High
5-Super High

STOR Main storage constraint 1-Nominal
2-High
3-Very High
4-Extra High
5-Super High

VIRT Virtual machine volatility 1-Low
2-Nominal
3-High
4-Very High

 652

TURN Turnaround Time 1-Very High
2-High
3-Nominal
4-low
5-Very Low

CTYPE Type of computer 1-MAX
2-MID
3-MIN
4-MIC

ACAP Analyst Capability 1-SuperHigh
2-Very High
3-High
4-Nominal
5-Low
6-Very Low
7-Super Low

AEXP Applications Experience 1-Very High
2-High
3-Nominal
4-Low
5-Very Low

PCAP Programmer Capability 1-Super High
2-Very High
3-High
4-Nominal
5-Low
6-Very Low
7-Super Low

VEXP Virtual Machine Experi-
ence

1-High
2-Nominal
3-Low
4-Very Low

LEXP Programming Language
Experience

1-High
2-Nominal
3-Low
4-Very Low

CONT Personnel Continuity 1-Low
2-Nominal
3-High

MODP Modern Programming
Practices

1-Extra High
2-Very High
3-High
4-Nominal
5-Low
6-Very Low

TOOL Use of Software Tools 1-Extra High
2-Very High

 653

3-High
4-Nominal
5-Low
6-Very Low

SCHED Required development
schedule

2-Lax
3-Nominal
4-Compressed
5-Very Compressed

RVOL Requirements volatility 1-Low
2-Nominal
3-High
4-Very High
5-Extra High
6-Super High

RMODE Software development
mode

Organic
Semidetached
Embedded

DUR Duration of completion of
each project

Numerical variable

YEAR The year of completion of
each project

Numerical variable

PRODUCT Productivity of each pro-
ject

Numerical variable

Table 1. Variable Definition in COCOMO81 dataset

We calculated productivity by dividing the adjusted delivered source instructions
(ADJ DSI) by the effort in man months (MM). Duration is a ratio scale measure and
is measured in months. Year is interval scale measure and is the year of delivery of
each project.

4 Data Analysis and Generation of the Model

The purpose of the present study is to make use of the data set described in Section 3
in order (a) to predefine cost intervals for productivity and (b) to build a regression
model with dependent the variable having as values the different categories of pro-
ductivity and independent variables the various cost factors. As the scope of any
method is to be utilized in a wide area of applications, we will present in detail the
process starting from the basic principles of MLR and continue with the preparation
of the data for the building of the model, the choice of the appropriate variables, the
estimated model parameters and finally the validation of the model fitting and predic-
tive accuracy. The statistical tool we used in our analysis is the SPSS package.

 654

4.1 The Multinomial Logistic Regression

The Logistic Regression (LR) method is used to model the relationship between a
dichotomous (binary) dependent variable and a set of k predictor variables

},...,,{ 21 kxxx , which are either categorical (factors) or numerical (covariates). As the
binary dependent variable can be always interpreted as the occurrence or not of an
event E , the logistic regression model is an expression of the form

∑+=

− =

k

i
ii xbb

Eprob
Eprob

1
0)(1

)(log (1)

where the ib 's denote the unknown logistic regression coefficients (0b is the inter-
cept) while)(Eprob denotes the probability that event E will occur. The quantity on
the left side of equation (1) is called a logit. So, the simple LR model can be used for
predicting the probability of an event occurrence.

The model can be generalized in the case where the dependent variable is
polytomous, i.e. its values are more than two categories. In such a case, if we assume
that the possible categories are q , we need to model 1−q logits,

∑+=

=

k

i
i

j
i

j

q

j xbb
categoryprob
categoryprob

1

)()(
0)(

)(
log , 1,...,1 −= qj . (2)

We can see in the expression above that one of the categories is used as reference
and is called baseline category. Since in our applications the different categories are
successive cost intervals, we consider the last interval as the baseline category for our
models. After estimating the coefficients of the model (2) by the method of maximum
likelihood, we can readily calculate the logits and therefore the probabilities of each
one of the categories. The final prediction is the category with the maximum probabil-
ity.

4.2 Defining intervals of the dependent variable

In our paper, we used as dependent variable the predefined productivity intervals.
We have tried a number of divisions of the distribution of productivity (product) into
intervals. Since the number of projects is relatively small (63) with respect to the
number of variables, a large number of intervals cannot give us valid models. So,
eventually we divided productivity into 4 intervals using the quartiles of its empirical
distribution. The 4 intervals in which we have divided productivity can be seen in
table 2:

First interval [0, 92.5]
Second interval (92.5, 190]
Third interval (190, 350]
Fourth interval (350, highest]

Table 2. The four predefined productivity intervals

 655

4.3 Preparation of the independent variables

The COCOMO81 dataset contains 63 completed projects. We considered all of them
in our analysis. Most of the predictor variables are categorical and in cases where
categorical data had to be included in the model, we chose to recode the correspond-
ing variables into two or more homogeneous groups for each factor. The same ap-
proach was taken in a similar study [10]. For each one of these categorical variables
we performed one-way Analysis of Variance (ANOVA) in order to check the impact
of every factor on the dependent variable. We used also Post-Hoc tests (Tukey,
Tukey’s-b, Bonferroni, LSD, Scheffe and Duncan) in order to identify the various
categories that have to be concatenated in every factor. Next, we present these new
categorical variables and the results of the ANOVA and Post-Hoc tests.

1) Type of project (type): Resulted in factor type_2 which has two levels:

1=CTL+HMI and 2=SYS+BUS+SUP+SCI
2) Reliability (rely): Level “low” has only one value. Tests resulted in factor rely_2

with two levels: 1=Extra low+Very low+low+ Nominal, 2=High+Very High
3) Data base size (data): Resulted in factor data_2 with two levels:

1=Low+Nominal+ High, 2=Very High+Extra High
4) Complexity (cplx): One level (super high) has only one value. Tests resulted in

factor cplx_2 with 2 levels: 1=very low+low+nominal+high+very high, 2=Extra
high+super high

5) Execution time constraints (time): Tests resulted in factor time_2 with 2 levels:
1=Nominal, 2=High, Very High, Extra High, Super High

6) Main storage constraint (stor): One level (Very High) has only 1 value. Tests
resulted in factor stor_3 with 3 levels: 1=Nominal, 2=High +Very High +Extra
High, 3=Super High

7) Virtual machine volatility (virt): Tests resulted in factor virt_2 with 2 levels:
1=low, 2=Nominal+High+Very High

8) Turnaround Time (turn): One level (very low) has only one value. Although we
tried concatenation obtaining 2 levels (turn_2), there is no evidence of significant
difference.

9) Type of computer (ctype): There is no evidence that there is significant differ-
ence between any two levels of this factor, so we left it out.

10) Analyst Capability (acap): There are 3 levels (Very High, Low, Super Low) with
only one value. Although we tried concatenation and obtained 2 levels (acap_2),
there is no evidence of significant difference.

11) Applications Experience (aexp): Although we tried concatenation and obtained
in 2 levels (aexp_2), there is no evidence of significant difference.

12) Programmer Capability (pcap): Tests resulted in factor pcap_2 with 2 levels: 1=
Super High+Very High+High, 2=Nominal+Low+Very Low+Super Low.

13) Virtual Machine Experience (vexp): Tests resulted in factor vexp_2 with 2 levels:
1=High+Nominal, 2=Low +Very Low

14) Programming Language Experience (lexp): Tests resulted in factor lexp_3 with 3
levels: 1=High, 2=Nominal, 3=Low+Very Low

15) Personnel Continuity (cont): Tests resulted in factor cont_2 with 2 levels:
1=Low+Nominal, 2=High

 656

16) Modern Programming Practices (modp): Tests resulted in factor modp_2 with 2
levels: 1=Extra High+Very High+High, 2=Nominal+Low+Very Low

17) Use of Software Tools (tool): Tests resulted in factor tool_2 with 2 levels: 1=Extra
High+Very High+High+Nominal, 2=Low+Very Low

18) Required development schedule (sched): Tests resulted in factor sched_2 with 2
levels: 1=Lax+Nominal, 2=Compressed+Very Compressed

19) Requirements volatility (rvol): Tests resulted in factor rvol_2 with 2 levels:
1=Low+Nominal, 2=High+Very High+Extra High+Super High

20) Software development mode (rmode): Tests resulted in factor rmod_2 with 2
levels: 1=E, 2=ORG+SD

Two of the predictor variables are numerical, year and duration. We decided to use
variable year as it is, but to use the logarithm of duration because we had better fitting
and prediction results.

4.4 Generation of the Logistic model

We have tried a lot of combinations of the predictor variables before constructing a
valid model. A model can be characterized as “valid” if it fulfills some predefined
accuracy measures. These accuracy measures is (a) the significance of the model (we
defined a valid model to have significance less than 0.05), (b) the significance of each
variable of the model (every variable of the model should have significance less than
0.05), and (c) the classification table which compares the observed and the predicted
groups (the highest the overall percentage of the classification table, the better the
model is).

The final model for all 63 projects in our analysis has the following predictor vari-
ables: LNDUR, RMODE_2, PCAP_2, TOOL_2, CPLX_2 and STOR_3.The coeffi-
cients of the predictor variables in each predefined productivity interval can be seen in
Table 3.

PI1 b PI2 b PI3 b

LNDUR
RMODE_2=1
RMODE_2=2
PCAP_2=1
PCAP_2=2
TOOL_2=1
TOOL_2=2
CPLX_2=1
CPLX_2=2
STOR_3=1
STOR_3=2
STOR_3=3

13.397
1.088

-13.455
-1.149

0
-9.018

0
-10.365

0
-20.628
-22.635

0

LNDUR
RMODE_2=1
RMODE_2=2

PCAP_2=1
PCAP_2=2
TOOL_2=1
TOOL_2=2
CPLX_2=1
CPLX_2=2
STOR_3=1
STOR_3=2
STOR_3=3

4.756
-2.793

-10.119
-3.009

0
-4.077

0
-1.347

0
-3.175
1.690

0

LNDUR
RMODE_2=1
RMODE_2=2

PCAP_2=1
PCAP_2=2
TOOL_2=1
TOOL_2=2
CPLX_2=1
CPLX_2=2
STOR_3=1
STOR_3=2
STOR_3=3

-1.199
21.929
21.492
-3.859

0
2.358

0
-3.733

0
-16.471
-13.917

0

Table 3. Variables and Coefficients of the model for all 63 COCOMO81 projects (b is the
regression coefficient for a specific level of an independent variable, PIk is the kth Productivity

Interval)

 657

Since the dependent variable has 4 categories, we know from the theory of our
method that the fourth category is redundant. If we want to compute point estimates
for our model, we have to represent each interval by a single representative value. In
order to represent each interval with a single point, we used the mean point or the
median point for each interval.

In order to validate the model with respect to its fitting accuracy we used the Mean
Magnitude of Relative Error (MMRE) and PRED(20%) or PRED(25%). The relative
error (RE) is ((actual effort-estimated effort) / actual effort) *100. The magnitude of
relative error (MRE) is the absolute value of the relative error (MRE = |RE|). The
mean magnitude of relative error (MMRE) is the average of all magnitudes of relative
errors. Pred(20%) is the percentage of projects with an MRE of 20% or less. Respec-
tively, Pred(25%) is the percentage of projects with an MRE of 25% or less. The
classification of the model is 77.8%. The fitting accuracy of the model can be seen in
Table 4.

 Using the mean point as

point estimate
Using the median point

as point estimate
MMRE 43.37% 41.77%
PRED(20%) 36% 41.3%
PRED(25%) 47.6% 46%

Table 4.Fitting Accuracy of the model for all projects

We can see that using the median point of its interval we have slightly improved
MMRE and PRED(20%) but PRED(25%) is little worse.

4.5 Model Predictive Accuracy

In order to investigate the predictive accuracy of our model we followed Kitchen-
ham’s method [9]. Kitchenham developed a simple method to investigate the predic-
tive accuracy of her model on the COCOMO81 database. Based on her method, we
omitted a subset of projects (which she called a test dataset), developed a model with
the remaining projects (which she called the learning data set), and finally assessed
the predictive accuracy of the model on the test dataset. So, we created six different
learning and test dataset pairs. We constructed each learning dataset by removing eve-
ry sixth project starting from the first project the first time. Thus, learning dataset 1
was constructed by removing the projects 1,7,13,19,25,31,37,43,49,55 and 61, learn-
ing dataset 2 was constructed by removing the projects 2,8,14,20,26,32,38,44,50,56,
62 and so on for the next learning datasets. Since we used all 63 projects of the CO-
COMO81 database in order to build our model, the first, second and third learning da-
tasets contained 52 projects and the remaining learning datasets contained 53 projects
each. The predictor variables for the six learning datasets are presented in Table 5.

Our method builds a model, which classifies any new software project, according
to estimated probabilities, in one of the predefined intervals. As a consequence, the
method hitrate [12, 13] (i.e. the number of software projects that are classified into the
correct predefined interval for a test dataset, divided by the total number of software
projects that had to be classified for the same test dataset) for every test dataset is the

 658

most important accuracy measure. It corresponds to the classification rate of the
method and can be seen in Table 6 for the six learning datasets and Table 7 for the six
test datasets. Notice that the overall Hitrate for the six test datasets is 74.6%, which
we consider to be satisfactory (3 out of 4 projects are estimated correctly). For com-
parison purposes with the results in [9], we provide also tentative point estimate re-
sults. The overall MMRE, PRED(20%) and PRED(25%) for the six learning and test
datasets are presented in Tables 8 and 9 respectively.

Variables Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6
LNDUR √ √ √ √ √ √
RMODE_2 √ √ - √ √ -
PCAP_2 - - √ √ √ √
TOOL_2 √ √ √ √ √ √
CPLX_2 √ - √ √ - √
STOR_3 √ √ √ - - √

Table 5. Predictor variables for the six learning datasets (a hyphen denotes that the variable is
not present in the model)

 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6
Hitrate 78.8% 65.4% 67.3% 69.8% 66% 66%

Table 6.Classification for the six learning datasets

 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6
Hitrate 82% 64% 73% 70% 80% 80%

Table 7.Hitrate for the six test datasets

 Using the mean point
as point estimate

Using the median point
as point estimate

MMRE 54.12% 51.77%
PRED(20%) 32.4% 33.96%
PRED(25%) 42.86% 43.183%

Table 8.Overall MMRE, PRED(20%) and PRED(25%) for the six learning datasets.

 Using the mean point
as point estimate

Using the median point
as point estimate

MMRE 44.685% 44.64%
PRED(20%) 32.8% 34.695%
PRED(25%) 42.2% 38.028%

Table 9.Overall MMRE, PRED(20%) and PRED(25%) for the six test datasets.

In comparison, in [9] the accuracy measures in Table 10 were produced. The re-
sults are quite close with those obtained through MLR.

 659

 The model with
all the projects

The six learning
datasets

The six test
datasets

MMRE 36% 56% 42%
PRED(20%) 49% 30% 35%

Table 10.Fitting Accuracy of Kitchenham’s model for all the 63 projects and overall MMRE
and PRED(20%) for the six learning and test datasets.

5 Conclusions and Future Work

In this paper, we have proposed a novel method for Software Cost Estimation, namely
Multinomial Logistic Regression, in order to produce interval estimates according to
estimated probabilities. We have described the process starting from the basic theory
of the method and continued with the definition of the intervals for the dependent
variable, the preparation of the independent variables, the generation of the model and
finally the validation of the model with respect to its fitting and predictive accuracy.
We have applied MLR to a well-known public domain database and obtained various
fitting accuracy measures. We concluded that the ability of the model to classify any
future software project in one of the predefined intervals is high. In order to compute
point estimates for our model we represented each interval with the mean or the me-
dian point of each interval. We found out that MLR estimation results are comparable
to those of one of the most significant works in this field [9]. However, we claim that
the MLR approach is somewhat easier to apply, and therefore may be more appealing
to the average software manager. Kitchenham’s method is a quite complicated
method as the analysis procedure is extensive with repeatable ANOVA’s and regres-
sion models. In MLR, the analysis is simple and the remarkable of the method is the
implementation of only one regression model.

Future work includes the application of MLR to other cost datasets (e.g. [8]) and
multi-organizational cost datasets (i.e. ISBSG [11]), and the comparison of the ability
of various alternative methods to produce interval estimates.

References

1. Boehm B.W., Software Engineering Economics, Prentice-Hall, (1981)
2. H.C. Wohlin, “An Experimental Study of Individual Subjective Effort Estimation and

Combinations of Estimates”, Proceedings International Conference on Software Engineer-
ing, (1998), 332-339

3. M.J. Shepperd, C. Schofield, “Estimating Software Project Effort Using Analogies”, IEEE
Transactions on Software Engineering, 23(12):736-743 (1997)

4. B. Clark, S. Chulani, B. Boehm, “Calibrating the COCOMO II Post-Architecture Model”,
Proceedings International Conference on Software Engineering, (1998) 477-480.

5. S. Chulani, B. Boehm, and B. Steece, “Bayesian Analysis of Empirical Software Engineer-
ing Cost Models”, IEEE Transactions on Software Engineering, 25(4):573-583, (1999)

6. I.Stamelos, L.Angelis, Managing Uncertainty in Project Portfol Estimation, Information
and Software Technology 43(13):759-768, (2001)

 660

7. N. Draper, H. Smith, Applied Regression Analysis, Wiley, (1981)
8. K. Maxwell, Applied Statistics for Software Managers, Prentice-Hall, PTR (2002)
9. B. Kitchenham, A procedure for analyzing unbalanced datasets, IEEE Transactions on

Software Engineering, 24(4), (1998)
10. L. Angelis, I. Stamelos, M. Morisio, Building a Software Cost Estimation Model Based on

Categorical Data.
11. ISBSG Data Disk, Rel.6, (1999)
12. M. Jorgensen, An Effort Prediction Interval Approach Based on the Empirical Distribution

of Previous Estimation Accuracy, Information and Software Technology 45:123-126 (2003)
13. L. Angelis, I. Stamelos, “A Simulation Tool for Efficient Analogy Based Cost Estimation”,

Empirical Software Engineering, 5(1):35-68 (2000)
14. I. Stamelos, L. Angelis, P. Dimou, E. Sakellaris, On the Use of Bayesian Belief Networks

for the Prediction of Software Productivity, Information and Software Technology, 45:51-
60 (2003)

15. R. Jeffery, M. Ruhe and I. Wieczorek,“A Comparative Study of Two Software Develop-
ment Cost Modelling Techniques Using Multi-organizational and Company-Specific Data”,
Information and Software Technology, 42:1009-1016 (2000)

16. R. Jeffery, M. Ruhe, I. Wieczorek, Using Public Domain Metrics to Estimate Software
Development Effort, Proceedings 7th International Software Metrics Symposium, London
UK, (2001) 16-27.

17. K. Maxwell, L. Briand, K. Emam, D. Surmann, I. Wieczorek, An Assessment and Com-
parison of Common Software Cost Estimation Modeling Techniques, Proceedings 22nd In-
ternational Conference on Software Engineering (ICSE), Limerick, (2000), 377-386.

