An Agile Formal Development Methodology

George Eleftherakis! and Anthony J. Cowling?

L Computer Science Department
City Liberal Studies
Affiliated College of the University of Sheffield
13 Tsimiski Str., 54624 Thessaloniki, Greece
eleftherakis@Qcity.academic.gr,

WWW home page: http://www.city.academic.gr
2 Computer Science Department
University of Sheffield, UK
a.cowling@dcs.shef.ac.uk,

WWW home page: http://www.dcs.shef.ac.uk

Abstract. The demand for more complex but also more reliable and
correct computer based systems on the one hand, and the fact that sev-
eral changes in the user requirements through the development cycle on
the other hand, leads to the need for more formal but also agile devel-
opment methodologies. This report proposes XFun, which is a devel-
opment methodology that adopts the unified process, and proposes as
the core modelling technique the X-machine formal method. This amal-
gamation creats a formal agile methodology aiming for the development
of computerised systems that will be reliable and correct with respect to
user requirements.

1 Introduction

The traditional approach to software development fails to cope with even small
changes in the requirements at any stage after the analysis. It is generally ac-
cepted that the software development methodology which is mostly used in the
industry is the waterfall model, which however exhibits an awkward behaviour
in changes during the later stages of the development. This is the reason for the
dramatic increases in time and cost of the development of software. The water-
fall model is a linear sequential model which emphasizes the completion of one
phase of the development before proceeding to the next one. The most common
problems are the complexity overload, the delayed feedback, the requirement for
unchanged requirements over the development time of the project thus increas-
ing the cost of any change, and the delayed risk reduction. Methodologies like
this are bureaucratic, they demand masses of documentation, and there is so
much to do to follow the methodology that the whole pace of development slows
down, hence they are often referred to as heavy methodologies.

The value of formal methods as a means of improvement in the develop-
ment of reliable, high integrity, correct systems has long been accepted. But, it
is also a common belief of people outside the formal methods community that

36

Proceedings of the 1st South-East European
Workshop on Formal Methods, SEEFM'03
November 2003, Thessaloniki, Greece

formal methods are difficult to understand and use. Furthermore formal spec-
ifications can be costly and time consuming. Taking into account that formal
methods do not cope well with changes in the requirements which could result
in major rework of the produced model, any attempt to combine them with the
heavy software development methodologies will result in more rigid development
methods. This will make the widespread use of formal methods in the software
industry even more difficult because in commercial environments requirements
change often throughout the development cycle.

In order to be useful to modelling of computer based systems a formal method
should be able:

— to model both the data and the control of a system,

— to offer a practical, modular, disciplined way of modelling that will facilitate
the modelling of large scale systems,

— to be intuitive, practical and effective towards implementation of the system,
and

— to facilitate development of correct systems.

All the above are prominent characteristics of the X-machine. X-machine is a
formal method introduced by Eilenberg [4]. Holcombe proposed X-machines as a
basis for a possible specification language [9] which is capable of modelling both
the data and the control of a system. With the development of a formal testing
strategy [11], a formal verification technique [6] and a methodology of building
communicating systems out of X-machine components [13], and with the added
support of tools [14] and the proposal of a formal framework for the development
of more reliable systems [5], most of the above mentioned requirements are met
with emphasis in the development of correct systems.

Over the last years the so-called lightweight or agile methodologies have been
introduced which attempt a useful compromise between no process and too much
process, providing just enough process to gain a reasonable payoff. Some of the
proposed agile methodologies are [8]: Adaptive Software Development (ASD),
Agile Software Process (ASP), Crystal, Dynamic System Development Method
(DSDM), Extreme Programming (XP), Feature Driven Development (FDD),
Unified Process (UP), SCRUM, etc.

X-machines have already been used together with an agile methodology, ex-
treme programming, to provide valuable aid with the testing strategy they of-
fer [10], but not to adopt it towards an integrated formal methodology. This
paper argues that the UP is another appropriate lightweight software develop-
ment process to adopt in order to combine it with X-machines towards a formal
lightweight development methodology of computerised systems.

2 X-machines

X-machines employ a diagrammatic approach of modelling the control by ex-
tending the expressive power of FSM. Transitions between states are no longer

37

performed through simple input symbols but through the application of func-
tions. In contrast to FSM, X-machines are capable of modelling non-trivial data
structures by employing a memory, which is attached to the X-machine. Func-
tions receive input symbols and memory values, and produce output while mod-
ifying the memory values (Fig. 1).

MEMORY - M < m’

Crrr1l

input stream

Y

|

output stream

Fig. 1. An abstract X-machine model

The X-machine formalism as a modelling tool has many advantages:

— it is formal (making it suitable for mathematical analysis),

— it is rigorous,

— it is expressive,

— it provides unambiguous models,

— it is capable of capturing both static and dynamic system information,

— it is based on a fully general and formalised computational model, that could
form the basis of a universal approach to the design of systems,

— it offers communicating X-machines, which means that it can support com-
ponent based development, and

— it is supported by appropriate tools.

A particular class of X-machines is stream X-machines which is defined as
an 8-tuple as follows [12]: M = (X, I',Q, M,®, F, qo, mp) where:

— X, I' is the input and output finite alphabet respectively,

— (@ is the finite set of states,

— M is the (possibly) infinite set called memory,

— @ is the type of the machine M, a finite set of partial functions ¢ that
map an input and a memory state to an output and a new memory state,
¢: X XM—->ITxM

— F' is the next state partial function that given a state and a function from
the type @, denotes the next state. F' is often described as a transition state
diagram. F : Q x ¢ — Q

— qo and my are the initial state and memory respectively.

The sequence of transitions (path) caused by the stream of input symbols
is called a computation. The computation halts when all input symbols are
consumed. The result of a computation is the sequence of outputs produced by
this path.

38

3 Formal Development Framework based on X-machines

Building a formal framework using X-machines as a modelling language [9] for
aiding the development of safety critical systems but also any other computer
based system, offers the advantage of: (a) a verification technique to prove the
validity of the model [6], i.e. prove whether desired properties are satisfied by
the model of the system, and (b) a testing strategy to check the implementation
against the verified X-machine model [12].

The framework suggested in [5] to be built around X-machines is depicted
in figure 2. It is argued that, by applying the proposed framework, to critical
systems it is possible to assure that several “safety” properties hold in the final
product. The grey shaded areas are tasks in which X-machines are used as the
core formal method.

| USER REQUIREMENTS
MODELLING
ADJUSTMENT 3 1 IMPLEMENTATION |
4>| FORMAL MODEL | > CODE

AD

VERIFICATION GENERATION OF
VALIDATION TEST CASES g
TESTING U
PROVEN TEST CASES G

PROPERTIES A 4
PRODUCT

Fig. 2. A formal framework based on X-machines that supports the development of
safety critical systems

First of all, from the user requirements the system is described as an X-
machine model. Then a verification technique for X-machines (model checking
X-machine models) verifies that certain safety properties hold in the model and
feedback is used to adjust the model (or the temporal logic formulas expressing
the properties). The actual implementation task produces the code written in a
programming language. Finally, the testing of the implementation for correctness
with respect to the model takes place and the refinement of the implementation,
through the use of a complete test set derived from the X-machine model using
the testing strategy that Ipate and Holcombe proposed in [11].

All the above will aid in the development of more correct and reliable com-
puter systems, but in order to use them in industry and in real-life projects a
disciplined and clear process should be devised that will enable developers to
adopt the X-machine formal method. The next section describes a proposal for
a new formal development methodology based on X-machines.

39

4 XZFun; A Lightweight Formal Development Process

The X-machine, as a tool to describe computerised systems unambiguously, pro-
vides the appropriate level of intuitiveness that fills the semantic gap between
what the specifier thinks and what a formal model is. By providing a more intu-
itive way of modelling the functional behaviour than Z, VDM and other formal
languages the difficult task of formal modelling seems as easy as possible. Thus,
understanding the formal model is possible even with minimum training. Also
educating people to use it as a modelling tool without requiring training in ad-
vanced mathematics is feasible. The results of analysis made from experts or
educated persons are reviewable from people with no experience on the formal
methods field, thus making it suitable in using it in the industry.

But only the above is not enough for the successful wide use of a formal
method in the industry. Professional and international certification bodies pro-
pose or force guidelines for system development and most of them suggest the
use of formal methods. For example, the UK Defence Standard 00-55 [2] sup-
ports the need for a formal method like the one described before, by requiring
formalised development of software, use of animation of the requirements speci-
fication, static analysis, and dynamic analysis (meaning testing of code). Most of
the work done trying to satisfy these standards is based on model based formal
notations like Z [3] and VDM [1] that seemed to be difficult to communicate
to people with limited knowledge of formal methods. It is also important to
understand that the formalisms which provide only intuitive ways of modelling
computerised systems and methods which verify the produced models are not
enough. Even if the model is verified, testing is essential to prove that the mathe-
matical model was appropriate and any assumptions made during the modelling
of the system under development were correct and that the final product meets
the user requirements.

The proposed formal framework built around the X-machine computational
model appears to be a promising one because it has all the above mentioned char-
acteristics. However, it is still not very clear how this will be practical and which
is the efficient way for the industry to adopt all these ideas and apply them
in real life projects. The benefits and practicality of lightweight development
methodologies in general and more specifically of the UP appear to be an ap-
propriate ally for this purpose. Considering all the above this section proposes a
lightweight formal methodology for the development of computer based systems
that adopts both the X-machine and UP, and presents it as a possible alterna-
tive that the companies involved in developing computer based systems either
critical or not could use as a development methodology. The proposed formal
methodology will be called X Fun (pronounced extra fun). Briefly X Fun will
be described in the following paragraphs.

UP is a software engineering process that provides a disciplined approach
to assigning tasks and responsibilities within a development organization. Its
goal is to ensure the production of high-quality software that meets the needs
of its end users within a predictable schedule and budget [17]. Rational Unified

40

Process (RUP) is the most well known development methodology that follows
UP. RUP adopts the UML notation as the core modelling method.

XFun is a development methodology that fully adopts the UP and proposes
as the core modelling technique the X-machine, aiming for the development of
computerised systems that will be reliable and correct w.r.t. user requirements.
This is achieved through the use of several existing techniques and tools like the
communicating X-machine method that enables modular modelling, the verifi-
cation technique, the testing strategy, and XMDL [15] (X-machine description
language) and its accompanying tools [14].

Fully adopting UP as mentioned before, X Fun has two distinct aspects,
a static and a dynamic as in UP. It follows the four proposed phases by UP,
where each phase consists of a number of iterations. These phases are planned
in the beginning where also the time plan of each iteration is scheduled following
the guidelines that the UP proposes. Each iteration in X Fun also ends with
an executable product accompanied by several artifacts, and all these grow and
mature over time through each iteration ending to the incremental production
of the final product and artifacts. Disciplines, activities and roles are the same
as in UP.

What is new in X Fun is that it proposes a formal method as the cornerstone
of the development of the system. All disciplines are using X-machines as a basis
and all the produced artifacts are using X-machine theory but also any tradi-
tional good practice that can be combined with X-machines is used to enhance
the methodology and make it more flexible and appropriate for adaptation from
the industry.

4.1 XFun Best Practices

As the UP proposes several principles named best practices, this section presents
the proposed by XFun best practices under the light of using X-machines as
the core formalism in the development of a system using this methodology.

Visual modelling X Fun facilitates visual modelling by using the X-machine
for modelling the systems under development. X-machines combine the dynamic
features of FSM with data structures enabling the modelling of both the static
and the dynamic aspect of the system. The graphical notation used that is a
transition graph is aiding for better understanding of complex systems and pro-
vides a means for exploring and comparing design alternatives at a low cost.
With the addition of the internal data store (memory) and the set of functions
that are labelling the transitions and manipulate the memory, X-machines fa-
cilitate modelling of the data part of the system and form a foundation for
implementation.

Being a formal model, it describes the requirements precisely and unam-
biguously avoiding any misconceptions among the members of the development
team, but also between the team and the clients. This is achieved because its in-
tuitiveness enhances the communication of decisions among the members of the

41

development group and facilitates the invaluable communication of this group
with the users.

Finally, the X-machine proved to be suitable to model systems from a lot of
different domains [5], [7], [16] and its generality implies that is capable of mod-
elling any computer based system and moreover creating elegant and intuitive
models.

Component-based Architecture In order to achieve flexibility over changes
and development through progressively improved and refined products following
the iterations, a modular component-based development process was needed that
will enable also reuse of available off the shelf components. The modular com-
municating X-machine system presented in [13] provides a modelling tool based
on the X-machine, where a complex system can be decomposed in smaller com-
ponents that can be modelled as simple X-machine models and at the end the
communication of all these components can be specified to model the complete
system as a communicating X-machine model.

With this method it becomes possible to reuse off-the-shelf X-machine models
but also to model only once a component and use many of its instances in the
final communicating system as instances of the X-machine component model
decreasing the development time and increasing reliability. All the component
X-machines are verified and tested, thus increasing confidence in using them
alming towards a correct final product.

Requirements Management XFun employs the modular communicating
X-machines approach in order to manage requirements in a systematic and con-
tinuous manner, aiming to elicit and document the requirements of the system
and establish and also maintain an agreement between the customer and the
development team on the system’s changing requirements.

In this approach, the X-machine component models are the basis for the en-
tire development process and the final model of the system under development is
a communicating X-machine. The memory structure together with the functions
offer a flexibility to the X-machine model regarding changes in the requirements.
This characteristic makes the X-machine a powerful modelling tool in X Fun. It
is the cornerstone that satisfies the requirement of the process to use a modelling
method that is flexible in changes of the user requirements. By changing the set
of inputs, the memory and maybe also the functions, it is possible to alter the
model in order to include any changes of the requirements. The designer could
use the memory element of the X-machine whenever there is a prediction that
a user requirement might change and this way only alterations in the functions
should take place to model the changes. This in addition to the flexibility of-
fered by the modular development facilitated by the communicating X-machine
system allows gradual development and flexibility in changes.

But it is not only important the modelling tool to be flexible in changes but
also aid the developer to elicit the requirements from the users. With the use of
tools that are built around the XMDL language it is possible if the X-machine

42

model is written in XMDL to syntactically check it and then automatically
animate this model [14]. Through this simulation it is possible first of all for
the developers to informally verify that the model simulates the actual system
under development, and then also to demonstrate the model to the users aiding
them to identify any misconceptions regarding the user requirements between
them and the development team. Also existing and well established techniques in
software engineering, like prototyping, can be used as complementary methods
to assist in this phase.

Change Management It is clear that developing large scale computer sys-
tems requires disciplined control over the management of development teams,
iterations, releases, artifacts etc. Lack of such control will lead to unpleasant
situations ending with the failure of the whole project. The UP in combination
with the communicating X-machines practical and modular approach provides
the required disciplined control in the methodology.

Project and risk management are facilitated and supported in X Fun. It
could adopt, mainly in the inception phase, mature and standard hazard and
risk analysis, qualitative risk assessment and assurance techniques. This fulfills
the need for integration of formal software development techniques with such
hazard, risk and project management techniques [18] in order to build a complete
development methodology of critical also computer based systems.

The modular approach proposed using the communicating X-machines en-
ables the project manager to decompose efficiently the whole system and assign
the development of components in different teams. This modular approach sup-
ports an iterative gradual development and facilitates the reusability of existing
components, making the management of the whole project more flexible and
efficient, achieving its completion with lower cost and less development time.
Of course the benefit is not significant when the decomposition of the model
into communicating X-machines it does not match the functional decomposi-
tion of the system, something that the flexibility of the X-machine is aiding the
developers to avoid.

Quality Verification The fact that software problems are much more expen-
sive to find and fix after deployment than before, forces the modern develop-
ment methodologies to provide mechanisms that ensure the correct development
of the systems throughout the life cycle that also gradually minimise the risk
from the early stages of development. Henceforth, quality should be continuously
assessed. X Fun provides an intuitive modelling method that with the use of
tools aids in the elicitation of the user requirements. But in order to increase
the confidence that the proposed model has the characteristics that the user
wants, an automatic and formal verification technique is provided. This formal
verification technique for X-machine models enables the designer to verify the
developed model against temporal logic (an extended version was devised appro-
priate for X-machine models, named XmCTL that is presented in [6]) formulas
that express the desired by the user and by the designer properties that the

43

system should have. Using this technique the designer is confident that the pro-
duced model has the desired properties and once the properties are expressed in
XmCTL formulas, whenever a new version of the model exists the new model
is verified using this automated technique.

But that is not all. X Fun supports not only static but also dynamic analysis.
Early in the development the first versions of the system are implemented as
the methodology commands. By having the X-machine model, from the very
first version it is possible to use the testing strategy to test the implementation
and prove its correctness with respect to the X-machine model. The model’s
correctness with respect to the user requirements has been demonstrated with
the use of the formal verification technique. This way by the end of each iteration
the developers are confident that their product is correct with respect to the user
requirements.

Therefore, with the continuous verification and testing from the early stages
risks are reduced and the developer is confident for the correctness of the sys-
tem under development throughout the whole process. It worths noticing that
components that have been verified and tested can be reused without any other
quality check and the proposed communicating X-machine system supported by
the methodology is based in the idea of reusability, thus minimising the devel-
opment time without risking the quality of the product.

Iterative Development As stated before the X' Fun methodology starts with
a planning phase where the several iterations that will follow until the end of
the project are scheduled. In the first iterations focus is given in the user re-
quirements, project and risk management and hazard analysis. Every iteration
includes the following activities:

— User requirements. The activity where the developers understand the
properties of the system under development, using mainly traditional tech-
niques from software engineering, like interviews with the users, question-
naires etc. depending on the project, but also using the animation tool to
animate early versions of the X-machine model for enhancing the clients -
developers communication.

— Modelling. In this one the X-machine model is created. The system is
decomposed in the initial phases and gradually the model is finalised in
later stages. Focus is given to this discipline mainly in the first two phases
(inception and elaboration).

— Verification. The X-machine model is verified by proving that the desired
properties expressed as XYmCTL formulas are satisfied by the model, using
the model checking for X-machines technique.

— Implementation. The actual development of the software considering as
design the X-machine model with the possible addition of other semi-formal
models (like UML diagrams) that will make the design more complete and
detailed.

— Testing. The implementation is checked with respect to the X-machine
model using the formal testing strategy, and finally

44

— Evaluation. The release is evaluated.

Each iteration ends with a version of the system under development. At the end
of all iterations the last phase of the project follows which is the deployment.
The whole development is based on the iteration of a cycle composed of the same
activities which at the end always produces a version of the final product.

4.2 XFun advantages

The proposed formal development methodology, namely X Fun has several valu-
able advantages that are a combination of the advantages the UP and the X-
machine exhibits:

— X Fun is adaptable with respect to the system under development. Thus it
can play the role of a development methodology of any computer based sys-
tem and more importantly it facilitates the development of correct critical
systems. This belief is based first of all on the fact that in the X Fun method-
ology there is room available for risk and hazard analysis whenever this is
vital for the development of the system. Secondly, it is important to distin-
guish the qualitative difference between the most important safety require-
ment, that is the absence of accident, and the reliability requirement, which
is the continuity of the required function. So, although usually overlapping,
system safety and software reliability could be distinct or in some cases con-
flicting. Reliable software cannot assure that the system that is using it is
safe [18]. Safety is a system property, so modelling the whole system and val-
idating it is very important and not isolating the software from the system.
XFun by employing the communicating X-machine as a modelling method,
gives the ability to model the whole system and verify the desired properties
for this model. On the parts that are software a formal testing strategy is
followed also to improve the reliability of the software.

— The communicating X-machine method supports a disciplined modular de-
velopment, allowing the developers to decompose the system under develop-
ment. Decomposition aids in handling large scale systems, thus X Fun fulfils
one basic requirement in order to be used as a development methodology in
the industry.

— Also communicating X-machines provide the appropriate style of developing
models reusing off-the-shelf existing verified component models and maybe
even their tested implementations. This way development time is minimised,
allowing together with the appropriate decomposition spreading the work-
load so that developers are able to deliver a product of high quality on time
through continuous integration.

— Confidence in the correctness of the product is built in any iteration through
the use of verification and testing techniques and the product is progressively
improved and refined providing evidence of projects status to customers.

— This way risks reduce from the early phases of the project opposite to the
heavy methodologies where risk reduces at the end of the project when it
might be too late and fatal for the success of the project.

45

— One of the major advantages that formal modelling provides is that de-
scriptions are unambiguous. The developers understand the system better
as a result of trying to describe it unambiguously. Also, an intuitive formal
method, like the X-machine, makes possible for the simple user to understand
the documents produced by the developers. This enhances the communica-
tion between the user and the developers allowing feedback from the users.

— Tools, like automatic animation of the model, help the user to monitor the
model proposed by the developers allowing more complete and immediate
feedback. As a consequence at the end of each iteration the user provides
valuable feedback early in the development process.

— The development team and the users learn while developing, and all learn
fast due to the intuitiveness of the X-machine formalism. This improves the
whole process.

— Changing requirements is an expected event through the development time
and can be handled efficiently using the modularity of the communicating
X-machine model and the flexibility of the X-machine component model.

5 Conclusion

The demand on the one hand for more complex but also more reliable and correct
computer based systems, and on the other hand the fact of several changes of
the user requirements through the development cycle, leads to the need for more
formal but also agile development methodologies. X Fun is a new proposal for
a lightweight development methodology of computer based systems based on
formal methods, with very promising advantages, that will improve the final
product as being more reliable, safe, robust and correct w.r.t. user requirements.
It is flexible and “armed” with a lot of formal techniques that will ensure the
development of more correct systems. But in order to be most effective the
system under development should be a component based reactive system.

Also in order to be actually adopted by industry all the formal techniques
that support X Fun should mature, be finalised stable versions, be supported by
complete, user friendly tools that are compatible with the existing tools used by
the industry and prove their abilities through the application on many real case
studies. Thus X Fun is for now a proposal that forms the base for a complete
and mature methodology to appear in the future. But it is very important that
the initial framework has been established, because X Fun during its evalua-
tion through experimental projects will aid the existing and the newly proposed
techniques build around X-machines to mature. Then as these techniques ma-
ture and integrated tools will be built for them, they will aid X Fun to become
an industrial strength methodology.

References

1. Information technology - Programming languages, their environments and system
software interfaces - Vienna Development Method - Specification language - Part 1:

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

Base language, volume ISO/IEC 13817-1. International Standards Organization,
1996.

Requirements For The Procurement Of Safety Critical Software In Defence Equip-
ment, volume 00-55/Issue 2. Ministry of Defence, UK, 1997.

Z Notation, Final Committee Draft, volume CD 13568.2. International Standards
Organization, 1999.

S. Eilenberg. Automata Machines and Languages, volume A. Academic Press,
1974.

G. Eleftherakis. A Formal Framework for Modelling and Validating Medical Sys-
tems. In V. Patel, R. Rogers, and R. Haux, editors, MEDINFO 2001, volume 1,
pages 13-17, London, UK, September 2001. IOS Press.

G. Eleftherakis, P. Kefalas, and A. Sotiriadou. XmCTL: Extending temporal logic
to facilitate formal verification of X-machine models. Analele Universitatii Bu-
curesti, Matematica-Informatica, 50:79-95, 2001.

G. Eleftherakis, A. Sotiriadou, and P. Kefalas. Formal Modelling and Verification
of Reactive Agents for Intelligent Control. In 12th Intelligent Systems Application
to Power Systems Conference (ISAP03), Lemnos, Greece, September 2003. IEEE
Power Engineering Society.

M. Fowler. The new methodology, thoughtworks.
http://www.martinfowler.com/articles/newMethodology.html, April 2003.

M. Holcombe. X-machines as a basis for dynamic system specification. Software
Engineering Journal, 3(2):69-76, 1988.

M. Holcombe, K. Bogdanov, and M. Gheorghe. Functional test generation for
Extreme Programming. In Second International Conference on eXtreme Program-
ming and Flexible Processes in Software Engineering (XP2001), pages 109-113,
2001.

M. Holcombe and F. Ipate. An integration testing method that is proved to find
all faults. International Journal of Computer Mathematics, 63(3):159-178, 1997.
M. Holcombe and F. Ipate. Correct Systems: Building a Business Process Solution.
Springer Verlag, London, 1998.

P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-machines: a practical
approach for formal and modular specification of large systems. Information and
Software Technology, 45(5):269-280, April 2003.

P. Kefalas, G. Eleftherakis, and A. Sotiriadou. Developing Tools for Formal Meth-
ods. In 9th Panhellenic Conference on Informatics, Thessaloniki, November 2003.
P. Kefalas and E. Kapeti. A design language and tool for X-machines specification.
In D.I. Fotiadis and S.D. Nikolopoulos, editors, Advances in Informatics, pages
134-145. World Scientific Publishing Company, 2000.

E. Kehris, G. Eleftherakis, and P. Kefalas. Using X-machines to model and test
discrete event simulation programs. In N. Mastorakis, editor, Systems and Control:
Theory and Applications, pages 163-168. World Scientific and Engineering Society
Press, July 2000.

P. Kruchten. The Rational Unified Process, An Introduction. Addison Wesley,
Reading, MA, 2 edition, 2000.

N.G. Leveson. Safeware: System Safety and Computers. Addison Wesley Longman,
1995.

47

