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Abstract. The mathematical problem on which this paper focuses is a chest-
nut from the 1930’s known as: the 3z + 1 problem, or the Collatz problem, or
Ulam’s problem; various other names exist. The eminent mathematician Paul
Erdos suggested: “mathematics is not ready for this kind of problems” [1]. Here
we try to approach the problem by classifying natural numbers in order to in-
vestigate which numbers reach a smaller number with certainty. We associate
each such class with a binary tree and we show a relation of these trees to
the Pascal’s Triangle. We present two algorithms: The first generates the cor-
responding binary tree for each class, after a reasonably small number of steps.
The second algorithm provides an efficient way for an overwhelming majority of
input numbers, to estimate the total number of steps needed to terminate. This
paper combines mathematical methods and programming techniques. For our
current knowledge the Collatz problem is computationally hard. But for most
of the numbers it is mathematically certain that they reach a smaller number
quite fast. Our contribution is a method to distinguish the majority of these
numbers. Practically speaking, this means that for most input numbers we can
generate the Collatz sequence in reasonable time, while for few numbers we have
to execute the iteration process exhaustively.

1 Introduction

One of the most tantalizing conjectures in number theory is the so-called 3z + 1 con-

jecture, attributed to L. Collatz (1937) [10]. The problem can be stated quite simply.

Start with any positive integer. If it is an even number, halve it.! Otherwise, multiply

the number by 3, add 1 to it, and then halve it (e.g., if the starting number was 11,

the next integer in the sequence would be 17). Take the result and repeat the process.
Any such sequence seems to end up in the cycle 2, 1, 2, 1, etc., no matter the choice

of starting number. By convention, one terminates the iterations at 1. More formally:
Let T: Z — Z be defined by:

5, if xis even
T(z) =

3241 if x is odd

! The original function described by L. Collatz used (3z + 1) for the transformation of odd
numbers. Without incurring any loss of generality, it is convenient to replace the odd trans-

formation by % .
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Collatz conjectured that if z € IN, then the trajectory: z,T(z),T?(x),..., eventually
reaches the cycle 1, 2, 1.

Consider the application of T'(z) to the starting number zo = 17. Since 17 is odd
we apply the 3";1 component and find that the next iterate x; = 26. Since 26 is even
we apply the % component again and find z2 = 13. The next iteration produces x3
= 20, which is even. Division by 2 yields x4 = 10, which is even and so on until the
value 1 is reached; at which point we terminate application of the T'(z) function. The
complete sequence is shown in below table.

The 3z + 1 sequence produced by zo = 17

Step |0]1|2]3]|4|5/6/7/8|9
Value|17|26(13|20|10|5|8(4(2|1

The sequence has no obvious pattern. Moreover, we do not have an easy explanation
why the sequence should take 9 iterations to reach 1 and why the maximum value taken
by any iterate is 26.

The wildly varying nature of the iterates is displayed more precisely in [1], [2] and
[3]. For instance, an extreme case is when the starting value is zo = 27 and 70 iterations
are needed to reach 1. In general, the number of iterations is not proportional to the
magnitude of the starting number.

2 Mathematical Approach

Several remarkable features are noteworthy about the behavior of the iterative function:

— Being easy to program on a computer [4,5], it has been shown to hold for all
starting integers up to 103.

— The length of any sequence bears no simple relationship to the magnitude of the
starting number.

— The values in any sequence appear to be completely erratic and unpredictable.

In this paper we will try to present briefly one method which gives a better idea how

the Collatz function behaves. Our aim is to give a proof of the following statement:
The Collatz conjecture is true for most of numbers, without using a program to

evaluate the number of iterations needed for a given number to terminate (i.e. without

computing the Collatz function).

2.1 Classification

We proceed by classifying all numbers in IN into four different classes A, B,C' and D.

A={zlx = 1 (mod 4)}, B={zlx = 2 (mod 4)},

C={zlx = 3 (mod 4)},D ={z|z = 0 (mod 4)}
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A-class|B-class|C-class|D-class
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

A:l1+4-k, B:2+4-k, C:3+4-k, D:4+4-k, (k=0,1,2,..)

2.2 Yielding a Smaller Number

By this classification we will try to show that almost all numbers reach 1. One trivial
fact is that even numbers yield a smaller number, since we divide them with 2. So, if we
give a proof that any odd number in classes A and C can reach a smaller number then
immediately we conclude that any number can reach the number 1. But this seems to
be the hard part of our method.

Proposition 1 All the numbers in class A reach a smaller number using precisely two
steps of Collatz function.

Consider the application of T(x) to the starting number zp = 1+ 4 -k € A. Since
Xo is odd we apply the 2%tk component and find that the next iterate z; = 2+ 6 - k.

Since ; is even we apply the § component and find 2 =1+ 3 -k and so on:

The 3z + 1 sequence produced by zo =1+4-k

Step| O 1 2
Value|1+4-k(2+6-k|1+3-k

But 1 +4-k>1+3-k. So the numbers of A class reach a smaller number using two
Collatz function steps.

2.3 New Classification

We proceed by classifying all numbers in C class into four different classes Cy, Cz, C3
and Cy.

Ci: 3416-k,Cy:7+16-k, Cs:11+16-k, Cu:15+16-k (k=0,1,2,..)

2.4 Yielding a Smaller Number (continue)

Proposition 2 All the numbers in class C) reach a smaller number using precisely
four steps of Collatz function.
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Consider the application of T'(x) to the starting number o = 3+ 16 -k € C;. Since
o is odd we apply the 22l component and find that the next iterate zy =5+ 24 - k.
Since z is odd we apply the 2%t component again and find z, =8 4+ 36 - k, x> is odd

we apply 5 and so on:

The 3z + 1 sequence produced by 2o =3+ 16 - k

Step] 0 1 2 3 1
Value|3+16-k|5+24-k[8+36-k[4-+18-k[2+9k

But 3+16-k > 24+ 9-k. So the numbers of C; class reach a smaller number using four
Collatz function steps. The only classes that are still open for our statement are: Cs,
Cs and C4. We will study each class distinctly:

2.5 Tree of Cy class

Proposition 3 All the numbers in class Cy (7 + 16 - k) reach the number 13 + 27 - k
after four Collatz’s function steps. So the first four steps of the number are depend on
the magnitude of k.

Consider the application of T'(z) to the starting number o =7+ 16 -k € C,. Since

o is odd we apply the 3ZE component and find that the next iterate z; = 11+ 24 - k.
Since z; is odd we apply the 2%t component again and find x> = 17+ 36 - k, x> is

odd we apply 2%t and so on:

The 3z + 1 sequence produced by ©o =7+ 16 - k

Step 0 1 | 2 3 4
Value|7+16-k 11+24-k|17+36-k 26+54-k 13+27-k|

So each number of the form: 7 + 16 - & reach the number 13 + 27 - k. For the number
13 + 27 - k is not known immediately if it is either even or odd.

Case| k |13+ 27-k|T(13+ 27 k)
1 |even| odd 20+3%-p
2 |odd| even 20+3%-p

— Let k is an even number, then the 13 + 27 -k = 13+ 27- (2 p) is odd. Applying
Collatz function: T(13+27-2-p) =20+ 3*-p

— If k is odd, then the 13+27-kis even. 134+27-k = 134+27-(2-p+1) =40+3%-2:p
and applying Collatz function for even case: T'(40 + 3% - 2 - p) = 20 + 33 - p.

. _ 3
Note: T(40+3%-2-p) =20+ 3% p <7+ 16 k since p = 551 and 2- < 16.

Proposition 4 Numbers in class Cy (7 + 16 - k) with k =2-p+ 1 (is odd) reach the
smaller number 20 + (%) -(k—1) after five Collatz’s function steps. So at least the fifty
percent of the Cy-numbers reduce a smaller number.
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2.6 Binary Tree of C; Class (height = 3)

— Right nodes: k =2-p, p; =2 pi—1
— Left nodes: k=2-p+1,p; =2-p;—1 +1

The terminal nodes (reach a smaller number) are: 20 + 3 - p, 5 + 3% - ps.

Step 0 1 | 2 3 4
Value|7+16-k 11+24-k|17+36-k 26+54-k 13+27-k|

13+3% -k
20+3%-p 20+ 3% p

152+35'p1 10+34'p1

P

593+36'p2 76+35'p2 137+35'p2 5+34'p2

2.7 Structure of C,’s Class Tree

Let us assume that each node of the binary tree has a real (Re) and a imaginary
(Im) part, like complex analysis. For instance: 13 + 27 - k has Re=13 and Im=27=3%.
So the pair (13,3%) is one abbreviation of the 13 + 27 - k. Each number of the form
(b,3") = b+ 3! - k whether [ € IN has the follow properties:

Case| b | k (b, 3")[Collatz function T(x)

1 |evenleven| even (T(b), 3))
2 [even|odd| odd (T(b+37), 371
3 |odd [even| odd (T(b), 371

4 |odd|odd| even (T(b+3), 3"

Case 1: The b and k are even numbers, so the number (b,3') is also even and
applying the Collatz function we get:

b+3-k b 3 -k 3'.2.p
Tt TTh+—

=T®)+3 - p=(T(),3)

Case 2: The b and k is an even and an odd number respectively, so the number
(b,3") is an odd number and applying the 3%t component we found that:

3-(b+3k)+1  3-(b+3-(2-p+1)+1 3-(b+3+3-2-p+1

2 B 2 2

_ 3-(b+23l)+1+3l+12-2-p: 3-(b+23l)+1+3l+1

p=(T(b+3"),3™")
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Case 3: The b and k is an odd and an even number respectively, so the number

b+ 3"k is odd. We apply the 22 component and find that:

3-(b+3k)+1 _ 3-(b+3-2-p+1 _3-b+1+3l+1-2-p_
2 2 2 2
Case 4: The b and k are odd numbers, so the b+ 3! - k is even. We apply the 5
component and find that:
b+3k b+3-(2-p+1) b+3 +3l-2-p_ b+ 3
2 2 2 2 2
For the imaginary part we can note:

(T(5),3"1)

+3L.p=(T(b+3Y,3Y

3l

3z+1/\3l

2.8 Pascal’s Triangle and Collatz Conjecture

Using the previous results about the imaginary part, we can easily represent the Co’s
class Tree. We must note in each level of binary tree the terminal nodes:

If g—z < 16 where h is the current height of binary tree, y is the smallest power of 3 in
that height, 16 is the imaginary part of the root, then the node with 3¥ is a terminal

node, because this node represents a class of numbers which reach a smaller number.

Imaginary part of Cs’s binary class

33
h =1(3%/2) < 16 34 33

h =2 (3/2?)> 16 3° 34

L s (34/23) 16 36/\5 35/\34

Level|Condition| Tree |Terminal Nodes|Percent|Total
0 |5>16] 3 ap = 0 |0
1[5 <16] 43 a =1 E
2 | 5 >16| 514 as =0 0 | 50
3 | % <16 61504 as = 1L ]625
4 | 5 <16 | 71635 as =2 2 |75
5 | 32 >16 | 817463 a5=0 0o |7
6 | 35 <16 | 91857465 ag = 3 179.69
7 | 3 >16 [1019681577]  ar =0 0 [79.69
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Let us discuss the previous table:

— In named column Tree the notation 3; means: for the specific height we have one
number with the imaginary part 33. In the same way the notation 4;3; means: in
the first level we have one number with imaginary part 3* and one number with
imaginary part 3. And so on.

— Percent is the percent of nodes that are terminal nodes.

— Total Percent means the percent of numbers in C, class, which reach a smaller
number.

From the previous table maybe the most interesting is the sequence of pointers, the
last sequence shows the Pascal’s Triangle:

31 1 1

41134 111 1)1

51|61 111 1121
61(52(41|—[1(2]1 113|131
71(63]52 1{3|12| |1|/4]|6 1
8u[7al6s] 11123 1.

The sequence of pointers it is not the same sequence as Pascal’s Triangle, but some
part of it is exactly the same. The steps of C»’s construction are:

1. Each element of next row follows the Pascal’s Triangle

2. In each row we check for terminal node. If it is exist then we reduce the length of
the row and we continue with first step. If it is not exist then we continue with first
step.

Thus the difference between Pascal’s Triangle and the sequence of pointers is that
the length of each row is not the same. In the Pascal’s Triangle, in each step the length
of row is increased by 1. But the length of each row in sequence of pointers varies from
the fact if exists terminal node or not.

// C code: sequence of pointers

b=27; 1=1; p=0; k=0; // initialization

for(i=2; i<=21; i++) // 21

the height of binary tree
{
for (j=2; j<=a+l; j++) // a is the length of ith row
// Pascal’s triangle
buffer0[i] [j1= bufferO[i - 11[j - 1] + bufferO[i - 11[j]1;
1=2%1; // power of two
if (b/1<16) // condition for terminal node
{
k=buffer0[i] [j-2]; buffer0[i][j-2]=0; // terminal node
b=3%b; p=(float) k/l+p; // estimation of total percent
}

else a=a+l;
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Executing the previous C program we took the following experimental results:

Height|Percent of numbers which
reach a smaller number
9 86,13
12 87,93
15 91,54
20 94,19
31 98,21

2.9 Tree of C3 class

Proposition 5 All the numbers in class Cs (11+16-k) reach the number 20 + 27 - k
after four Collatz’s function steps. So the first four steps of the number are depend on
the magnitude of k.

The 3z + 1 sequence produced by o =11+ 16 - k

Step 0 | 1 2 3 | 4 |
Value 11+16-k|17+24-k 26+36-k 13+18-k|20+27-k|

2.10 Structure of C3’s class Tree

The root for C3’s class Tree is 20 4+ 27 - k. Since b = 20 and [ = 3, arise the same
sequence of pointers for the imaginary part as we saw in Cy’s class Tree.

Experimental results

Height|Percent of numbers which
reach a smaller number
9 86,13
12 87,93
15 91,54
20 94,19
31 98,21

2.11 Tree of C4 class

Proposition 6 All the numbers in class Cy (15 + 16 - k) reach the number 80 + 81 - k
after four Collatz’s function steps. So the first four steps of the Cy-elements are depend
on the magnitude of k.

The 3z + 1 sequence produced by xp = 15+ 16 - k&

Step] 0 [ 1 2 3 [ 4
Value|15+16-k[23+24-k[35+36-k|53+18-k[80+81-k
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2.12 Structure of C4’s Class Tree

The root for C4’s class Tree is 80 + 81 - k. So b = 80 and [ = 4.

Experimental results

Height|Percent of numbers which
reach a smaller number
9 56,05
12 67,68
15 71,17
20 82,45
31 93,17

2.13 Conclusion

From the mathematicians standpoint, the fact that it has been shown the conjecture to
hold for starting integers exceeding 10'® [4-6] it is not so interesting because empirical
evidence is not the same thing as a rigorous mathematical proof and 10'? is not a large
number in mathematics.

In the previous considerations we tried to face this problem. We conclude for a spe-
cific height of our classification, without running the Collatz function for each number,
that the majority of numbers reach a smaller number quite fast.

3 An Efficient Algorithm

The 3z + 1 has been numerically checked for a large range of values of z. It is an
interesting problem to find efficient algorithms to test the conjecture on a computer|[1].

The previous Mathematical work gives us the following facts:

1. Each number of A class reaches a smaller number by two Collatz’s function steps.
Each number of the form 1 + 4 - k reaches the number 1 + 3 - k after two steps.

2. Each number of B and D class reaches a smaller number by one Collatz’s function
step.

3. Each number of C; class reaches a smaller number by four Collatz’s function steps.
Each number of the form 3 + 16 - k reaches the number 2 + 9 - k after four steps.

4. The Binary trees of classes Co, C3 and C4 provide several cases of numbers which
reach a smaller number. We will assume that we have constructed the binary tree
with height h = 4 for each class and we note all the terminal nodes.

Precisely we have the following cases:
For C; class we will use the following cases: (starting number 7 + 16 - k)



Type of k | Smaller Number

Number of steps

k=2-p+1

20+(20)(k-1)

k=8-p

5+(88—1>-k

k=16-p+12[190+(2%)-(k-12)

Q0| 00| ~J| Ot

k=16-p+2 | 38+(3%) (k-2)

For C3 class we will use the following cases: (starting number 11 4 16 - k)

Type of k | Smaller Number

Number of steps

k=2-p

k=8p+3

38+(

10+(77)
1) (k-3)

k=16-p+13[209+ (22 ) (k-13)

k=16-p+7 | 118+(Z2)-(k-7)

Q0| Co| ~J| Ot

For C4 class we will use the following cases: (starting number 15 + 16 - k)

Type of k | Smaller Number |Number of steps
k=8-p 10+ (B = 1)k 7
k=16-p+4 76+(21 ) (k-4) 8
k=16-p+5 91+(E) (k-5) 8
k=16-p+10[167+ (5% ) (k-10) 8
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Our Algorithm seems to be very similar with mathematical induction. The steps of

the algorithm are:

1. Assume that the steps of first 16 numbers are known.
2. For each next number try to find if we have the information that this number
reaches a smaller number. The sum of steps until this number reaches the smaller
number is stored. If we don’t have this information try to run the Collatz function

with some improvements.

For example let us begin with 17: 17 belongs in A class and k = 4, so 17 reaches
the number 1+ 3 -4 = 13 after two Collatz’s function steps. The stopping time of 13
is 7 so the stopping time for 17 is 9. We continue with 18. Obviously 18 reaches the 9
so the stopping time is 14 since the stopping time of 9 is 13. The stopping time of 19
(19 € C1: 3+ 16+ 1) is 14 since the stopping time of (24 9-1) 11 is 10. And so on.

Some experimental results:

Range Number Cy-C5-Cy Percent
1-176 3-3-7-13 73=12
1-336 5-5-15-25 744 = 2=
1-1050 12-13-38-63 = oo
1-1616 25-25-69-119 7,36 = =
1-9600 150-150-449-749 7,78 = o

1-12816 200-200-600-1000 [7,80 = 520
1-96016 1500-1500-4125-7125[7,42 = 22
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The second column shows for how many numbers we need to run the Collatz func-
tion because we don’t have enough information about their reduction to a smaller
number. The sequence for example 3-3-7-13 means that we have three numbers from
Cy class, three numbers from Cj3 class and seven numbers from C,4 class, total 13
numbers that they don’t reach a smaller number. We also know which these numbers
are.

— If we extend the cases about how many numbers are reach smaller number from
the C,, C3 ,C4 binary trees then we will see that our algorithm is more efficient.
But we don’t have the opportunity to expand each time the binary trees because
that it is equivalent with the execution of Collatz function.

Range Number|Collatz Function (sec)|Our Algorithm (milli sec)
1-12816 1 50
1-32016 1 220
1-64032 3 380
1-96016 5 550

4 Intuition

4.1 Triangle and Intuition

Taking into consideration the odd numbers only, we can construct triangles of the
mentioned general type:

Level| a; as ... . an
1 a
2 2-a 3-a
3 4-a 6-a 9-a
n |27 -al2771.3.a]2772-32.3]... (3" 1.a

Algorithm

— 1st step: For each odd number we construct a triangle as above. We don’t construct
triangle for odd number which is an element of a previous one.

— 2nd step: For each specific triangle we use the following transformation,
Transformation (T, ): for each element of the triangle we imply the 2-x-1 function
where x is the triangles’ element.

So we have obtained the corresponding triangle to the specific one. For example
(a=1,n=23):

1 1
2|3 —=1 3| 5
41619 711117

As it can be easily observed the corresponding triangle in each line give the partial
sequence of Collatz function. If we expand the level of triangle we take many steps of
Collatz function for a specific number.
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4.2 Tables and Intuition

Let us assume the sequence of tables-matrixes with 16 elements, where k=0,1,2, .. .:

Ay,

A-class | B-class | C-class | D-class
1+16-k|2+16-k|3+16-k|4+16-k
5+16-k|6+16-k|7+16-k|8+16-k
9+16-k |10+ 16- k|11 +16-k[12+ 16 - k
13+ 16- k|14 4+ 16-k|15+ 16 - k|16 + 16 - k&
We will present a group of movements which show the Collatz’s function steps

without to estimate for each number the Collatz function.
For A-class elements we know that:

— Step 1: An A-element reaches one B element.
— Step 2: The next A-element reaches the D-element of the next row.
— Step 3: We leave one row and we return in step 1.

The next sequence of numbers shows the previous description, note that the symbol
O « means: the specific number is reached from « number.

A-class| B-class |C-class| D-class
1 2 01 3 4
5 6 7 8§ O5
9 10 11 12
13 (14 O9| 15 16
17 18 19 (20 O 13
21 22 23 24
25 |26 O 17| 27 28
29 30 31 (32 O21

For B-class elements we know that:

— Step 1: An B-element reaches one A- element.
— Step 2: The next B-element reaches the C-element of the of the same row.
— back again in step 1, in the next row.

For D-class elements we know that:

Step 1: An D-element reaches one A- element.

— Step 2: The next D-element reaches the B-element of the same row.
Step 3: The next D-element reaches the C-element of the same row.
— Step 4: The next D-element reaches the D-element of the same row.
back again in step 1, in the next row.

4.3 C;-class Moving Rules:

— Step 1: An C;-element reaches the second A- element of one specific matrix.
— Step 2: The next C;-element

reaches the fourth A-element of the next matrix.
— Step 3: Leaving the next matrix we return to the step 1.
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4.4 Ca-class Moving Rules:

— Step 1: An Cs-element reaches a Ci- element of one specific matrix.
— Step 2: The next Cs-element reaches a Cs- element of the next matrix.
— Step 3: Leaving the next matrix we return to the step 1.

4.5 Cg-class Moving Rules:

— Step 1: An Cs-element reaches the first A- element of one specific matrix.
— Step 2: The next Cs-element reaches the third A- element of the next matrix.
— Step 3:Leaving the next matrix we return to the step 1.

4.6 Cy-class Moving Rules:

— Step 1: An Cyg-element reaches a Co- element of one specific matrix.
— Step 2: The next Cy-element reaches a Cy-element of the next matrix.
— Step 3: Leaving the next matrix we return to the step 1.

— The symbol &a means: the specific number is reached from « where « is C;-element
number.

— The symbol {«a means: the specific number is reached from « where « is Cs-element
number.

— The symbol #a means: the specific number is reached from « where « is Cz-element
number.

— The symbol O« means: the specific number is reached from « where «a is C4-element
number.

A-class|B-class| C-class |D-class
1 2 3 4
5 &3 6 7 8
9 10 |11 &7 12
13 14 15 16
17 411 18 19 20
21 22 (23 Q15| 24
25 26 27 28
29 19| 30 31 32
33 34 135 {$23] 36
37 38 39 40
41 N27| 42 43 44
45 46 |47 Q31| 48

Conclusion: After the previous work is easy to observe that using moving rules of
each class we can simulate the Collatz function.
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