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Abstract. Curry’s Combinatory Logic is a functional calculus which may serve
as a foundation to the theory of computations, even to computational complex-
ity. Combinatory Logic, which is based on the two combinators S and K, is an
undecidable theory. The theory based only on S has been proven decidable by
J. Waldmann. Zachos simplified the proof and gave a decision algorithm. Here
we make a further step in lowering the complexity of the decision algorithm.
We present a context-free grammar which fully characterizes all normalizing
S-terms. Thus the complexity of deciding whether an S-term X has a normal
form is O(|X|?) given by the CYK algorithm.

1 Related Work and Motivation

“Given an S-term, is it normalizable?” The question was answered positively [15]. In
[16,17], a simpler proof without the use of rational tree languages and an actual decision
algorithm were presented. Many people have been involved in similar investigations,
for example: Barendregt, Bergstra, Klop, Statman, Dershowitz, Jouannaud, Smullyan
etc. [18,1-3,7-9,11,13,14,12].

The original motivation of this problem was the need to create a Functional Calculus
instead of Set Theory as a foundation for Theory of Computation, i.e. for Computabil-
ity (Thue, Schoénfinkel [10], Curry [5,6], Church [4], Turing, Markov) but even for
Computational Complexity. In such a functional calculus only one operation is needed:
application f(g). We write (fg) instead of f(g).

Schonfinkel made the following observation: functions of one argument are enough,
e.g., f(g,h) = ((fg)h). We use left association for dropping some parentheses, i.e.,
instead of ((((£9)(h(gh))) ((gh)((fR)£)))) we write fg(h(gh))(gh(fhf)).

An example is the SK-Calculus or Combinatory Logic of H. Curry [5]. It pos-
tulates combinators and rewriting rules, e.g. Stitats = tit3(tats) and Ktite = t.
Actually there are many other combinators and rewriting rules but the system {5, K'}
is complete.

2 Introduction

We call S-terms the elements of a system generated by one symbol S and one non-
associative and non-commutative (implicit) operation that we call application. We
construct S-terms as strings of S’s and parentheses with the following rules:
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— S is an S-term.
— If my; and my are S-terms, (mime-) is an S-term.

In this construction we say that m; and ms are proper sub-terms of the constructed S-
term. S is a sub-term of any S-term. Also, we say that an S-term is a sub-term of itself.
We may abbreviate by omitting parentheses by using left association. For example, we
write SS(S(SSS))S instead of (((SS)(S((SS)S)))S) and zyz = (zy)z # z(y=z).

Here, we use lower case italic letters to represent S-terms. We use upper case calli-
graphic letters to represent sets of S-terms. For any sets of S-terms A and C, we will
write AC = {ac|a€ Aand c€C}.

We define the length of an S-term to be the number of occurrences of the symbol S
in the term. For any S-term z, we write |z| to denote the length of .

The reduction relation — is defined here by the S-rule:

Sade 2% ac(dc) .

The left hand side, Sade, is sometimes called reder and the right hand side, ac(dc),
reductum. In particular,
SSdec — Se(de) .

In general we write z — y if y can be written by replacing some redex, sub-term, in x
by the corresponding reductum of the S-rule.

When reducing by the S-rule we eliminate one symbol S from an S-term and
introduce a replica of a sub-term in the S-term, hence, if z — y, || < |y|. Thus a
reduction step certainly does not reduce the length of the S-term.

Here, we will use an abbreviation B def g (SS). Using the S-rule twice we get:
Bad = S(SS)ad — SSd(ad) — S(ad)(d(ad)) .

that we will write:
Bad 25 S(ad)(d(ad)).

In general, for k£ > 0, we write -+ to represent k reduction steps.

Here we describe other extensions of the relation —. The transitive closure of — is
denoted by —— and its reflexive transitive closure is denoted by —. For two sets of
S-terms X and ), we will write X — )Y if for any x € A we can apply the S-rule on
some redex sub-term of z so that © — y for some y € ). Similarly, we will extend the
other relations described above to sets of S-terms.

We say that an S-term x is in normal form if the S-rule cannot be applied to any
sub-term of z, i.e., there is no redex in x. We say that = has a normal form and write
zl if # <> n for some n in normal form; we write 1 otherwise, i.e., if 2 does not
have a normal form, which is equivalent to: there is a non-terminating reduction chain
starting with z. The following was proven by Waldmann [15] and improved by Zachos
[16].

Theorem. There is an algorithm that decides if a given a S-term has a normal form
and in that case produces the corresponding unique normal form.
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3 Notations

We first introduce some further notation and state some necessary technical facts.
Suppose ¢ — y. Then, for any sub-term z of y we will write x 2, 2. For example:

Sade = dc.

. o . . .. O . .
As extensions of —, we will denote its transitive closure by — and its reflexive
transitive closure by —2+. Using this notation we have the following fact:

Suppose X -~ X. Then, there is an infinite reduction chain starting
with any z € X, i.e., X' 1.

We are using a notation similar to regular expressions, e.g., we write S instead of
{8}, we write X + ) instead of X U Y, etc. M is the set of all S-terms; N is the set
of all S-terms that are in normal form.

ME S MM, NE¥SLSN+SNN

For any set A we define 4 = M — A.
With this notation, we will also define the sets:

0, %5 0, ¥5755 057551555 =5+55+B

So Q; is the set of all S-terms of length greater than one; Qs is the set of all S-terms
of length greater than two. Some immediate facts are:

Q1 =855+ Q», MQ; C Qi1 CQ; forie{l,2} MQ3 C O3

Since every reductum is in MMM C Q3 C Q5 C Qq, we can always write x — Q; for
any redex z (or any term z that has a redex!) and i = 1,2, and 3.

For sets of S-terms X' (the prefiz set) and Y (the base set) we recursively define
An[Y] for all n > 0 by: X°[Y] =Y and A*+1[Y] = X(X*[))]), for k > 0. The set of all
terms defined above is: X*[YV] =Y o, A [V] = XO V] + X [ V] + X2 Y]+ -+, which is
the (least) solution of the fixpoint equation: X*[V] =Y + X (A*[V]). For example:

(SS + BY'[X] = X + SSX + BX + SS(SSX) + SS(BX) + B(SSX) + B(BX) + - --

Definition. £ < (S5)*[Q,0;] which is equal to (Q1)*[Q201].

4 Easy Facts

Proposition R. For any S-terms sets X and Y: (SM)[X]Y 24 XY, in particular,
if XY 1 then (SMy XYV 1.

Results ([16]). €1, Q321 1, (939,91 +EE)7T.
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5 Classification

We can limit ourselves to S-terms of the form NA. We proceed by classifying all
S-terms in A into different classes Ho, H1, Lo, L1, ...

Ho & (SS + BY[S + SN + SBS + SB(SS)], Hi1 ™ (SS + B)[Q3Q: + SQ3M]

Facts. Ho C N, unlike H;, and Ho, H; are disjoint.
Result 1 ([16]). Ho and H1 cover N
We further refine and dissect Hg into more mutually disjoint sets:
def def

Lo (SSY[S + SN £, (SSY[B(SS) + BB]

£, ¥ (SSy[BS + SBS] L3 = (SS)[SB(SS) + BQs]

Facts. L1 def Lo+ L1+ L2 CHg and Ly, L1, L2, L3 are mutually disjoint.
Result 2 ([16]). Lo, L1, L2, and L3 cover Hy.

From Results 1 and 2, we partition A/ according to
the sideways diagram (the circle represents N, double
lines surround Hp; notice that #H; and L3 intersect
both inside and outside of N, but that will not be a
problem).

6 Structure of the Proof

With the above definitions and letting L3 def Lo+ L3

and L1232 L1+ Lo+ L3, the Theorem can be shown by proving (see [16]) the following
parts:

Part 1. LoN | Part 5. £L3L537
Part 2. HoLlol Part 6. £3L, 1
Part 3. L1Ho | Part 7. #1927
Part 4. L5L1 ] Part 8. Li23H1 1

Part 9. Whether (H; N N)(SS + S) 1 can be decided by reduction to parts 1 to 8.

7 A Grammar for (H,)

JFrom this point on, we use the angle brackets (-) to denote the set of “predecessors”

for a given set. That is, for any set A,

ALz e M|z A},
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It is our objective to develop a context free grammar to recognize (A). Naturally, we
will use these sets of predecessors as non-terminal symbols in our grammar. Many of
the technical proofs have been omitted.

The terms in (N') are either S or terms of from (N)(N). To describe the terms of the
second form we use the classification of NV into Hy and H;, and the further classification
of Hop into Lo, L1, Lo, and L3. With these classes, the applications described in PARTS 1
through 6 cover all possible terms in A’A. Because of the incomplete nature of the result
in Part 6 we need to the define the following sets:

N fneN|nS SN} and
N e N n(SS) =5 N},

Then, the results from PARTS 1-6 prove the sufficiency of:
(N = S [ (Lo) (N | (Ho) (o) | (L£1) (Ho) | (L2) (L1) [N )YS TN ) (SS)

(Here, the production symbol ::= can be substituted by equality when the disjunction
symbols | are substituted by union.) In this section we will expand (Ho).
Before proceeding, we need:

Proposition 1. The sets Q3Q>, SQ3 M, and, by extension, Hi are closed under re-
duction, that is, if a term in either set reduces, the resulting term lies in the same
set.

The result above reveals that (Ho) and Q3Q» are disjoint. Since Hy C A, this
fact is equivalent to (Ho) C (S+SS+B)(N) + (N)(S+SS). This will facilitate the
grammatical description of (#p). For this, we introduce the following sets:

1" Y IneN|nS = Ho ) and
1y E {neN|n(SS) =5 Ho ).
Hence, we can describe (Hp) completely with:

(Ho) == S| S(N)|SS(Ho) | B(Ho) | (Hy )S|(Ho )(SS)

because the application of other pairs of strings in (NV){N') results in ;. However, we
are left with the task of producing rules for (7—[65> and (7—[555>. We start with:

Proposition 2. H, = (SS)'[S+SS + B+ SB].

Readily, /H(;SS C Ly C Hy. We classify the terms in H(;SS as follows: S € 7—[(;55; the
terms in H, of the form SA are SS + B + SB; and the terms in H,  of the form
SNN are the terms in SSH, .

Proposition 3. {n € N | n(SS) — ’H(;SS} =5+S8§.
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Let

def * def * def ™
Ko © (ssy[s], ki % (88¢[SS], and Ko % Ko+Ki = (SS)[S+88].
Proposition 4. {ne N |nS =5 H;  } = Ko .
Proposition 5. H, = (SS)'[S+SS+B+SB+5Ko S].

We can define E(;S, ;% 57, and E;S in a manner similar to that of ’H(;S. Le.,

s d_ef
i =

L {neN|nS L}

for i = 0,1, 2,3. With these definitions:
Corollary 1.
(SSY[S+SS] = Kot
L," = (SSy[B+SB],
(

D
[V}
I

SSY[BS] C (SS)[S Ko1 S], and
£;° = (SSY[S Ko S]— (SS)[SSS] — (SSY[BS].

For any S-term m if m = mym, for some terms m; and m,, we say m, is a right
sub-term of m. We extend the notion of right sub-term to include its reflexive transitive
closure. We now show some results about right sub-term ahead.

Proposition 6. Given any S-term m. For any m' such that m —— m', everyn € N
that is a right sub-term of m is also a right sub-term of m'.

Corollary 2. For any n € N, suppose mc —s n for some m € M and ¢ € N'. Then,
c is a right sub-term of n.

Corollary 3. Suppose m is the reductum reduced from some redex Sadc with ¢ € N
and m = mims. Then ¢ is a proper right sub-term of both my and ms.

Remark 1. Given A = (SS)*[D] with D C N, suppose zy — A for some = and y.
Then, either zy — D, or & = SS, or y = S. This is justified as follows: The first
two options are trivial. If none of those two options are satisfied, we would face the
reduction zy — SSa € A (for some a € A!). In such case, Corollary 3 imposes the
third choice by stating (the normal form of) y is a proper right sub-term of SS. (Note
for any d € D, we can search for all pairs (z,y) so that zy — d by exhausting all
pairs that satisfy |zy| < |d].)

Corollary 3 shows that no term is SA'S is a reductum. Neither terms in S + SN
are reducta. After this, Remark 1 above establishes how to determine all zy such that
xy == (SSY'[S+SN+B+SB+SL,°S] =H," (recall Proposition 5 and Corollary 1).
For instance, let:

Ko = (SSY[SL,"]  and K = (SSY[SL,” S].
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For these, Proposition R tells us:
K2S — Ks.

while Remark 1 ensures no other reductions result in 3. That ensures the sufficiency
of:
(K3) == (K2) S| SS(Ks)

This way, we can produce a “complete” context free grammar for (Ho) using on the
following set of rules:

(i) (Ho) STSNY | SS(Ho) | B(Ho) | (Hy )S | (Hy )(SS)
(i) (Mo ) == (Ho )| (Ks)
) m= (Lo) [ (L7)

(iv) (Lo ) == (Ko) | (Ky)

(v) (£7°) == B|SB|SS(L)
(vi) (Ks) == (K2)S|SS(Ks)

(vii)) (Ka) = (K1) | S(Ly) | SS(Ka)
(viii) (Ky) o= (Ko)S|SS(Ky)

(ix) (Ko} == S|(K1)S|SS(Ko)
(x) B == S(SS)

Our grammar for (N) also needs rules for (Lo), (£1), and (L3). These rules also
follow easily after Remark 1. We have shown already £, . £,° and £,” in Corollary 1.
Indeed, we already have rules for (£, ") and (£, ). However, £, is simply presented
as a subset of 3. For that reason, we introduce:

Ke ' (SSYy(B].

Then (note SSS(SS) = BB € L5 but no zy — B(SS)!),

(xi) (Lo) STSNY (L") S |88 (Lo)
(xii) (£1) == (£,7)S |55 (Ly)
(xii)) (L)

(xiv) (L,
(xv) (K4)

B(SS)|SSS(SS)|BB|(£,")S |55 (L)

(K1) S|SS(Ly")
B| S8 (Ks)

)
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8 Beyond Ho: the Sets N " and N~ °°

Recall:
N fneN|nS 5N} and

N e N n(SS) -5 N},
Since S + 5SS C Ly, Part 2, Ho Ly |, easily shows Hg C N and Ho Cc N7 Now,

we proceed to complete the representation of the terms in N7, Let:

Ly % (SS+BY[SH, (S +89)].

We will show N~ °° = o + L4. After this, we can revise the grammatical rule for (/)
to:

(N) 5= S [ (Lo) (N) | (Ho) (Lo) | (£1) (Ho) | (£2) (L) | (NT7)S [ (L) (SS)
Indeed, we show:
Part 10. L£4(SS)}  and  (HiNN — L4)(SS)1.
Corollary 4. H,NN *° = (85 + BY[S(SB + SSH, ")(S + SS)].

The right sub-terms of £4 are S, SS, and £4. Because of Corollary 2, for the
grammar of (£4) we only need to describe the sets:

£, Y (neN|nS L4} and

£, Y (neN|n(SS) = Ly}
so we could write:
(La) == SS(La) | B(La) [(L)S[(L77)(SS)
We start by proving:
Proposition 7. £; = (SS)'[S H(;SS] .
Recall: Ko % (SS)[S] C Ko1 & (SSY[S+SS] = £, .

—SSs

Proposition 8. {neN |nSe L, } = Ko.

Proposition 9. E;S = (SS)*[S?—[(;SS + SKoS].

Note £;°° C £, and the difference £, — £, = (SS)[SKoS] C Hy  so {n e N |
—-SS

nS 51NN} C £, Let:

Ks < (SSy[SKe] and  Ke % (SS)[SK,S].
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Then, we can specify a grammar for (£4):

(evi) (L) = SS(La) [ B(La) [ (L)S (L) (SS)
(evil) (£77) == (£577) | (Ke)

(i) (£7°7) 5= (Ko) S| S (Hy ) | S8(L,™)

(xix) (Ke) == (K5)S|SS(Ke)

(xx) (Ks) = (Ko)S|S(Ko)|SS(Ks)

Now, the only piece missing in our grammar for () is (V" °). To fill this gap, we
first prove:

Part 11. N~ = (5L, )[S+ SN + SHy Lo +SLy My +SLy L +SL,°S].

Remark 2. Recall Hy C NN Now, we can easily check:

-S

Ly = (SS+BY[SHy (S+SS)] C (SL Y [SHy Ly] € N
It is no surprise N °° C N °.

After this result, to investigate (N _S> we only need investigate the redexes that
reduce into N, Suppose nins is a redex with nq,ns € NV, and nin, — ng € NTE
Since ny is a reductum, ng ¢ S + SN + SN'S. Then, from the expression for N in
Part 11, ng € SLo'N  +SH, Lo +SLy My +SL, L, In short, nyny —— SHy N~

We proceed to analyze exhaustively the choices for ni: We have either n; € Hg, or
ny €H, NN and ny = SS, orny € Hy AN " and ny = S.

#1. Suppose n; € Hy. We need to examine various cases from ny € (SS)*[S + SN +
SBS + SB(SS) + BHo]:

(i) Suppose n; € (SSY[S]. If ny = S, the S-term nyny € SN (C N °1) is not a redex.
Then, we are supposing ny = (SS)™[S] = SS((SS)[S]) for some k > 0. Then,
SLoN 4+ 8Hy Ly +SLyL Hy +SLy L, C N7

Therefore, either ns € £," (and (SSF[S]ns == N °) or (SS)E[S]ns = H, .
— Suppose ns € E(;S. Then, we may verify:

ning € (SSY[S] Ly~ == (SLy V[SLy] C (SL YISN] € N7~

— Suppose (SS)[S]ny = H,~ and ny ¢ L, Recalling Hy~ = (SS)[S + SS +
B+SB+ SKESS] and the rules for (7—[55), we determine this needs (SS)¢[S] = S
and ny = B. Given this, we verify:

niny = (SSS)B —s SB(SB) C SL; My C N ~°.
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(i) Suppose ni € (SS)[Sn!] for some n} € N. If ny = Snj, the S-term nin, € SNN
is not a redex (the allowed values for n} and ns can be found in Part 11). Then,
we are supposing ni = (SSY[Sni] = SS((SS)¥[Sn{]) for some k > 0. Then,

nine = SS((SSF[Sn}]) na — Sna((SSF[Sni]n2) —
SLoN "+ S5H, Ly + 8L, Hy + 8L,  Cc N

Therefore, either ny € £,° (and (SS)[Sni]ne = N ) or (SSF[Sni]ny ==
Hy .
— Suppose ns € Eas. Then,

ning € (SSY[Sn] £y° =5 (SL, Y [SniLy"] C (SL, Y [SniL,’] € N 7.
However, from Part 11, for the above statement, we need to match,
St Ly’ C SLyN "+ SHy Lo + 8Ly Hy +SLy Ly +S8L,°S.

This is satisfied only if n} € H(;S, for any ns € Eas, orif n! € £,°, for the
particular case of no =S € Ea ° These alternatives are verified with:

mine € (SSY[SHy 1 Lo” == (SLo F[SHe Le] € N°°  and
niny € (SSY[SL,°1S = (SLy Y [SL,°S] € N 7.

— Suppose (SS¥[Sn|lny == H, and ny ¢ £,". Then, (SS}[Sn}] = SS and
ng € H(;S—E(;S. With ny = SS(SS) and ns € E;S fori=1, 2, or 3,

niny € SS(SS)L;° — SL;(SSL;”) C
SLoN 4+ 8Hy Ly +SLy Hy +SLy L, C N7

This is only satisfied when i = 1 (note i = 0 is not an option now!). Then, we
may verify,

nins € SS(SS)L.° — SLUH, € N7,
(iii) Suppose ny € (SS)[SBS]. Then,

nins = (SSF[SBS|ne = (Sna)[SBSns] = N~
For this, we need to verify SBSns —— N~ first:
SBSTLQ — BTLQ(STLQ) i) S(?’L2(Sn2)) (SHQ(TLQ(STLQ))) L) SH(;SN_S.

Thus, n5(Sny) — 7—[55. To satisfy this, we need ny € S+SS. This being provided,
we can verify SBSns — N~ with:

SBSS =5 SB(SSB) € SL, "M,  C N ° but
SBS(SS) ¢ (N_S>, because SBS(SS)S 1 (from part 8 after some reductions).



724
Therefore, given n; € (SSY[SBS], only for ny = S we may verify:

niny € (SS[SBS]S -
(SSY[SBS S| = (SL;° YNl € NV

-5
(iv) Suppose ny = (SS)[SB(SS)]. Then:
niny = (SSY[SB(SS)|ns = (Sna)[SB(SS)ns] = N °.
For this, we need to verify SB(SS)ny — N~ first:
SB(5S)ns — Bny(SSns) — S (ny(SSns)) (SSns(na(SSns))) —
S (n2(5Sns)) (S (n2(SSns)) (na(na(SSns)))) == SHy N .
Thus, n2(SSn2) = H, ", but for this we need ny = SS. Then:
SB(SS)ns — S (SS(SS(S9))) (S (SS(SS(SS))) (SS(SS(SS(S9))))) €
(SLo F[SHo Lo 1 S N
Therefore, given ny € (SSY[SB(SS)], only for ny = SS we may verify:

niny € (SSY'[SB(SS)](SS) =
(S(S+SS)FSB(SS) (SS)] = (L, YN ] € N

—-S

(v) Suppose ny = (SS)*Bn/ for some n| € Hy. Then,
nins = (SSY[Bnilne == (Sna)[Bnins) = N°°
For this, we need to verify Bn)ny, — N7 first:

Bnlny, =5 S(niny)(na(nins)) == SLN +SH Lo +SLy My +SLy LT € N7V

Therefore, either n’lngse E(;S (and ns(nins) L_)S./\/ﬁs) or na(niny) — 7—[[;5.
— Supposiesn’lm € L, . Then, either n{ € £,  and no = S, or nj = SS and
ny € L, . For these alternatives we compute:

BL,’S 25 S(£,°8)(S(£,°S)) — SL,°(SLy") = (SLFISN] C N and
B(SS)Ly" 25 S(SSLy ) (Lo (SSLy7)) € SLy (Lo ™Ly") == (SL YN C N,

(Note: £y Ly = (SL, YN °] was verified in (i) and (ii) above.) This way, we
may verify our choice we have with:

mne € (SSY[BLy"1S = (SSY[BLy S| == (SL° YN ¢ N°° and
ningy € (SSY[B(SS)| Ly = (Lo VIB(SS)Ly] =+ (SL YN ] € N

-S
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— Suppose ny(nfny) = My and n\ny ¢ £;°. Then, n} = S and ny = SS. In this
case, we may verify:

-S

niny € (SSY[BS](SS) = (S(SS)F[SB(SSB)] € (SLq Y [SHo L] C N

In summary, nins —s N forn, € Ho — S — SN, only if:

nins € (SSY[S] £y, niny € (SSY[SBS] S,

nine = (SSS) B, nyny € (SS)[SB(SS)] (SS),
ning € (SSY[SH, ] Ly, niny € (SSY[BL,"] S,

nins € (SSY[SL;] S, niny € (SSY[B(SS)] Ly°,  or
nins € SS(SS) £;°, nins € (SSY[BS] (SS).

#2. Suppose ni € Hi AN and ny = SS. Then, ny € (SS + B)*[n}] for some
n} € S(SB + SSH[;SS)(S + 58). We will first show niny — (SN)*[nns]. Then, we
will show that nins ~5 N7 is not possible, i.e., nfn2S1. jFrom these results and
Proposition R we can verify nins —s N s impossible.

With Proposition R, we compute:

nins = (SS+ BY[n}](SS) - (B+ SS(SS))[n}(SS)].
Clearly n{(SS) € (SN)*[ninz]. Suppose n € (SN )*[n}ns]. Then,
Bn = B((SN)[nins]) C (SN)[nin,] and
SS(SS)n — Sn(SSn) C (SNY[n] C (SN)[nins].

Therefore, niny — (SN [n)ns].
We show in no case nfny — N7 with the following:

—-SSs

niny € S(SB+ SSH; ) (S + SS) (SS) =
S((SS)[SSS + SS(SS) + SSB + SB]) (S + SS) (SS) ==
((SS)"[SSS + SS(SS) + SSB + SB|(S9)) ((S + $5)(55)) ==
((BY[BB + B(SS(SS)) + B(B(SS)) + SB(SS)]) (B + SS(SS)) .

The left component in the final expression (not yet in normal form!) is a subset of H,.
However, every application of a term in this left component with a term in the right
component, B or SS(SS), fails to match any nsng € HoN such that ngng, — NTF
discussed before.

#3. Suppose n; € H; AN and ny = S. Then, ny = Snsny for some n3,ny € N.
Naturally, nina = SnznsS — (n3S)(n4S) and n3S =5 Ho + Hi. We reject
n3S — H; because if so, we would have to accept nins — Hi (SS), but this resulting
set was proven disjoint from (N7S> just above. Then, n3S —— Ho. Let nj,n, € N be
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such that n3S - n} and nyS —— n). Then, nin, € HoN. Therefore, either njn/,
matches one of the choices found in #1, when supposing “ny € Hyp,” or else nj € SN.
For the first alternative, we extract ny € S£, Sﬁa * 4 SK,S from the result at the end
of #1 (K4 = (£;°) " justifies the SK4S part). This is because n} cannot be B(SS),
SB(SS), nor in Lo—Ly ", e.g., not in (SS)*[SL; ], and n/, cannot be S, B, nor in £; .
The second alternative forces ny = SS, so n3g = S and niny = SSngS — SS(n4S),
which still requires nsS — N - Therefore, the second alternative only introduces
the possibility of having any number of prefixes S.S. However, the base expression must
be an S-term given from the first alternative. Therefore, nins ~ s N for ny € N7
and ny = S, only if:

ny € (SSY[SLyL,"]  or  ni € (SS)[SK4S].

Let

7 % sss, Js = (SSY[B(SS)],

T = (SSY[SH, ], Jr = (SSYBL, ),

Ty = (SSy[SLy], Js = (SSY1SLo7],

T ¥ 55(89), To & (SSy[SLy’S), and
Ts ' (SS)[SB(SS)], Jio & (SSYSLy Ly’ + SK4S).

We complete the grammar as follows:

(od) (N77) m= STSN) | S (Mo ) (Le7) | S(LT7) (Ho ) 1 S(L57) (L) |
S(L°YS | {Ko) (Lo") [ (1) B (F2) (L") 1 {Ts) S |
(Ta) (L") [(L1) S 1 (TB) (S S) [ (Ts) (Lo ) | () S |
(Jo) S (T} S | (L2"Y(SS) [ S(Ly )N )

(xxii) (A1) == SSS

(exiil) (7o) = (Ko} S| S (Hy )| S S ()

(xxiv) (J3) == < 0)S|S(LL") | SS(Ts)

(xxv) (Ja) == SS(SS)|(A)S

(xxvi) (J5) == SB(SS)|SS(J)

(xxvi)) (Js) = B(SS)]SS(T)

(exviil) (J7) m= (Ka) S| B(Ly ) | SS(Tr)

(xxix) (Js) == S(L,") | S S (k)

(ox) (Jo) == (Ts) S |55 (o)
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S S (Jio) | S (Lo ) (Ls") |
SS(SS) (L5°) | SSSS(Ly°) | B(SS)(SS) | (Ji1) S

(xxxi) (J10)

(xxxil) (Ji1) == SS(J1) | S(Ks) |
S(SSS) (ﬁf} | SS(SS)(SSS)|SSSS(SSS)

(xxxiil) (J12)

55 (J2) [ SS(5(555)) [ S(555) (S5)

As we can see, for every right rule part of the form X S, where X is a non-terminal,
the rule X ::= S5 X must be included in the set of rules for X.

The list of predecessors for [J1¢9 was obtained with an analysis like the one shown in
the following diagram (the (SS)*[SK4S] case is not shown in the diagram; such terms
are immediately put in (711)). Terms shown overbraced and underbraced in the diagram

are at the boundaries between (710} and (711) (S (SSS) (£y") S and S (SSS) (£5°) re-
spectively) or between (711) and {J12) (S (SSS) (SS) S and S (SSS) (SS) respectively,
SS(S(585))S and S S (S(SSS)) respectively).

z=8,y=8S, 2 (Ly")

SS(SS)(Ly)

s=S y=S2=5 r=8S,y=5S5,2=88

S$SSS(Ly7) B(SS) (SS)
x=88S,ye(Ls), z=S
——
S(SSS)(L£;%) S
N————
=S5, y=25S, z=S558
SS(SSY(SSS)

r=8y=5,2=8

S$S5S585(58S) 2=5,y=5(S55), z =S
gg:sss,yzsslz:s‘/
—N— ey ey——
S(SSS)(SS) S 5SS (S(SSS)) S

—_———— —_———
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9 Conclusion

We made a further step in lowering the complexity of the decision algorithm, by pre-
senting a context-free grammar which fully characterizes all normalizing S-terms. Thus
the complexity of deciding whether an S-term X has a normal form is O(| X |?), as given
by the CYK algorithm.

Several proofs have been omitted for brevity; they will appear in a full version of
this paper.
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