
Verification of Imperative Programs in
Theorema

Laura Ildikó Kovács, Nikolaj Popov, Tudor Jebelean1

Research Institute for Symbolic Computation,
Johannes Kepler University, A-4040 Linz, Austria

Institute e-Austria Timişoara, Romania

{lkovacs,npopov,jebelean}@risc.uni-linz.ac.at

Abstract. We present the design and the implementation of a prototype

verification condition generator for imperative programs. The generator

is part of the Theorema system, a computer aided mathematical assistant

which offers automated reasoning and computer algebra facilities. We use

Hoare Logic and the weakest precondition strategy, but in addition we

propose a novel method for analyzing loop constructs by aid of algebraic

computations: combinatorial summation and equational elimination. The

verification conditions and the termination term for programs containing

loops and procedure calls are generated fully automatically, in a form

which can be immediately used by the automatic provers of Theorema in

order to check whether they hold.

Introduction

Program verification (and verification of informational systems in general) will
probably play an important role in the development of information technologies
(IT), because, as IT products become more sophisticated, their reliability is more
difficult to insure by artizanal means, and as IT products become more present
in all aspects of human activity, their un-reliability has more dramatic negative
effects.

In this paper we present our practical approach to program verification in
the frame of the Theorema system.

The Theorema group is active since 10 years in the area of computer aided
mathematics, with main emphasis on automated reasoning, and it is building the
Theorema system (www.theorema.org), an integrated environment for math-
ematical explorations [3]. In particular, the Theorema system offers several
provers in natural style, which imitate the heuristics used by human provers
(combining proving, computing, and solving, use of computer algebra, special
sequent calculus, domain specific provers, induction, use of metavariables, etc.).

1The program verification project is supported by BMBWK (Austrian Ministry of Educa-
tion, Science, and Culture), BMWA (Austrian Ministry of Economy and Work) and by MEC
(Romanian Ministry of Education and Research) in the frame of the e-Austria Timisoara
project. The Theorema system is supported by FWF (Austrian National Science Foundation)
– SFB project P1302.

140
Workshop on Formal Methods, SEEFM'03
Proceedings of the 1st South-East European

November 2003, Thessaloniki, Greece

Algorithms can be expressed in Theorema using the language of predicate
logic with equalities interpreted as rewrite rules (which leads to an elegant func-
tional programming style). However, the system also contains an analyzer and
an interpretor for an imperative language containing the essential necessary con-
structs [7].

The Theorema system is particularly appropriate for program verification,
because it allows the work with both logical formulae and with the descrip-
tion of algorithms in the same uniform frame, and also delivers the proofs in
a natural language and using natural style inferences. Moreover, the system is
implemented on top of the computer algebra system Mathematica [12], thus it
has access to a wealth of powerful computing and solving algorithms.

The approach to program verification presented here is Hoare Logic [6, 9].
Program correctness is expressed by Hoare triples {P}S{Q}, where S is a pro-
gram and P and Q are assertions (logical formulae). The precondition P has to
be satisfied by the input values to the program (routine) and the postcondition
Q is satisfied by the input values and the result[s] of the program (output val-
ues). The program S is a finite sequence of statements. By using the so called
“weakest precondition” strategy, one starts backwards from the postcondition
and generates at each statement the weakest logical formula which is necessary
for the postcondition to hold (some additional conditions may be generated on
the way – e.g. for While loops).

We improved the verification condition generator and the interpretor imple-
mented in Theorema by [7], by a more sophisticated handling of loops, and by
extending the verification of function calls in order to handle more practical sit-
uations, including recursive calls. The main original contribution of our work
is the use of algebraic algorithms for the analysis of algorithms: finding loop
invariants, checking of termination, estimation of the time complexity. This is
of course limited to programs which operate over certain domains (e.g. num-
bers), but they are completely automatic, and these type of programs are very
interesting in practice. Current attempts at solving these problems are based
on a logical approach (see e. g.[4] or [5] Chapt. 16 for some heuristics), which is
much more difficult, although more general.

Our approach is practical and experimental. Of course there are (and have
been) many systems which solve [partially] this problem (see e.g. [2, 1], the PVS
Specification and Verification System – http://pvs.csl.sri.com/, the Sunrise
verification condition generator – http://www.cis.upenn.edu/). The purpose
of our work is to have a practical system for experiments, which, in conjunction
with the rest of the Theorema system allows us to examine test cases and to
obtain more insight into the problem.

1 Basic Language Constructs in Theorema

Specifications, invariants, and conjectures can be expressed in the logical lan-
guage of Theorema, which is practically identical to the mathematical language
used by mathematicians and engineers: higher-order predicate logic, including

141

the two-dimensional notations. Moreover, Theorema allows the introduction of
ones own notations and symbols and even creating new graphical symbols [10].
The system provides few simple and intuitive commands for creating and manip-
ulating mathematical knowledge, including its organization into mathematical
theories, as well as proving, computing, and solving with respect to a certain
theory. During the last few years, such domain specific knowledge bases have
been developed in the system.

For the handling of imperative programs, the system provides the commands
Program, Specification, and Execute. We illustrate these and the syntax of the
imperative language through a simple example:

Specification[”Division”, Div[↓ x, ↓ y, ↑ rem, ↑ quo],
P re → ((x ≥ 0) ∧ (y > 0)),
Post → ((quo ∗ y + rem = x) ∧ (0 ≤ rem < y))]

Program[”Division”, Div[↓ x, ↓ y, ↑ rem, ↑ quo],
quo := 0;
rem := x;
WHILE[y ≤ rem,

rem := rem− y;
quo := quo + 1,

Invariant → ((quo ∗ y + rem = x) ∧ (0 ≤ rem)),
T erminationTerm → rem],
Specification → Specification[”Division”]]

Both the specification and the description of a routine indicate the the pa-
rameters and their nature (input ↓, output ↑, input-output l). The argument
Specification of Program is optional, as are the arguments Invariant and
TerminationTerm of WHILE. In the program text we differentiate between
assignment “:=” and logical equality “=”.

After entering the previous commands into the Theorema system, one can
enter:

Execute[Div[20, 3, rem, quo]],

which will have the effect of assigning to rem and quo the appropriate values 2
and 6.

2 Generation of the Verification Conditions

Continuing the example above, one may introduce the command:

V CG[Program[”Division”]]

142

and then one obtains:

Lemma(Division) :
for any : x, y, rem, quo

(WHILE.Inv + Term)
((quo ∗ y + rem = x) ∧ 0 ≤ rem) ∧ y ≤ rem ∧ (rem = T1)

⇒

((
(quo + 1) ∗ y + (rem− y) = x

)
∧ 0 ≤ (rem− y)

)
∧

(rem− y) < T1

(WHILE.F inal)
((quo ∗ y + rem = x) ∧ 0 ≤ rem) ∧ (y � rem) ⇒
(quo ∗ y + rem = x) ∧ 0 ≤ rem ∧ rem < y

(WHILE.Term)(
(quo ∗ y + rem = x) ∧ 0 ≤ rem

)
∧ y ≤ rem ⇒ rem ≥ 0

(Init)
x ≥ 0 ∧ y > 0 ⇒ (0 ∗ y + x = x) ∧ 0 ≤ x

Division is the label of the lemma, and WHILE.Term, etc. are the labels
of the individual formulae. Using this labels one can further make reference to
these formulae, for instance one can call a Theorema prover in order to check
whether they hold:

Prove[Lemma[“Division′′]]

The program V CG generates the verification conditions using Hoare Logic
and the weakest precondition strategy in the classical way. For instance, the
conditions for WHILE are generated using the rule:

{P} while C do S endwhile {Q},
is correct if:
(Init) P ⇒ I
(WHILE.Term) (I ∧ C) ⇒ T ≥ 0
(WHILE.Inv+Term) {I ∧ C ∧ (T= T1)} S {I ∧ (T < T1)}
(WHILE.Final) (I ∧ ¬C) ⇒ Q

where I is a Loop-Invariant, T is a Termination Term and T1 is a new vari-
able.

Another interesting situation for program verification is the generation of veri-
fication conditions for function calls. Consider a simple example in Theorema

143

which uses the maximum of two numbers:

(*the specification of the function Max*)

Specification[”Max”,m = Max[↓ x, ↓ y],
P re → (IsInteger[x] ∧ IsInteger[y]),

Post → (m = x ∧ x ≥ y)
∨

(m = y ∧ y > x)]

(*the specification of the program and the source code*)

Specification[”Calculus”, Calc[↓ a, ↓ b, ↓ y, l x],
P re → (IsInteger[a] ∧ IsInteger[b]),

Post →
(

(x ≥ (y + a))
∧

(x ≥ (y + b)
)

]

Program[”Calculus”, Calc[↓ a, ↓ b, ↓ y, l x],
x := y + Max[a, b]]

In a previous version of VCG, expressions containing function calls were not han-
dled differently than other expressions in a program. Thus the function symbols
occurring in the calls were simply inserted into verification conditions, as in the
example:

VCG[Program["Calculus"],Specification["Calculus"]]

Lemma(Calculus) :
forany : a, b, y, x

(Init)

IsInteger[a] ∧ IsInteger[b] ⇒ y + Max[a, b] ≥ y + a
∧

y + Max[a, b] ≥ y + b

An automatic prover will need additional information about the function Max
(the specification of the function).

It may be better to use the following verification rule for function calls:

{PX←T, U←A

∧
∀A,b

(
QX←T, U←A, F (T, U) ←b ⇒ VU ′←A, c←b

)
}

c = F(T,U ′)

{V}

where:

144

• P and Q are the pre- and post-condition of the function F ,

• X and U denote the sequences of formal input and transient parameters
respectively,

• T and U ′ denote the sequences of actual input terms and transient variables
respectively,

• A is a sequence of new variables (one for each transient parameter in U)

• b is a new variable.

Thus, the information from the specification of the function is inserted into
the lemmas. When a prover starts to prove the lemma it does not have to search
in the knowledge base for additional information. For instance, the previous
example will look as follows:

VCG[Program["Calculus"],Specification["Calculus"]]

Lemma(Calculus) :
for any : a, b, y, x

(Init) IsInteger[a] ∧ IsInteger[b] ⇒(
IsInteger[a] ∧ IsInteger[b]

)
∧ ∀x1

(
(x1 = a ∧ a ≥ b) ∨ (x1 = b ∧ b > a) ⇒ y + x1 ≥ y + a ∧ y + x1 ≥ y + b

)
The verification of programs with procedure (function) calls is conceived

hierarchically: the properties of the called objects have to be proven separately.

3. Generation of Loop Invariants

We are developing a method based on recurrence equation solvers that pro-
vides the possibility of proving automatically correctness of programs which
have loops, without asking the user to give necessary annotations (i.e. invari-
ants, termination terms).

A “hidden” problem in the theoretical treatment of the invariant is the fact
that in most practical situations it will also contain information about other parts
of the program, which is not related to the respective loop. We are separating the
specific information from the non-specific one by an analysis of the free variables
and other characteristics which are easy to detect automatically.

Consider the ”Division” program presented in section 1. If the user does not
specify the loop invariant, then we find it as follows:
From the body of the loop, we obtain the following recursion equations:

quo0 := 0; quok+1 − quok = 1
rem0 := x; remk+1 − remk = −y

145

,
These recursive equations are solved by the Gosper-Zeilberger algorithm (see

e. g. [8]). Namely, we use the Paule-Schorn [11] implementation in Mathematica
which is already embedded in the Theorema system. We obtain the explicit
equations:

quo0 := 0; quok := quo0 + k

rem0 := x; remk := rem0 − k ∗ y

. From these equations we eliminate k by calling the appropriate routine from
Mathematica, and we obtain the invariant:

rem = x− quo ∗ y

Some additional information which should be embedded in the loop invariant,
namely conditions on the output parameters is extracted from the condition and
the postcondition of the loop.

Hence, for the considered example, the produced verification conditions –
using the generated loop invariant – are exactly the same as the ones presented
in section 2.

In the case of For loop, the generation of the loop invariant is done in the
same manner, but we use additionally the explicit equation for the counter of
the For loop:

counterk := counter0 + k ∗ steps

.
Note also that by using the explicit expressions of the recursively modified

variables, it is relatively easy to analyze the termination of the loop. For instance,
in the division example, checking whether the loop terminates reduces to solving
the inequality:

y > remk

that is:
y > (x− ky)

which gives:
k ≥ bx/yc.

This shows that the loop terminates, but also gives the number of iterations.

Conclusions and Further Work

Combined with a practically oriented version of the theoretical frame of Hoare-
Logic, Theorema provides readable arguments for the correctness of programs,
as well as useful hints for debugging. Moreover, it is apparent that the use of al-
gebraic computations (summation methods, variable elimination) is a promising
approach to analysis of loops.

146

Another necessary continuation of this work is the analysis of programs con-
taining recursive calls. We are currently investigating the theoretical framework
and we are designing the methods for extracting the verification conditions this
type of programs.

References

[1] ***. PStndfor Pascal Verifier - User Manual. Computer Science Depart-
ment, Stanford University, 1979.

[2] J. Barnes. High Integrity Software - The Spark Approach to Safety and
Security. Addison-Wesley, 2003.

[3] B. Buchberger et al. The theorema project: A progress report. In M. Kerber
and M. Kohlhase, editors, Calculemus 2000: Integration of Symbolic Com-
putation and Mechanized Reasoning. A. K. Peters, Natick, Massatchussets,
2000.

[4] G. Futschek. Programmentwicklung und Verifikation. Springer, 1989.

[5] D. Gries. The Science of Programming. Springer, 1981.

[6] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12, 1969.

[7] M. Kirchner. Program verification with the mathematical software system
theorema. Technical Report 99-16, RISC-Linz, Austria, 1999. PhD Thesis.

[8] D. E. Knuth. The Art of Computer Programming, volume 2 / Seminumer-
ical Algorithms. Addison-Wesley, 2nd edition, 1969.

[9] B. Buchberger; F. Lichtenberger. Mathematics for Computer Science I -
The Method of Mathematics. (German.). Springer, Berlin, Heidelberg, New
York, 315 pages, 2nd edition, 1981. (First Edition 1980).

[10] K. Nakagawa. Logico-grafic symbols in theorema. In LMCS’02 (Logic,
Mathematics, and Computer Science: Interactions, 2002. RISC-Linz tech-
nical report 02-60.

[11] P. Paule; M. Schorn. A Mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities - A description how to use it. Tech-
nical Report 93-36, RISC-Linz Report Series, 1993.

[12] S. Wolfram. The Mathematica Book, 3rd ed. Wolfram Media / Cambridge
University Press, 1996.

147

