Normalizing S-Terms can be Generated by
a Context-free Grammar

Stathis Zachos'2:3, John Ramirez?, and Panos Hilaris!

L Computer Science, ECE, National Technical University of Athens
2 (IS, Brooklyn College, CUNY
3 Computer Science, GradCenter, CUNY
Email: {zachos, philaris}@cs.ntua.gr

Abstract. Curry’s Combinatory Logic is a functional calculus which may serve
as a foundation to the theory of computations, even to computational complex-
ity. Combinatory Logic, which is based on the two combinators S and K, is an
undecidable theory. The theory based only on S has been proven decidable by
J. Waldmann. Zachos simplified the proof and gave a decision algorithm. Here
we make a further step in lowering the complexity of the decision algorithm.
We present a context-free grammar which fully characterizes all normalizing
S-terms. Thus the complexity of deciding whether an S-term X has a normal
form is O(|X|?) given by the CYK algorithm.

1 Related Work and Motivation

“Given an S-term, is it normalizable?” The question was answered positively [15]. In
[16,17], a simpler proof without the use of rational tree languages and an actual decision
algorithm were presented. Many people have been involved in similar investigations,
for example: Barendregt, Bergstra, Klop, Statman, Dershowitz, Jouannaud, Smullyan
etc. [18,1-3,7-9,11,13,14,12].

The original motivation of this problem was the need to create a Functional Calculus
instead of Set Theory as a foundation for Theory of Computation, i.e. for Computabil-
ity (Thue, Schoénfinkel [10], Curry [5,6], Church [4], Turing, Markov) but even for
Computational Complexity. In such a functional calculus only one operation is needed:
application f(g). We write (fg) instead of f(g).

Schonfinkel made the following observation: functions of one argument are enough,
e.g., f(g,h) = ((fg)h). We use left association for dropping some parentheses, i.e.,
instead of ((((£9)(h(gh))) ((gh)((fR)£)))) we write fg(h(gh))(gh(fhf)).

An example is the SK-Calculus or Combinatory Logic of H. Curry [5]. It pos-
tulates combinators and rewriting rules, e.g. Stitats = tit3(tats) and Ktite = t.
Actually there are many other combinators and rewriting rules but the system {5, K'}
is complete.

2 Introduction

We call S-terms the elements of a system generated by one symbol S and one non-
associative and non-commutative (implicit) operation that we call application. We
construct S-terms as strings of S’s and parentheses with the following rules:

715

— S is an S-term.
— If my; and my are S-terms, (mime-) is an S-term.

In this construction we say that m; and ms are proper sub-terms of the constructed S-
term. S is a sub-term of any S-term. Also, we say that an S-term is a sub-term of itself.
We may abbreviate by omitting parentheses by using left association. For example, we
write SS(S(SSS))S instead of (((SS)(S((SS)S)))S) and zyz = (zy)z # z(y=z).

Here, we use lower case italic letters to represent S-terms. We use upper case calli-
graphic letters to represent sets of S-terms. For any sets of S-terms A and C, we will
write AC = {ac|a€ Aand c€C}.

We define the length of an S-term to be the number of occurrences of the symbol S
in the term. For any S-term z, we write |z| to denote the length of .

The reduction relation — is defined here by the S-rule:

Sade 2% ac(dc) .

The left hand side, Sade, is sometimes called reder and the right hand side, ac(dc),
reductum. In particular,
SSdec — Se(de) .

In general we write z — y if y can be written by replacing some redex, sub-term, in x
by the corresponding reductum of the S-rule.

When reducing by the S-rule we eliminate one symbol S from an S-term and
introduce a replica of a sub-term in the S-term, hence, if z — y, || < |y|. Thus a
reduction step certainly does not reduce the length of the S-term.

Here, we will use an abbreviation B def g (SS). Using the S-rule twice we get:
Bad = S(SS)ad — SSd(ad) — S(ad)(d(ad)) .

that we will write:
Bad 25 S(ad)(d(ad)).

In general, for k£ > 0, we write -+ to represent k reduction steps.

Here we describe other extensions of the relation —. The transitive closure of — is
denoted by —— and its reflexive transitive closure is denoted by —. For two sets of
S-terms X and), we will write X —)Y if for any x € A we can apply the S-rule on
some redex sub-term of z so that © — y for some y €). Similarly, we will extend the
other relations described above to sets of S-terms.

We say that an S-term x is in normal form if the S-rule cannot be applied to any
sub-term of z, i.e., there is no redex in x. We say that = has a normal form and write
zl if # <> n for some n in normal form; we write 1 otherwise, i.e., if 2 does not
have a normal form, which is equivalent to: there is a non-terminating reduction chain
starting with z. The following was proven by Waldmann [15] and improved by Zachos
[16].

Theorem. There is an algorithm that decides if a given a S-term has a normal form
and in that case produces the corresponding unique normal form.

716
3 Notations

We first introduce some further notation and state some necessary technical facts.
Suppose ¢ — y. Then, for any sub-term z of y we will write x 2, 2. For example:

Sade = dc.

. o O . .
As extensions of —, we will denote its transitive closure by — and its reflexive
transitive closure by —2+. Using this notation we have the following fact:

Suppose X -~ X. Then, there is an infinite reduction chain starting
with any z € X, i.e., X' 1.

We are using a notation similar to regular expressions, e.g., we write S instead of
{8}, we write X +) instead of X U Y, etc. M is the set of all S-terms; N is the set
of all S-terms that are in normal form.

ME S MM, NE¥SLSN+SNN

For any set A we define 4 = M — A.
With this notation, we will also define the sets:

0, %5 0, ¥5755 057551555 =5+55+B

So Q; is the set of all S-terms of length greater than one; Qs is the set of all S-terms
of length greater than two. Some immediate facts are:

Q1 =855+ Q», MQ; C Qi1 CQ; forie{l,2} MQ3 C O3

Since every reductum is in MMM C Q3 C Q5 C Qq, we can always write x — Q; for
any redex z (or any term z that has a redex!) and i = 1,2, and 3.

For sets of S-terms X' (the prefiz set) and Y (the base set) we recursively define
An[Y] for all n > 0 by: X°[Y] =Y and A*+1[Y] = X(X*[))]), for k > 0. The set of all
terms defined above is: X*[YV] =Y o, A [V] = XO V] + X [V] + X2 Y]+ -+, which is
the (least) solution of the fixpoint equation: X*[V] =Y + X (A*[V]). For example:

(SS + BY'[X] = X + SSX + BX + SS(SSX) + SS(BX) + B(SSX) + B(BX) + - --

Definition. £ < (S5)*[Q,0;] which is equal to (Q1)*[Q201].

4 Easy Facts

Proposition R. For any S-terms sets X and Y: (SM)[X]Y 24 XY, in particular,
if XY 1 then (SMy XYV 1.

Results ([16]). €1, Q321 1, (939,91 +EE)7T.

717

5 Classification

We can limit ourselves to S-terms of the form NA. We proceed by classifying all
S-terms in A into different classes Ho, H1, Lo, L1, ...

Ho & (SS + BY[S + SN + SBS + SB(SS)], Hi1 ™ (SS + B)[Q3Q: + SQ3M]

Facts. Ho C N, unlike H;, and Ho, H; are disjoint.
Result 1 ([16]). Ho and H1 cover N
We further refine and dissect Hg into more mutually disjoint sets:
def def

Lo (SSY[S + SN £, (SSY[B(SS) + BB]

£, ¥ (SSy[BS + SBS] L3 = (SS)[SB(SS) + BQs]

Facts. L1 def Lo+ L1+ L2 CHg and Ly, L1, L2, L3 are mutually disjoint.
Result 2 ([16]). Lo, L1, L2, and L3 cover Hy.

From Results 1 and 2, we partition A/ according to
the sideways diagram (the circle represents N, double
lines surround Hp; notice that #H; and L3 intersect
both inside and outside of N, but that will not be a
problem).

6 Structure of the Proof

With the above definitions and letting L3 def Lo+ L3

and L1232 L1+ Lo+ L3, the Theorem can be shown by proving (see [16]) the following
parts:

Part 1. LoN | Part 5. £L3L537
Part 2. HoLlol Part 6. £3L, 1
Part 3. L1Ho | Part 7. #1927
Part 4. L5L1] Part 8. Li23H1 1

Part 9. Whether (H; N N)(SS + S) 1 can be decided by reduction to parts 1 to 8.

7 A Grammar for (H,)

JFrom this point on, we use the angle brackets (-) to denote the set of “predecessors”

for a given set. That is, for any set A,

ALz e M|z A},

718

It is our objective to develop a context free grammar to recognize (A). Naturally, we
will use these sets of predecessors as non-terminal symbols in our grammar. Many of
the technical proofs have been omitted.

The terms in (N') are either S or terms of from (N)(N). To describe the terms of the
second form we use the classification of NV into Hy and H;, and the further classification
of Hop into Lo, L1, Lo, and L3. With these classes, the applications described in PARTS 1
through 6 cover all possible terms in A’A. Because of the incomplete nature of the result
in Part 6 we need to the define the following sets:

N fneN|nS SN} and
N e N n(SS) =5 N},

Then, the results from PARTS 1-6 prove the sufficiency of:
(N = S [(Lo) (N | (Ho) (o) | (L£1) (Ho) | (L2) (L1) [N)YS TN) (SS)

(Here, the production symbol ::= can be substituted by equality when the disjunction
symbols | are substituted by union.) In this section we will expand (Ho).
Before proceeding, we need:

Proposition 1. The sets Q3Q>, SQ3 M, and, by extension, Hi are closed under re-
duction, that is, if a term in either set reduces, the resulting term lies in the same
set.

The result above reveals that (Ho) and Q3Q» are disjoint. Since Hy C A, this
fact is equivalent to (Ho) C (S+SS+B)(N) + (N)(S+SS). This will facilitate the
grammatical description of (#p). For this, we introduce the following sets:

1" Y IneN|nS = Ho) and
1y E {neN|n(SS) =5 Ho).
Hence, we can describe (Hp) completely with:

(Ho) == S| S(N)|SS(Ho) | B(Ho) | (Hy)S|(Ho)(SS)

because the application of other pairs of strings in (NV){N') results in ;. However, we
are left with the task of producing rules for (7—[65> and (7—[555>. We start with:

Proposition 2. H, = (SS)'[S+SS + B+ SB].

Readily, /H(;SS C Ly C Hy. We classify the terms in H(;SS as follows: S € 7—[(;55; the
terms in H, of the form SA are SS + B + SB; and the terms in H, of the form
SNN are the terms in SSH, .

Proposition 3. {n € N | n(SS) — ’H(;SS} =5+S8§.

719

Let

def * def * def ™
Ko © (ssy[s], ki % (88¢[SS], and Ko % Ko+Ki = (SS)[S+88].
Proposition 4. {ne N |nS =5 H; } = Ko .
Proposition 5. H, = (SS)'[S+SS+B+SB+5Ko S].

We can define E(;S, ;% 57, and E;S in a manner similar to that of ’H(;S. Le.,

s d_ef
i =

L {neN|nS L}

for i = 0,1, 2,3. With these definitions:
Corollary 1.
(SSY[S+SS] = Kot
L," = (SSy[B+SB],
(

D
[V}
I

SSY[BS] C (SS)[S Ko1 S], and
£;° = (SSY[S Ko S]— (SS)[SSS] — (SSY[BS].

For any S-term m if m = mym, for some terms m; and m,, we say m, is a right
sub-term of m. We extend the notion of right sub-term to include its reflexive transitive
closure. We now show some results about right sub-term ahead.

Proposition 6. Given any S-term m. For any m' such that m —— m', everyn € N
that is a right sub-term of m is also a right sub-term of m'.

Corollary 2. For any n € N, suppose mc —s n for some m € M and ¢ € N'. Then,
c is a right sub-term of n.

Corollary 3. Suppose m is the reductum reduced from some redex Sadc with ¢ € N
and m = mims. Then ¢ is a proper right sub-term of both my and ms.

Remark 1. Given A = (SS)*[D] with D C N, suppose zy — A for some = and y.
Then, either zy — D, or & = SS, or y = S. This is justified as follows: The first
two options are trivial. If none of those two options are satisfied, we would face the
reduction zy — SSa € A (for some a € A!). In such case, Corollary 3 imposes the
third choice by stating (the normal form of) y is a proper right sub-term of SS. (Note
for any d € D, we can search for all pairs (z,y) so that zy — d by exhausting all
pairs that satisfy |zy| < |d].)

Corollary 3 shows that no term is SA'S is a reductum. Neither terms in S + SN
are reducta. After this, Remark 1 above establishes how to determine all zy such that
xy == (SSY'[S+SN+B+SB+SL,°S] =H," (recall Proposition 5 and Corollary 1).
For instance, let:

Ko = (SSY[SL,"] and K = (SSY[SL,” S].

720

For these, Proposition R tells us:
K2S — Ks.

while Remark 1 ensures no other reductions result in 3. That ensures the sufficiency
of:
(K3) == (K2) S| SS(Ks)

This way, we can produce a “complete” context free grammar for (Ho) using on the
following set of rules:

(i) (Ho) STSNY | SS(Ho) | B(Ho) | (Hy)S | (Hy)(SS)
(i) (Mo) == (Ho)| (Ks)
) m= (Lo) [(L7)

(iv) (Lo) == (Ko) | (Ky)

(v) (£7°) == B|SB|SS(L)
(vi) (Ks) == (K2)S|SS(Ks)

(vii)) (Ka) = (K1) | S(Ly) | SS(Ka)
(viii) (Ky) o= (Ko)S|SS(Ky)

(ix) (Ko} == S|(K1)S|SS(Ko)
(x) B == S(SS)

Our grammar for (N) also needs rules for (Lo), (£1), and (L3). These rules also
follow easily after Remark 1. We have shown already £, . £,° and £,” in Corollary 1.
Indeed, we already have rules for (£, ") and (£,). However, £, is simply presented
as a subset of 3. For that reason, we introduce:

Ke ' (SSYy(B].

Then (note SSS(SS) = BB € L5 but no zy — B(SS)!),

(xi) (Lo) STSNY (L") S |88 (Lo)
(xii) (£1) == (£,7)S |55 (Ly)
(xii)) (L)

(xiv) (L,
(xv) (K4)

B(SS)|SSS(SS)|BB|(£,")S |55 (L)

(K1) S|SS(Ly")
B| S8 (Ks)

)

721

8 Beyond Ho: the Sets N " and N~ °°

Recall:
N fneN|nS 5N} and

N e N n(SS) -5 N},
Since S + 5SS C Ly, Part 2, Ho Ly |, easily shows Hg C N and Ho Cc N7 Now,

we proceed to complete the representation of the terms in N7, Let:

Ly % (SS+BY[SH, (S +89)].

We will show N~ °° = o + L4. After this, we can revise the grammatical rule for (/)
to:

(N) 5= S [(Lo) (N) | (Ho) (Lo) | (£1) (Ho) | (£2) (L) | (NT7)S [(L) (SS)
Indeed, we show:
Part 10. L£4(SS)} and (HiNN — L4)(SS)1.
Corollary 4. H,NN *° = (85 + BY[S(SB + SSH, ")(S + SS)].

The right sub-terms of £4 are S, SS, and £4. Because of Corollary 2, for the
grammar of (£4) we only need to describe the sets:

£, Y (neN|nS L4} and

£, Y (neN|n(SS) = Ly}
so we could write:
(La) == SS(La) | B(La) [(L)S[(L77)(SS)
We start by proving:
Proposition 7. £; = (SS)'[S H(;SS] .
Recall: Ko % (SS)[S] C Ko1 & (SSY[S+SS] = £, .

—SSs

Proposition 8. {neN |nSe L, } = Ko.

Proposition 9. E;S = (SS)*[S?—[(;SS + SKoS].

Note £;°° C £, and the difference £, — £, = (SS)[SKoS] C Hy so {n e N |
—-SS

nS 51NN} C £, Let:

Ks < (SSy[SKe] and Ke % (SS)[SK,S].

722

Then, we can specify a grammar for (£4):

(evi) (L) = SS(La) [B(La) [(L)S (L) (SS)
(evil) (£77) == (£577) | (Ke)

(i) (£7°7) 5= (Ko) S| S (Hy) | S8(L,™)

(xix) (Ke) == (K5)S|SS(Ke)

(xx) (Ks) = (Ko)S|S(Ko)|SS(Ks)

Now, the only piece missing in our grammar for () is (V" °). To fill this gap, we
first prove:

Part 11. N~ = (5L,)[S+ SN + SHy Lo +SLy My +SLy L +SL,°S].

Remark 2. Recall Hy C NN Now, we can easily check:

-S

Ly = (SS+BY[SHy (S+SS)] C (SL Y [SHy Ly] € N
It is no surprise N °° C N °.

After this result, to investigate (N _S> we only need investigate the redexes that
reduce into N, Suppose nins is a redex with nq,ns € NV, and nin, — ng € NTE
Since ny is a reductum, ng ¢ S + SN + SN'S. Then, from the expression for N in
Part 11, ng € SLo'N +SH, Lo +SLy My +SL, L, In short, nyny —— SHy N~

We proceed to analyze exhaustively the choices for ni: We have either n; € Hg, or
ny €H, NN and ny = SS, orny € Hy AN " and ny = S.

#1. Suppose n; € Hy. We need to examine various cases from ny € (SS)*[S + SN +
SBS + SB(SS) + BHo]:

(i) Suppose n; € (SSY[S]. If ny = S, the S-term nyny € SN (C N °1) is not a redex.
Then, we are supposing ny = (SS)™[S] = SS((SS)[S]) for some k > 0. Then,
SLoN 4+ 8Hy Ly +SLyL Hy +SLy L, C N7

Therefore, either ns € £," (and (SSF[S]ns == N °) or (SS)E[S]ns = H, .
— Suppose ns € E(;S. Then, we may verify:

ning € (SSY[S] Ly~ == (SLy V[SLy] C (SL YISN] € N7~

— Suppose (SS)[S]ny = H,~ and ny ¢ L, Recalling Hy~ = (SS)[S + SS +
B+SB+ SKESS] and the rules for (7—[55), we determine this needs (SS)¢[S] = S
and ny = B. Given this, we verify:

niny = (SSS)B —s SB(SB) C SL; My C N ~°.

723

(i) Suppose ni € (SS)[Sn!] for some n} € N. If ny = Snj, the S-term nin, € SNN
is not a redex (the allowed values for n} and ns can be found in Part 11). Then,
we are supposing ni = (SSY[Sni] = SS((SS)¥[Sn{]) for some k > 0. Then,

nine = SS((SSF[Sn}]) na — Sna((SSF[Sni]n2) —
SLoN "+ S5H, Ly + 8L, Hy + 8L, Cc N

Therefore, either ny € £,° (and (SS)[Sni]ne = N) or (SSF[Sni]ny ==
Hy .
— Suppose ns € Eas. Then,

ning € (SSY[Sn] £y° =5 (SL, Y [SniLy"] C (SL, Y [SniL,’] € N 7.
However, from Part 11, for the above statement, we need to match,
St Ly’ C SLyN "+ SHy Lo + 8Ly Hy +SLy Ly +S8L,°S.

This is satisfied only if n} € H(;S, for any ns € Eas, orif n! € £,°, for the
particular case of no =S € Ea ° These alternatives are verified with:

mine € (SSY[SHy 1 Lo” == (SLo F[SHe Le] € N°° and
niny € (SSY[SL,°1S = (SLy Y [SL,°S] € N 7.

— Suppose (SS¥[Sn|lny == H, and ny ¢ £,". Then, (SS}[Sn}] = SS and
ng € H(;S—E(;S. With ny = SS(SS) and ns € E;S fori=1, 2, or 3,

niny € SS(SS)L;° — SL;(SSL;”) C
SLoN 4+ 8Hy Ly +SLy Hy +SLy L, C N7

This is only satisfied when i = 1 (note i = 0 is not an option now!). Then, we
may verify,

nins € SS(SS)L.° — SLUH, € N7,
(iii) Suppose ny € (SS)[SBS]. Then,

nins = (SSF[SBS|ne = (Sna)[SBSns] = N~
For this, we need to verify SBSns —— N~ first:
SBSTLQ — BTLQ(STLQ) i) S(?’L2(Sn2)) (SHQ(TLQ(STLQ))) L) SH(;SN_S.

Thus, n5(Sny) — 7—[55. To satisfy this, we need ny € S+SS. This being provided,
we can verify SBSns — N~ with:

SBSS =5 SB(SSB) € SL, "M, C N ° but
SBS(SS) ¢ (N_S>, because SBS(SS)S 1 (from part 8 after some reductions).

724
Therefore, given n; € (SSY[SBS], only for ny = S we may verify:

niny € (SS[SBS]S -
(SSY[SBS S| = (SL;° YNl € NV

-5
(iv) Suppose ny = (SS)[SB(SS)]. Then:
niny = (SSY[SB(SS)|ns = (Sna)[SB(SS)ns] = N °.
For this, we need to verify SB(SS)ny — N~ first:
SB(5S)ns — Bny(SSns) — S (ny(SSns)) (SSns(na(SSns))) —
S (n2(5Sns)) (S (n2(SSns)) (na(na(SSns)))) == SHy N .
Thus, n2(SSn2) = H, ", but for this we need ny = SS. Then:
SB(SS)ns — S (SS(SS(S9))) (S (SS(SS(SS))) (SS(SS(SS(S9))))) €
(SLo F[SHo Lo 1 S N
Therefore, given ny € (SSY[SB(SS)], only for ny = SS we may verify:

niny € (SSY'[SB(SS)](SS) =
(S(S+SS)FSB(SS) (SS)] = (L, YN] € N

—-S

(v) Suppose ny = (SS)*Bn/ for some n| € Hy. Then,
nins = (SSY[Bnilne == (Sna)[Bnins) = N°°
For this, we need to verify Bn)ny, — N7 first:

Bnlny, =5 S(niny)(na(nins)) == SLN +SH Lo +SLy My +SLy LT € N7V

Therefore, either n’lngse E(;S (and ns(nins) L_)S./\/ﬁs) or na(niny) — 7—[[;5.
— Supposiesn’lm € L, . Then, either n{ € £, and no = S, or nj = SS and
ny € L, . For these alternatives we compute:

BL,’S 25 S(£,°8)(S(£,°S)) — SL,°(SLy") = (SLFISN] C N and
B(SS)Ly" 25 S(SSLy) (Lo (SSLy7)) € SLy (Lo ™Ly") == (SL YN C N,

(Note: £y Ly = (SL, YN °] was verified in (i) and (ii) above.) This way, we
may verify our choice we have with:

mne € (SSY[BLy"1S = (SSY[BLy S| == (SL° YN ¢ N°° and
ningy € (SSY[B(SS)| Ly = (Lo VIB(SS)Ly] =+ (SL YN] € N

-S

725

— Suppose ny(nfny) = My and n\ny ¢ £;°. Then, n} = S and ny = SS. In this
case, we may verify:

-S

niny € (SSY[BS](SS) = (S(SS)F[SB(SSB)] € (SLq Y [SHo L] C N

In summary, nins —s N forn, € Ho — S — SN, only if:

nins € (SSY[S] £y, niny € (SSY[SBS] S,

nine = (SSS) B, nyny € (SS)[SB(SS)] (SS),
ning € (SSY[SH,] Ly, niny € (SSY[BL,"] S,

nins € (SSY[SL;] S, niny € (SSY[B(SS)] Ly°, or
nins € SS(SS) £;°, nins € (SSY[BS] (SS).

#2. Suppose ni € Hi AN and ny = SS. Then, ny € (SS + B)*[n}] for some
n} € S(SB + SSH[;SS)(S + 58). We will first show niny — (SN)*[nns]. Then, we
will show that nins ~5 N7 is not possible, i.e., nfn2S1. jFrom these results and
Proposition R we can verify nins —s N s impossible.

With Proposition R, we compute:

nins = (SS+ BY[n}](SS) - (B+ SS(SS))[n}(SS)].
Clearly n{(SS) € (SN)*[ninz]. Suppose n € (SN)*[n}ns]. Then,
Bn = B((SN)[nins]) C (SN)[nin,] and
SS(SS)n — Sn(SSn) C (SNY[n] C (SN)[nins].

Therefore, niny — (SN [n)ns].
We show in no case nfny — N7 with the following:

—-SSs

niny € S(SB+ SSH;) (S + SS) (SS) =
S((SS)[SSS + SS(SS) + SSB + SB]) (S + SS) (SS) ==
((SS)"[SSS + SS(SS) + SSB + SB|(S9)) ((S + $5)(55)) ==
((BY[BB + B(SS(SS)) + B(B(SS)) + SB(SS)]) (B + SS(SS)) .

The left component in the final expression (not yet in normal form!) is a subset of H,.
However, every application of a term in this left component with a term in the right
component, B or SS(SS), fails to match any nsng € HoN such that ngng, — NTF
discussed before.

#3. Suppose n; € H; AN and ny = S. Then, ny = Snsny for some n3,ny € N.
Naturally, nina = SnznsS — (n3S)(n4S) and n3S =5 Ho + Hi. We reject
n3S — H; because if so, we would have to accept nins — Hi (SS), but this resulting
set was proven disjoint from (N7S> just above. Then, n3S —— Ho. Let nj,n, € N be

726

such that n3S - n} and nyS —— n). Then, nin, € HoN. Therefore, either njn/,
matches one of the choices found in #1, when supposing “ny € Hyp,” or else nj € SN.
For the first alternative, we extract ny € S£, Sﬁa * 4 SK,S from the result at the end
of #1 (K4 = (£;°) " justifies the SK4S part). This is because n} cannot be B(SS),
SB(SS), nor in Lo—Ly ", e.g., not in (SS)*[SL;], and n/, cannot be S, B, nor in £; .
The second alternative forces ny = SS, so n3g = S and niny = SSngS — SS(n4S),
which still requires nsS — N - Therefore, the second alternative only introduces
the possibility of having any number of prefixes S.S. However, the base expression must
be an S-term given from the first alternative. Therefore, nins ~ s N for ny € N7
and ny = S, only if:

ny € (SSY[SLyL,"] or ni € (SS)[SK4S].

Let

7 % sss, Js = (SSY[B(SS)],

T = (SSY[SH,], Jr = (SSYBL,),

Ty = (SSy[SLy], Js = (SSY1SLo7],

T ¥ 55(89), To & (SSy[SLy’S), and
Ts ' (SS)[SB(SS)], Jio & (SSYSLy Ly’ + SK4S).

We complete the grammar as follows:

(od) (N77) m= STSN) | S (Mo) (Le7) | S(LT7) (Ho) 1 S(L57) (L) |
S(L°YS | {Ko) (Lo") [(1) B (F2) (L") 1 {Ts) S |
(Ta) (L") [(L1) S 1 (TB) (S S) [(Ts) (Lo) | () S |
(Jo) S (T} S | (L2"Y(SS) [S(Ly)N)

(xxii) (A1) == SSS

(exiil) (7o) = (Ko} S| S (Hy)| S S ()

(xxiv) (J3) == < 0)S|S(LL") | SS(Ts)

(xxv) (Ja) == SS(SS)|(A)S

(xxvi) (J5) == SB(SS)|SS(J)

(xxvi)) (Js) = B(SS)]SS(T)

(exviil) (J7) m= (Ka) S| B(Ly) | SS(Tr)

(xxix) (Js) == S(L,") | S S (k)

(ox) (Jo) == (Ts) S |55 (o)

27

S S (Jio) | S (Lo) (Ls") |
SS(SS) (L5°) | SSSS(Ly°) | B(SS)(SS) | (Ji1) S

(xxxi) (J10)

(xxxil) (Ji1) == SS(J1) | S(Ks) |
S(SSS) (ﬁf} | SS(SS)(SSS)|SSSS(SSS)

(xxxiil) (J12)

55 (J2) [SS(5(555)) [S(555) (S5)

As we can see, for every right rule part of the form X S, where X is a non-terminal,
the rule X ::= S5 X must be included in the set of rules for X.

The list of predecessors for [J1¢9 was obtained with an analysis like the one shown in
the following diagram (the (SS)*[SK4S] case is not shown in the diagram; such terms
are immediately put in (711)). Terms shown overbraced and underbraced in the diagram

are at the boundaries between (710} and (711) (S (SSS) (£y") S and S (SSS) (£5°) re-
spectively) or between (711) and {J12) (S (SSS) (SS) S and S (SSS) (SS) respectively,
SS(S(585))S and S S (S(SSS)) respectively).

z=8,y=8S, 2 (Ly")

SS(SS)(Ly)

s=S y=S2=5 r=8S,y=5S5,2=88

S$SSS(Ly7) B(SS) (SS)
x=88S,ye(Ls), z=S
——
S(SSS)(L£;%) S
N————
=S5, y=25S, z=S558
SS(SSY(SSS)

r=8y=5,2=8

S$S5S585(58S) 2=5,y=5(S55), z =S
gg:sss,yzsslz:s‘/
—N— ey ey——
S(SSS)(SS) S 5SS (S(SSS)) S

—_———— —_———

728

9 Conclusion

We made a further step in lowering the complexity of the decision algorithm, by pre-
senting a context-free grammar which fully characterizes all normalizing S-terms. Thus
the complexity of deciding whether an S-term X has a normal form is O(| X |?), as given
by the CYK algorithm.

Several proofs have been omitted for brevity; they will appear in a full version of
this paper.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press, 1998.
2. Henk P. Barendregt. The Lambda Calculus, Its Syntaz and Semantics. North-Holland,
Amsterdam, 1984.
3. Jan A. Bergstra and Jan Willem Klop. Conditional rewrite rules, confluence and termi-
nation. JCSS, 32(3):323-362, 1986.
4. Alonzo Church. The calculi of lambda conversion. Annals of Math. Studies, 6, 1941.
Haskell B. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.
6. Haskell B. Curry, J.Roger Hindley, and Jonathan P. Seldin. Combinatory Logic II. North-
Holland, Amsterdam, 1972.
7. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of The-
oretical Computer Science, volume B, pages 243-320. Elsevier, Amsterdam, 1990.
8. Gerard Huet and D. C. Oppen. Equations and rewrite rules: a survey. In Formal Language
Theory: Perspectives and Open Problems, pages 349-405. Academic Press, London, 1990.
9. Jan Willem Klop. Term rewriting systems. In Handbook of Logic in Computer Science,
volume 2, pages 2-116. Clarendon, 1992.
10. M. Schénfinkel. Uber die Bausteine der mathematischen Logik. Math. Annalen, 92:305—
316, 1924.
11. Dana S. Scott. Some philosophical issues concerning theories of combinators. LNCS,
37:346-366, 1975.
12. Raymond Smullyan. To Mock a Mockingbird and Other Logic Puzzles Including an Amaz-
ing Adventure in Combinatory Logic. Knopf, New York, 1985.
13. M. Sprenger and M. Wymann-Boeni. How to decide the lark. Theoretical Computer
Science, 110:419-432, 1993.
14. Richard Statman. The word problem for Smullyan’s lark combinator is decidable. Journal
of Symbolic Computation, 7:103-112, 1989.
15. Johannes Waldmann. The combinator S. Information and Computation, 159:2-21, 2000.
16. Stathis Zachos. A decision algorithm for S-term normalization. In PLS3:111-129, Anogia,
Crete, 2001.
17. Stathis Zachos, Stavros Routzounis, and Panos Hilaris. Deciding normalization and com-
puting normal forms for S-terms. In Proceedings 8th Panhellenic Conference in Informat-
ics, volume 1, pages 187-196, Nicosia, Cyprus, 2001.
18. Stathis (Efstathios) Zachos. Kombinatorische Logik und S-Terme. Dissertation, ETH
Ziirich, 1978.

o

