
Model Checking and UTP Design Veri�cation

Hugh Anderson and Gabriel Ciobanu

National University of Singapore
School of Computing

Department of Computer Science
hugh,gabriel@comp.nus.edu.sg

Abstract We give a di�erent perspective on veri�cation of programs. Our per-
spective emphasizes the use of design veri�cation in the uni�ed theory of pro-
gramming. The main idea is that of applying model checking to the veri�cation
of programs expressed in the pre and postcondition style of the uni�ed theory
of programming, leading to a closer relationship between program development
and program veri�cation. In particular, we derive a model using the concept of
the UTP design, and express state and temporal properties as relations between
observations. A model checking relation is derived from a satisfaction relation
between the model and its properties.

Keywords: Symbolic Model Checking, Unifying Theories of Programming.

1 Introduction

In their book �Unifying Theories of Programming�, Hoare and He develop a consis-
tent theory of computing, based on a relational calculus [5]. The book introduces the
relational calculus, and uses it to develop concepts of program design, re�nement of
programs, and an algebra of programming. The work has been adopted by many re-
searchers working in various areas of computing. It has been used to formally de�ne
the semantics of a wide-spectrum programming/speci�cation language in [11]. Wood-
cock and Hughes develop a re�nement calculus for parallel programming in [10]. Sherif
and He have explored a time model in [8]. In this paper, we use the uni�ed theory of
programming (UTP) for veri�cation of programs in a model checking style.

The approach taken in the book is to formalize and characterize a class of rela-
tions useful for program development. One such class of relations is called a �design�,
and encompasses in one notation both speci�cation and implementation. In UTP both
speci�cation and implementation are seen as instances of designs, with a clear link be-
tween them. A particular program development may be characterized by a progression
of designs from more abstract designs (speci�cations) to more concrete ones (imple-
mentations).

The relation between a speci�cation and an implementation for a speci�c program
development is the re�nement relation of [1], which is mimicked in UTP by an impli-
cation relation between UTP designs.

Proceedings of the 1st South-East European
Workshop on Formal Methods, SEEFM'03
November 2003, Thessaloniki, Greece

115



In this paper, we outline how to express

� models and states of the implementation which we are verifying;
� properties that we wish to check;
� the model checking relation |=.

We take the view that a model may be derived directly from a UTPdesign, and that
if a property is true for a particular UTP design, then it is also true for the related
implementations (derived UTP designs).

In the model checking world, a property is normally expressed as astate assertion
or a temporal assertion. We show how to express state and temporal properties as a
relation between observations over a model, and then de�ne a model checking relation
between these properties and the model.

We assume the reader is familiar with the ideas and notations used in model check-
ing. Before considering the use of the unifying theories in model checking, we consider
in Section 2 how UTP concepts and notations are used to represent some computing
structures in a uni�ed manner. Section 3 presents a simple example used in the rest
of the paper, and some key points about model checking. In Section 4, model checking
is reformulated within the unifying theory framework, showing how model checking
in UTP may be done using binary decision diagrams, closely following the approach
used for symbolic model checking. Finally we conclude with remarks about the links
between traditional model checking and the proposed design veri�cation.

2 Unifying theories of programming

The components of the uni�ed theory of programming are alphabets, signatures and
healthiness conditions.

The alphabet is just a set of names representing observations that may be made
about the program. These names may include relations between program variables,
and also between other variables not mentioned in the program text, such as:

� ok indicating that the program has started;
� ok' indicating that the program has terminated.

In general, the unprimed names indicate the observationsbefore the program execution,
and the primed ones indicate observations afterwards.

The signature of a theory is a set of primitive operators and constants of the theory,
and the syntax used to combine them. In UTP, we assume the signature of predicates,
and extend them with new operators as needed. For example, in developing the concept
of a design in the unifying theories, the connective` is introduced to indicate the rela-
tionship between a pair of predicates p (for preconditions) and q (for postconditions):

p ` q =̂ (ok ∧ p) ⇒ (ok′ ∧ q)

The healthiness conditions select subtheories from a theory. For example, we may be
able to specify all sorts of programs from a particular alphabet and signature, but we

116



are only interested in programs that may be physically realized. For example, we can
make no observations about a program that has not yet started running. This may be
expressed as a healthiness condition for any observationo about a program:

o = (ok ⇒ o)

This condition selects a subtheory of all the possible programs, isolating those that are
implementable if the healthiness condition is true.

We have already seen how the concept of a design is presented in UTP. Many pro-
gramming concepts may be easily represented. For example, the Hoare triple{p}C {q}
representing the relation between a precondition p, a code segment C and a postcon-
dition q, is de�ned in UTP as a relation between three predicatesp, C and q:

{p}C {q} =̂ [C ⇒ (p ⇒ q′)]

The square brackets are a notational convenience, indicating that the enclosed expres-
sion is universally quanti�ed over all variables of its alphabet.

This section gave the �avour of UTP designs, and shows the relational calculus
expressing the notion of the Hoare triple. More details may be found in [5]. In the
following sections we given an example model, and show the representation of model
checking concepts within UTP.

3 Example model and model checking

Veri�cation of software may be viewed as the process of checking some propertyP
against either the software, or a modelM of the software. For software in general, this
is a hard problem, as the veri�cation process may involve in-depth reasoning, perhaps
requiring theorem provers to con�rm parts of the veri�cation.

The model checking approach to veri�cation [3,7] is to abstract out key elements of
the software and to verify just these elements. Various techniques and structures have
been developed to automatically and e�ciently check the abstract elements against
speci�ed properties. As an example, we may be interested in checking that a certain
program variable v has the value 0 at a certain stage of the execution of our program.
In this case, the predicate v = 0 is checked against a representation (model) of the
program which indicates how such predicates are transformed.

Given the underlying reliance on binary abstractions, it is no surprise that model
checking is being used in the analysis of digital electronic circuits, but it has also
proved e�ective in the software domain, particularly in the areas of protocol analysis,
the behaviour of reactive systems, and for checking concurrent systems.

Consider the circuit in Figure 1. This circuit has three logic gates (two inverters
and an AND gate) connected together. Three probe points in the circuit are identi�ed
as x, y and z. In our modelling technique, we ignore considerations such as time delays
in the interconnections or indeterminate logic levels, and view these probe points as
variables that range over true/false (or 1/0, or +5V/0V). In the following discussion,
we will write false as 0, true as 1, and we assume that the circuit is synchronous -
that is, all changes of state in the circuit occur at the same time.

117



A

��� �

x y

z

I
I1
2

1

Figure 1. Simple electronic circuit

We can represent a state si of this circuit at any time i as a valuation of the probe
points (x, y, z). The initial state s0 for the circuit is de�ned to be (1, 0, 0). S denotes
the set of all states. If the points change simultaneously according to the logic gates,
we would see the following successive states:

State S x y z

s0 1 0 0

s1 1 0 1

s2 0 1 1

s3 0 0 0

s4 Cycle repeats, as s4 = s1

The logic gates impose a relation between the probe points in successive states, each
new value (x′, y′ and z′) being dependant on the previous values ofx, y and z. Though
there are eight possible combinations of values of the probe points, given the speci�ed
starting state, the circuit has only four reachable states.

The transition relation may be expressed as a predicate using the variables (x, y,
z, x′, y′ and z′) and given in disjunctive normal form:

t = (x ∧ ȳ ∧ z̄ ∧ x′ ∧ ȳ′ ∧ z′)
∨ (x ∧ ȳ ∧ z ∧ x̄′ ∧ y′ ∧ z′)
∨ (x̄ ∧ y ∧ z ∧ x̄′ ∧ ȳ′ ∧ z̄′)
∨ (x̄ ∧ ȳ ∧ z̄ ∧ x′ ∧ ȳ′ ∧ z′)

Any predicate may also be encoded as a binary decision tree (BDT), in which the levels
denote the di�erent variables, and paths through the tree represent valuations of the
transition relation. Note that if we reorder the variables, we get a di�erent decision tree,
but this new tree still represents our transition relation. In other words, the relation is
independent of the order of the variables.

The binary decision tree does not scale well, but there are optimizations that may be
done. An optimization to exploit repetition on BDTs leads to Binary Decision Diagrams
(BDDs) to represent the relation. BDDs provide a canonical form for the BDTs.

118



In summary, within the traditional presentation, a model is a �nite state transition
system M = (S,R, V ), where S represents a �nite set of states,R represents a tran-
sition relation given as a set of pairs of states, andV is a valuation function de�ning
the truth values for each state.

3.1 Model checking

In model checking, desired properties are given as state and temporal formulæ in modal
logics such as Computation Tree Logic (CTL), or Linear Temporal Logic (LTL). These
temporal logics are propositional languages with modal operators and quanti�ers re-
lated to time, and each is a sub-logic of CTL*, which in turn is a sublogic of the
µ-Calculus [4].

A CTL formula may either be a state formula or a path formula. A state formula
is one which is true in a particular state, whereas a path formula is one which is true
along a particular computation path.

There are several di�erent notations used to express CTL expressions, however each
notation expresses the same concept. For example in CTL, the path quanti�ers∀ (all
computation paths) and ∃ (at least one computation path) are also found as the letters
A and E. In addition, the path operators♦ (at some future time) and ¤ (at all future
times) are also found as the lettersF and G. The operators X (in the next state), U
(one property holds until another holds) andR (the dual of U) complete the set. We
will use the letter notation used in the model checking literature.

...

x y z
x y z

x y z
x y z

x y z
x y z

Figure 2. An unfolded state transition diagram

The CTL expressions are used to express properties of unfolded state transition dia-
grams such as the one for our example, seen in Figure 2. Note that a more complex
model will have a possibly in�nite tree of states, rooted at an initial state.

CTL expressions require every temporal operator to be preceded by a quanti�er.
Since there are �ve temporal operators, and two quanti�ers, we have ten base expression
types, but all of these may be expressed in terms of just three expressions:

� EX p : For one computation path, property p holds in the next state;
� EG p : For one computation path, property p holds at every state;
� E[p U q] : For one computation path, property p holds until q holds.

119



Model checking is commonly expressed as a ternary relation(|=):

M, s |= P

The relation is true when the property P holds in state s for a given model M. The
relation is normally de�ned inductively, with a set of interlocking rules for state and
path formulæ. A labelling algorithm may then be used to establish the set of states
satisfying the relation. However, this approach is not particularly e�cient, in terms of
the size of the structure used.

A more e�cient technique relies on representing the relation as a BDD, and con-
structing a checking procedure for the CTL. The checking procedure returns a BDD
structure which represents the states that satisfy the formula. This technique is e�cient
as operations on BDDs are relatively e�cient [2].

4 Model checking in UTP
In the UTP theory of model checking explored here, we begin by de�ning the notions
of model and state, and the property to be checked for that model. We show how UTP
designs may be used to create an appropriate model, and work through the same circuit
diagram used in Section 3.

Model checking has been successfully integrated with other formalisms [6], where
CTL models are derived directly from object speci�cations. A feature of the UTP model
checking approach is that the checking is performed using a transition relation derived
directly from the UTP design.

4.1 UTP notions of model and state
In this section we show how the model is derived directly from a UTPdesign. A UTP
design expresses the relation between a pair of predicates representing the precondi-
tions (assumptions) and postconditions (commitments) for a program. This relation is
expressed as a predicate with unprimed state variables representing key observations
over the program before the program starts, and primed variables standing for the
values when the program terminates.

Since a UTP design is already expressed as a predicate it is relatively easy to derive
the transition relation t of the previous section. If we consider our electronic circuit, we
might express an initial design for this circuit in UTP terms as the parallel composition
of three components:

I1 =̂ true ` x′ = z̄

I2 =̂ true ` z′ = ȳ

A1 =̂ true ` y′ = x ∧ z

PPTransformer =̂ I1 ‖ I2 ‖ A1

Since the output alphabets of each of the components are disjoint, the parallel compo-
sition of the components is just the conjunction of the pre and post-conditions:

PPTransformer =̂ true ` (x′ = z̄) ∧ (z′ = ȳ) ∧ (y′ = x ∧ z)

120



This design corresponds to the transition system for the circuit, and expresses aprobe-
point transformer which, when given values for x, y and z, returns the new primed
values. However, we are more interested in the sequence of states when our circuit runs
continuously, and so we de�ne a recursive design which mimics the circuit precisely:

Circuit =̂ PPTransformer; Circuit

We can view this design in an operational sense as a predicate transformer, transforming
an observation consistent with the assumptions of the design, into a new observation
consistent with the commitments of the design. If we begin with an initial observa-
tion over the state variables (x ∧ ȳ ∧ z̄) matching state s0 from Section 3, then the
PPTransformer asserts that the commitment will be x ∧ ȳ ∧ z, corresponding to the
primed observations. Operationally, we could view this as a transition froms0 = x∧ȳ∧z̄
to s1 = x ∧ ȳ ∧ z.

In the following presentation, the setS of program states represents a set of valua-
tions of all observations of the program. Formally speaking, we start with an alphabet
A of observation variables. In our case A = {x, y, z}. These observation variables are
evaluated according to a valuation function v : A → {true, false}. We use x to express
that v(x) = false, and x for v(x) = true.

An observation o ∈ O is a conjunction of valuation values expressed asx or x̄ ∧ z,
for instance. The observation x̄ ∧ z is sometimes written as x̄z for short, and so we
may write expressions such as x̄z ∧ x̄yz̄, or (o ∧ s0) = o, where o is an observation,
and s0 is a state. Each state is an observation, but there are observations that are not
states. Later in this presentation, when we consider a relation consisting of pairs of
observations, this is a more general, and larger set than a transition relation which is
a set of pairs of states.

The set S of states is given by all possible valuations over all observation variables.
We write individual states in S as sn or in shorthand as a string of observation values.
In our case, S = {xyz, xyz̄, xȳz, xȳz̄, x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄}.

To derive a transition relation for the design, we can apply thePPTransformer to
the initial state s0 = xȳz̄, collecting the original and transformed state variables as a
transition, and repeating with the new transformed variables until no new transitions
are returned:

Transition Original Transformed
r0 s0 = xȳz̄ s1 = xȳz
r1 s1 = xȳz s2 = x̄yz
r2 s2 = x̄yz s3 = x̄ȳz̄
r3 s3 = x̄ȳz̄ s1 = xȳz
r4 No new transitions, as r4 = r1

The transition relation for the Circuit design is expressed as a set of pairs of states in
the usual way:

t = {(xȳz̄, xȳz), (xȳz, x̄yz), (x̄yz, x̄ȳz̄), (x̄ȳz̄, xȳz)}
Note that this corresponds exactly to the relation in Section 3. Thisset-of-pairs nota-
tion will be used in Section 4.3 where we de�ne model checking in UTP.

121



4.2 Speci�cation of properties in UTP

In UTP terms, a property P is an expression whose elements are observations, and
whose connectives are simple state ones (∧, ∨ and ¬) or the more complex temporal
ones such as G, X and U.

For example, we may be interested in the property �x will be true until ȳ�. This
property would be written as x U ȳ.

4.3 Model checking in UTP

We begin with some auxiliary functions which are used to build a satisfaction function.
The function map : 2R × S → 2R (where 2R is the set of all subsets of R) takes as
arguments a transition relation r and a state s and returns a subrelation in which each
element has the state s as a �rst component of the transition relation pair:

map(r, s) =̂ {(s1, s2) ∈ r | s1 = s}

The function tmap : 2R × O → 2R takes as arguments a transition relation r and an
observation o and returns a subrelation of r in which the observation o is �included� in
the �rst component of the transition relation pair:

tmap(r, o) =̂ {(s1, s2) ∈ r | (o ∧ s1) = o}

In this de�nition (o ∧ s1) = o expresses the fact that the observation o is part of the
conjunction provided by s1. This is why we use the phrase �o is included in the �rst
component�. For instance,

tmap({(xȳz̄, xȳz), (xȳz, x̄yz), (x̄yz, x̄ȳz̄), (x̄ȳz̄, xȳz)}, y) = {(x̄yz, x̄ȳz̄)}

The function fmap : 2R × O → 2R takes a transition relation r and an observation
o and returns a subrelation of the complement r̄ of r, in which the observation o is
included in the �rst component of the transition relation pair:

fmap(r, o) =̂ {(s1, s2) ∈ r̄ | (o ∧ s1) = o}

An example of fmap using our relation t is large, as the complement of t has 60 pairs,
but the interested reader may wish to con�rm that

fmap(t, x̄ȳz̄) = {(x̄ȳz̄, x̄ȳz̄), (x̄ȳz̄, x̄ȳz), (x̄ȳz̄, x̄yz̄), (x̄ȳz̄, x̄yz),
(x̄ȳz̄, xȳz̄), (x̄ȳz̄, xyz̄), (x̄ȳz̄, xyz)}

Given two pairs of observations o = (o1, o2), and o′ = (o′1, o
′
2), we de�ne

o C o′ =̂ ((o1 ∧ o′1) = o1) ∧ ((o2 ∧ o′2) = o2)

We now de�ne a matching function J: 2O×O × 2O×O → 2O×O which takes two sets
of pairs of observations and returns a subset of the second one. The sets of pairs of

122



observations may be used to express transition relations, in which the observations
correspond exactly to the states. Given two such relationsr1 and r2, we de�ne

r1 J r2 =̂ {o ∈ r2 | ∃o′ ∈ r1 : o′ C o}

For example:

{(xz, yz), (ȳz, y)} J {(xȳz̄, xȳz), (xȳz, x̄yz), (x̄ȳz̄, xȳz)} = {(xȳz, x̄yz)}

We observe that the �rst pair of r1matches the second pair of r2, and that the second
pair of r1also matches the second pair of r2. As a �nal result, we get the second pair
of r2.

State formulæ in UTP. We go on to show how to express state formulæ in UTP.
When model checking a UTP design, a property P is given as a CTL formula. For
state formulæ in UTP, the atomic components are observations, and we use only the
non-temporal connectives ∧, ∨ and ¬.

Given arbitrary properties p, q ∈ P, and a transition relation r ∈ R for the design
D, we de�ne a satisfaction mapping function satmap : 2R × P → 2R by:

satmap(r, p) =̂ tmap(r, p) J r
satmap(r,¬p) =̂ fmap(r, p) J r

satmap(r, p ∧ q) =̂ tmap(r, p) J r ∩ tmap(r, q) J r
satmap(r, p ∨ q) =̂ tmap(r, p) J r ∪ tmap(r, q) J r

This function returns a set of �satis�ed pairs�, a subset ofr satisfying the property.
Given a transition relation r ∈ R for the design D, the model checking relation

D, s |= P for a property P ∈ P in state s is de�ned by

D, s |= P =̂ (map(r, s) J satmap(r, P )) 6= ∅

That is, we check that the state s belongs to the set of �satis�ed pairs�. As a worked
example of some checks on our design, let us try to see which pairs of t satisfy x ∨ y
using the approach. We can calculate the satisfaction mapping function:

satmap(t, x ∨ y) =̂ tmap(t, x) J t ∪ tmap(t, y) J t

= {(xȳz̄, xȳz), (xȳz, x̄yz)} ∪ {(x̄yz, x̄ȳz̄)}
= {(xȳz̄, xȳz), (xȳz, x̄yz), (x̄yz, x̄ȳz̄)}

Now, for each of the states in the table of Section 4.1, there is a corresponding set of
mapping functions:

map(t, s0) = {(xȳz̄, xȳz)}
map(t, s1) = {(xȳz, x̄yz)}
map(t, s2) = {(x̄yz, x̄ȳz̄)}
map(t, s3) = {(x̄ȳz̄, xȳz)}

123



We can now calculate the model checking relation in each state:
D, s0 |= x ∨ y = (map(t, s0) J satmap(t, x ∨ y)) 6= ∅ = true
D, s1 |= x ∨ y = (map(t, s1) J satmap(t, x ∨ y)) 6= ∅ = true
D, s2 |= x ∨ y = (map(t, s2) J satmap(t, x ∨ y)) 6= ∅ = true
D, s3 |= x ∨ y = (map(t, s3) J satmap(t, x ∨ y)) 6= ∅ = false

This may be con�rmed by examining the table in Section 4.1, and noting that only
state s3 has neither x nor y.

Temporal formulæ in UTP. For temporal formulæ in UTP, we use the temporal
connectives EX, EG and EU. We begin with a pair of temporal functions (F, P )
forming a Galois connection, and representing future and past respectively. In [9],
Karger and Hoare demonstrate how these functions may be used to express temporal
relations. The interested reader is also directed to the section on Galois connections
in [5]. Fr represents the future function for the transition relation r, which returns
a relation r′ with r in its immediate future. Using the running example of transition
relation t, we have that

Ft({(x̄yz, x̄ȳz̄)}) = {(xȳz, x̄yz)}
Ft({(xȳz, x̄yz)}) = {(xȳz̄, xȳz), (x̄ȳz̄, xȳz)}

In the �rst example, the pair (x̄yz, x̄ȳz̄) represents the transition at the lower right
from state s2 to state s3, and the result of the Ft function is the transition from state
s1 to s2. The second example returns the two transitions from states0 to s1 and from
state s3 to s1.

Prq represents the past function for the relation r, which returns a relation r′ with r
in its past, and which satis�esEX q. Using the running example of transition relation
t, and using the observation q = ȳ we have that

Ptq(t) = {(xȳz, x̄yz), (x̄yz, x̄ȳz̄)}
The results of the Ptq function consist of the transition leading from states1 to s2, and
the transition leading from state s2 to s3. In each case, if we take the next transition,
the observation q will be true.

The CTL temporal connectives may be characterized as the �xed point of the
temporal functions Fr and Prq [7]. We de�ne the following two �xpoint operators:

F♦(X) =̂ (νY •X u F (Y ))
P�(X) =̂ (µY •X t P (Y ))

Given properties p, q ∈ P, and a transition relation r ∈ R for a design D, we can de�ne
the satisfaction mapping function satmap for CTL temporal formulæ by induction.
For a start, let us express a satisfaction function for the required temporal formulæ of
Section 3.1 in terms of the temporal functions and their �xpoints:

satmap(r,EX p) =̂ Fr(satmap(r, p))
satmap(r,EG p) =̂ F♦r (satmap(r, p)) {r}

satmap(r,E[p U q]) =̂ P�rq(satmap(r, p)) ∅

124



The satisfaction function for the EG p temporal formula uses the future function it-
erator F♦r , the greatest �xed point of Fr. The satisfaction function for the E[p U q]
temporal formula uses the past function iterator P�rq, the least �xed point ofPrq. These
functions provide a high-level description of the satisfaction function for the temporal
formulæ, but not many clues in how to implement the functions. A lower level descrip-
tion, closer to our approach, requires an appropriate functionbackstep to implement
the core of the Fr function:

backstep(r, s) =̂ {(s1, s2) ∈ r | ∀a ∈ s : a = s2}
The function backstep : 2R×2S → 2R takes a transition relation r together with a set
of states, and returns a subrelation ofr in which each pair has its second element drawn
from the set of states. We can view this as a backwards step in the transition relation.
If we have a set of states s which satisfy a property, then we can take a backwards
step, and determine the transitions leading to those states. The iterateP�rq may be
expressed without requiring a new function.

Proposition 1. The satisfaction function for our temporal formulæ may be expressed
in terms of the lower-level operators in the following way:

satmap(r,EX p) ≡ {(s1, s2) ∈ r | satmap(backstep(r, s1), p) 6= ∅}

satmap(r,EG p) ≡ satmap(r, p) ∩ satmap(r,EX EG p)
≡ ⋂

i(λy.(satmap(r, p) ∩ satmap(y,EX p)))i {r}

satmap(r,E[p U q]) ≡
≡ satmap(r, q) ∪ (satmap(r, p) ∩ satmap(r,EX E[p U q]))
≡ ⋃

i(λy.(satmap(r, q) ∪ (satmap(r, p) ∩ satmap(y,EX q))))i ∅
Proof. We provide here the intuition behind the technical details of the proof. Firstly,
the satmap(r,EX p) function de�nition just given returns those transitions from the
transition relation which lead to a state in which the propertyp holds. Secondly, the
intuition behind the satmap(r,EG p) function de�nition is that it returns those tran-
sitions from the transition relation which always involve a state in which the property
p holds. This is done by iteration, starting from the entire transition relation until we
reach the greatest �xed point. Finally, the intuition behind thesatmap(r,E[p U q])
function de�nition is that it returns those transitions from the transition relation which
have p holding until the property q holds. Again, this is done by iteration, starting from
an empty transition relation until we reach the least �xed point.

As a worked example to check a temporal formula against our model, we calculate
which states satisfy EG x̄ ∨ z. A particular set of transitions appears over and over
again in the evaluation of EG x̄ ∨ z, so in order to keep things within the margins of
the page, we will de�ne r1 as:

r1 = {(xȳz, x̄yz), (x̄yz, x̄ȳz̄), (x̄ȳz̄, xȳz)}

We begin by calculating the satisfaction function satmap(t,EG x̄ ∨ z).

125



satmap(t,EG x̄ ∨ z) =̂ F♦t (satmap(t,EG x̄ ∨ z)) {t}
≡ ⋂

i(λy.(satmap(t, x̄ ∨ z) ∩ satmap(y,EX x̄ ∨ z)))i{t}
= (r1 ∩ satmap(t,EX x̄ ∨ z)) ∩ . . .
= r1 ∩ (r1 ∩ satmap(r1,EX x̄ ∨ z)) ∩ . . .
= r1 ∩ r1 ∩ (r1 ∩ satmap(r1,EX x̄ ∨ z)) ∩ . . .
= r1

Again, for each of our states, we can calculate the model checking relation:

D, s0 |= EG x̄ ∨ z = (map(t, s0) J satmap(t,EG x̄ ∨ z) 6= ∅ = false
D, s1 |= EG x̄ ∨ z = (map(t, s1) J satmap(t,EG x̄ ∨ z) 6= ∅ = true
D, s2 |= EG x̄ ∨ z = (map(t, s2) J satmap(t,EG x̄ ∨ z) 6= ∅ = true
D, s3 |= EG x̄ ∨ z = (map(t, s3) J satmap(t,EG x̄ ∨ z) 6= ∅ = true

This may be con�rmed by examining the table in Section 4.1, and noting thatx̄∨ z is
true only if we begin in s1, s2 or s3.

4.4 Model checking with BDDs
The presentation of a UTP model checking theory in this section is more program
oriented than the traditional presentation of BDD-style model checking. Our presenta-
tions of transition relations, state and properties do not rely on any particular ordering
of the variables, but it is easy to extend the approach by imposing a discipline on the
representation of the model and state. This discipline does not amount to a healthiness
condition for the theory. It does not produce a subtheory: the UTP theory of model
checking is equivalent to the UTP theory of BDD-style model checking.

The discipline is imposed by using strings to represent observations, states and
transition relations. Each element in the string corresponds to an observation, and
must occur in a speci�c order. By using correspondingmapBD and tmapBD functions,
and with a new matching relation JBD operating over strings, we can closely follow
the structures and algorithms used for symbolic model checking.

The presentation in this section is necessarily brief, and we appeal to the use of
analogy rather than rede�ning at length all the new functions. Each function or operator
in this presentation works in an analogous way to those in Section 4.3, except that
they now operate over strings and sets of strings, rather than over observations, pairs
of observations, and sets of pairs of observations:

satmapBD(r, p) =̂ tmapBD(r, p) JBD r
satmapBD(r,¬p) =̂ fmapBD(r, p) JBD r

satmapBD(r, p ∧ q) =̂ tmapBD(r, p) JBD r ∩ tmapBD(r, q) JBD r
satmapBD(r, p ∨ q) =̂ tmapBD(r, p) JBD r ∪ tmapBD(r, q) JBD r
satmapBD(r,EX p) =̂ Fr(satmapBD(r, p))
satmapBD(r,EG p) =̂ F♦r (satmapBD(r, p)) {r}

satmapBD(r,E[p U q]) =̂ P�rq(satmapBD(r, p)) ∅
Finally, we can specify the model checking relation |=BD. Given a transition relation
r ∈ R for the design D, the model checking relation D, s |= P for property P ∈ P in

126



state s is de�ned by

D, s |=BD P =̂ (mapBD(r, s) JBD satmapBD(r, P )) 6= ∅
In this speci�cation of |=BD, the interpretation is di�erent from that in Section 4.3. In
particular, the operations over the binary diagram structure closely follow the opera-
tions used in traditional symbolic model checking using BDDs.

5 Conclusion
The presentation of programming topics typically encompasses a wide range of diverse
notations and concepts. UTP provides a uni�cation of these presentations, and presents
each programming topic in a uni�ed and coherent notation.

We have presented an encoding of design veri�cation for UTP along the lines of the
traditional model checking paradigm. The UTP theory of designs provides a basis for
program development, embodying concepts of program speci�cation and re�nement.
UTP designs are structured around predicates representing pre and post-conditions.
These predicates provide an appropriate basis for creating the transition relation needed
for model checking, and we have shown how to automatically generate this transition
relation from the pre and postcondition design.

In traditional model checking, the models are constructed independently of the
software intended to implement the model. An advantage of the UTP style is that
there is a direct relation between the UTP design and itsmodel. The central idea in this
paper is that of applying model checking to the veri�cation of programs expressed in the
UTP style, leading to a closer relationship between program development and program
veri�cation. By contrast, model checking is commonly done by the construction of
checkable models independently of the construction of the software, leading to a gap
between the veri�ed part of a software project and the delivered (code) part of a
software project.

The current approach can serve as a starting platform for further theoretical and
practical steps.

Acknowledgements.
The authors would like to thank the anonymous referees for their helpful comments.

References
1. R-J. Back and J. von Wright. Re�nement Calculus, A Systematic Introduction. Springer,

1998.
2. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans-

actions on Computers, C-35(8):677�691, 1986.
3. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
4. R. Goldblatt. Modal Logics of Programs. Research Report 94-146, Victoria University of

Wellington, 1994.

127



5. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall, 1998.
6. D. Lucanu and G. Ciobanu. Bisimulation and CTL Models for Hidden Algebraic Speci�-

cation. Technical Report 03-03, �A.I.Cuza� University of Ia³i, 2003.
7. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Mas-

sachusetts, 1993.
8. A. Sherif and J. He. Towards a Time Model for Circus. In C. George and H. Miao, editors,

4th International Conference on Formal Engineering Methods, ICFEM 2002, volume 2495
of Lecture Notes in Computer Science, pages 613�624. Springer-Verlag, 2002.

9. B. von Karger and C.A.R. Hoare. Sequential Calculus. Information Processing Letters,
53(3):123�30, 1995.

10. J.C.P. Woodcock. Unifying Theories of Parallel Programming. In Logic and Algebra
for Engineering Software. IOS Press, 2002. Also Keynote speech at ICFEM 2002: 4th
International Conference on Formal Engineering Methods, Shanghai. IEEE Computer
Society Press.

11. J.C.P. Woodcock and A.L.C. Cavalcanti. The Semantics of Circus. InZB 2002: Formal
Speci�cation and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184�203. Springer-Verlag, 2002.

128


