
Formal Metamodelling and Agile Method Engineering 
in MetaCASE and CAME Tool Environments 

 
Eleni Berki 

 
 

Department of Computer Science and Information Systems,  
University of Jyväskylä, Mattilanniemi Campus, AGORA Building, P.O. Box 35, 

Jyväskylä, FIN – 400 14, Finland 
Tel.: + 358 (0) 14 260 3036, Fax: + 358 (0) 14 260 3011, E-mail: eleberk@cc.jyu.fi 

 
 

Abstract: This paper explores the capabilities of formal metamodelling in order to 
support agile process models in the context of CASE-Shells and CAME tool 
environments. The strengths and weaknesses of metamodelling environments are 
discussed, while their limitations to metamodelling at the level of both software 
process (method engineering) and product (methods metaspecifications) are 
critically examined. The paper provides examples by focusing on MetaEdit+, a 
MetaCASE multilevel tool of the CASE-Shells paradigm. A coherent proposal is 
presented on what is needed to suitably adapt and customise MetaCASE and 
CAME to new organisational needs and extend their functionality to model 
processes agilely and formally. In particular, it is demonstrated how IS 
development methods that are specified in CAME environments can be extended 
in a manner that they are more agile, dynamic, richer in syntax and semantics and 
cater for computation, testing and successful process evolution.  
 
 
Keywords: Process Metamodelling, Method Engineering, MetaCASE (CASE-
Shells), CAME (Computer Assisted Method Engineering), Finite State Machine 
(FSM), Computability, Testing. 
 

1. Introduction 
 

The needs for customised, flexible and agile methods that satisfy the requirements 
for stakeholder involvement and user participation has led software designers to 
invent metamodels [1, 2, 3]. This underpinned the need for the method user and 
method modeller to reflect on their own intuitions and construct their own desirable 
methods. As a discipline, Method Engineering (ME) considered the solution to 
bridge the various gaps that traditional non-agile design methods created. The 
subsequent creation of CASE and CASE-Shells (MetaCASE) tools was also 
directed by these needs [4, 5]. Nowadays there are groups of people (method, 
application, software and process engineers) who use CASE-Shells to create their 
own knowledge-oriented methods, to document their own tool environment design 
their software development processes [6]. The current popularity of CASE, 
MetaCASE and CAME environments has spurred numerous activities to broaden 
their use and support them within the software research and development 
community in academic institutions, in industry and in organisations [7]. 
 

Proceedings of the 1st South-East European
Workshop on Formal Methods, SEEFM'03
November 2003, Thessaloniki, Greece

170



However, the metamodelling facilities offered by MetaCASE tools did not provide 
adequate metadesign patterns in order to be able to alleviate methodological 
deficiencies. For instance, none of the existing CASE-Shells offers direct method 
implementation and none facilitates testing. Implementations corresponding to 
specifications developed by methods that facilitate testing have the advantage of 
being amenable to further analysis and to formal testing for quality assurance [8]. 
Regarding the software development lifecycle stages, very few methods and 
subsequently their automated CASE and MetaCASE tools deal with 
implementation. Most stop at physical design stage. The developer is given no 
guidance on implementation strategy, choice of platform or programming language.  
 
The requirement for testing of metamodelling processes and products and the 
demand for tool integration (industrial but not commercial priority) add to the 
challenges that MetaCASE technology faces nowadays. Testing the development of 
software systems [9] has always been one of the most challenging and most 
difficult areas in software engineering [10]. "Software testing is a critical element 
of software quality assurance and represents the ultimate review of specification, 
design, and coding." [11]. 

 
Several of the leading (mostly O-O) software design notations and methods have 
added support for the modelling and representation of the metadesign architectures 
of CASE-Shells tools. Thus, many software development tools and environments 
have inherited similar support because of the concepts, structure and syntax reuse 
[12]. The basic metamodelling architectures that are used in MetaCASE are based 
on ‘static’ data models (mostly Entity Relationship Diagrams) and on their 
extensions. Hence the basic limitations that appear in the accurate expression of a 
method are semantic and syntactic weaknesses, which are inherent in the generic 
structure of the data model itself. Unavoidably, the most important semantic 
weakness is the inadequacy of the tool’s metamodelling power to express “the 
modelling data” of dynamic and interactive elements [13].  
 
Simple modelling approaches that do not obey to the static rules of a metamodel 
such as CoCoA (ComplexCoveringAggregation) and NIAM (Nijssen’s Information 
Analysis Method) address dynamic issues of methodological specifications 
semantically and syntactically better. Many different data models such as Object-Z 
have been utilised to address specific method engineering limitations and other 
have also been used for method integration such as NIAM, but unfortunately they 
are not implemented to be used as MetaCASE tools [14].  
 
Other problems of metamodelling with MetaCASE tools that are associated to the 
static structure of “metametamodelling” architectures are the lack to express the 
process of metamodelling a method and the “explosion” or “refinement” of a 
method’s constructs. These are sometimes semantically handled with pseudo-
dynamic extensions in metametamodelling architectures, which, in turn, is a barrier 
for the correct transformation of method knowledge; and therefore limits the 
potential applicability and modelling power of the derived method model itself. 
Additionally, the semantics and syntax of a method cannot not always correspond 

171



to the modelling of the pragmatics. The lack of expressing the correct meaning by 
metamodelling points additionally to the difficulty of integrating and standardising 
among different methods and tools. By demonstrating that representations of 
different application domains can have one interpretation in terms of one design 
and one implementation could provide ways of better comprehension of the 
conceptual process modelling and improved ways of using the available 
information of that correspondence [15]. 
 
Many metamodellers and practitioners realised the need to review the established 
ME concepts [16]. The interconnected nature of these problems has very little been 
emphasised [8, 13] and hardly any suggestions pointed to agile and generic 
metamethods’ specifications, which could provide ME and CAME with both 
generalised and specialised approaches, designed to offer consistency at many 
metamodelling levels. An agile and formal metamodel would lead to an improved 
understanding of methods through problem solving and method construction.  
 
2. The Need for Agile Method Engineering (AME) in CASE-Shells 
 
A detailed classification with descriptions of many of the previously mentioned 
problems are encountered in [5, 14, 17]. A rich list with full description and more 
detailed analysis can be found in [12, 18, 19] where the first attempts to provide 
MetaCASE processes with adequate models at metametamodelling level are also 
mentioned. The following is a summary [13] regarding the modelling inefficiencies 
in CASE-Shells and other observations that point to the need for an agile pattern for 
flexible method construction: 
 
Integration and Expressability of Data and Process Dynamics of Method 
Modelling: Methods (however not all their techniques) are process models, which 
handle data and transform it continuously; this being their nature, they are 
changeable and their dynamic structure affects both data and control processing 
[13, 14]. The static and dynamic conceptual constructs of the methods should be 
sufficiently generic, expressive and agile in order to specify and monitor changes. 
Thus, their instances should allow a number of distinct design architectures, which 
continuously evolve and expand, to be transformed into more dynamic [19] and 
integrated ones [20]. The MetaCASE architectural patterns should clearly focus on 
defining the interaction of the method’s components.  
 
Computability and Implementation Issues in Method Metamodelling: Generally 
speaking, systems implementations represent initial specifications but without 
corresponding to any computational characteristics of the design [21, 22]. Since 
development methods do not have guidelines for further programming, a 
metamodel should be able to provide them with encapsulated rigorous syntax and 
semantics. This will allow a physical design to be mapped to a target 
implementation language with less effort and productivity loss. The projection of 
features such as the method’s computational properties are highly desirable because 
they aid communication for systems documentation and thus facilitate the 
collaboration among developers and maintainers teams.  

172



 
Testing of Methods and of the Process of Modelling a Method in MetaCASE: A 
metamodel of a MetaCASE and CAME tool should provide methods and their 
instances with well-defined rigor, in such a way that software errors (system and 
software design errors) to be avoided or to be detected earlier in the life cycle. 
Syntax, semantic, logic and algorithmic errors could be eliminated if the process 
model in the metaspecification environment was populated with techniques that 
provide testability for cross-checking of the artefacts’ correctness [13, 23].  

 
3. The MetaPHOR Initiative and the MetaEdit+ Tool 
 
The main goals of the MetaPHOR (Metamodeling, Principles, Hypertext, Objects 
and Repositories) research group have been to develop principles and models to 
serve as practical and flexible solutions for IS and ME domains, and to investigate, 
design, implement and evaluate ISD tools and methods. The primary problems 
addressed in the research are the development of new ways of modelling adequate 
ISD methods, their evaluation in different circumstances, and the design and 
implementation of support tools for them. In tool building the underlying principle 
is to develop method-independent solutions and architectures and adapting methods 
for different contingencies. The issues of method integration and agility and ways 
to achieve them had always been of great importance.  

 
MetaEdit+ is a MetaCASE and CAME tool, which has been used widely in order to 
model systems and metamodel methods. It is a multi-tool, designed to assist many 
users with diverse knowledge backgrounds and different skills. It incorporates 
modelling and metamodelling facilities and has recently also been enhanced with 
the ability to metametamodel method specifications [12]. MetaEdit+ is a CASE-
Shell (MetaCASE) tool that was evolved from MetaEdit, a simple CASE tool, 
which provided automated support for systems analysis and design. MetaEdit+ is a 
multi-method and a multi-tool platform for both CASE and Computer Aided 
Method Engineering (CAME). “As a CASE tool it establishes a versatile and 
powerful multi-tool environment which enables flexible creation, maintenance, 
manipulation, retrieval and representation of design information among multiple 
developers. As a CAME environment it offers an easy-to-use yet powerful 
environment for method specification, integration, management and re-use...” [24]. 
 
The Evolution from MetaEdit to MetaEdit+: The expanding needs of MetaCASE 
technology pointed out that the methodological constructs expressed by OPRR, the 
main metamodelling architecture [25], were not sufficient to express the next 
generation of MetaCASE and CAME tools. New methodological issues and 
concepts needed to be captured and modelled adequately with the use, and 
sometimes reuse of the older components. In the case of MetaEdit+, the expansion 
from OPRR to GOPRR followed a smooth transition obeying to reuse and 
extension rules of the OPRR constructs, which are explained in the next section. 
The new version, GOPRR, was extended with the construct of the Graph (or Table 
or Matrix), provided metamodellers with the necessary abstractions and the 
adequate visualisation to express a method as a Graph, Table or Matrix. This richer 

173



representation of methodological constructs addressed and expressed the modelling 
needs for future MetaEdit+ applications.  
 
3.1 MetaEdit+: The Architecture of the Method Workbench  
 
The Method Workbench is a significant part of MetaEdit+ tool. GOPRR is the basic 
architectural structure that is used to create the products of all levels, i.e. methods 
and their instances. GOPRR (like OPRR) recognises in a method’s generic structure 
(and therefore in its instances) the semantic concepts of Objects and Relationships, 
which both possess Properties and Roles; all these constructs can be viewed in 
GOPRR as a Graph, Table or Matrix.  
 
When creating new method specifications in MetaEdit+, the metamodeller should 
firstly concentrate on the “constructs” of a method. In doing so, she/he must use the 
GOPRR metamodel to guide the whole metamodelling process. According to the 
philosophical rules of GOPRR, any method could be represented as having the 
following (concrete and abstract) constructs, whose initials form the acronym 
GOPRR: 
 
Graphs, which are sets of objects and their connections; 
Objects, which are identifiable design entities in every technique/method; 
Properties are attributes of graphs, objects, relationships and roles; 
Relationships are associations between objects; 
Roles define the ways in which objects participate in specific relationships; 
 
The Method Modelling Process Using GOPRR: Any method can be defined 
according to the definitional constructs of the GOPRR architecture, which are 
Graphs, Objects, Properties, Roles; all these are parts of Relationships between 
objects. These form the ‘conceptual structure of a method’ and it is only when these 
have been established that it is possible to proceed with formulation of the method 
notation and subsequent method construction.  
 
The following process of method definition and construction is described in 
MetaEdit+ Version 2.5 Method Workbench User’s Guide: 
 

A. Identify and define the object types of the method. 
B. Define the properties of the object types. 
C. Identify the relationship types of the method. 
D. Define the properties of the relationship types. 
E. Define the role types of the method 
F. Define the properties of the role types. 
G. Define the necessary symbols for objects, relationships and roles. 
H. Define the graph types and add the object, relationship and role types into 

them. 
I. Define the bindings of the relationships in the graph types. 
J. Define explosions and decompositions of the object types in the graph type. 

 

174



These steps can be performed in an iterative way and partly in parallel, and the 
definitions of the types can be modified later, but this is the rough model of the 
method modelling process. 

 
3.2 Syntactic Strengths and Semantic Limitations of this ME Approach 
 
GOPRR is an O-O metadesign architecture; its implementation in MetaEdit+ has 
been greatly improved because it obeys the rules of inheritance, polymorphism and 
reuse. The dynamic properties of objects allow their successful implementation 
with Smalltalk, which is a programming language that fits the needs for 
implementing reactive systems with dynamic requirements. The GOPRR 
metamodelling architecture has sufficiently generic constructs, which makes it 
suitable for the design of methods. This is also the main reason that it serves as a 
tool architecture for other CASE-Shells environments such as RAMATIC in 
Sweden [26]. 
 
The basic disadvantage of this approach is that resulted methods cannot be tested 
formally because no formal testing procedure is incorporated in the metadesign 
process. Moreover methods are not viewed as process models because the 
specification of GOPRR itself lacks the ability to adequately express the dynamic 
constructs of a method. The fact remains that GOPRR is based on an extended 
Entity Relationship Diagram and as such, it inherits its static structure. Following 
the semantic definition of a method using GOPRR, a method is defined as the 
“Cartesian product of the sets of objects, roles and properties that a method 
consists of, together with the initially specified connections and relationships 
between them” [13]. The specification and implementation of a method in 
MetaEdit+ is facilitated by the Binding construct, which extends and enriches the 
flexible (but fuzzy) conceptual definition of the Relationship construct. Therefore, 
there is no ‘appropriate’ semantic construct in GOPRR that would allow the 
expression of dynamic methodological aspects. For instance, changes in the 
resulting method specifications could not be modelled during their application [18]. 
 
Reflecting on the previous analysis, we may support the following: In order to 
improve the quality of method specifications and their subsequent tool 
implementations, a more efficient and more generic approach for modelling 
methods is needed. It is also important to establish in a scientific and cognitive way 
whether the adoption of a specific method will be able to model the static, dynamic 
and computational requirements for a system, and to what degree. This is a question 
that can be answered only if we could decide on a method’ s constructs during 
and/or after its use by viewing them at a different level of diagrammatic and 
theoretical abstraction. That is, by the use of an effective and suitable metamodel 
that would allow us to visualise them, reason about them and finally reuse them 
after proper formal testing procedures and re-engineering principles. 
 
It is obvious that while metamodelling and ME principles were associated with the 
needs of CASE technology, MetaCASE gave rise to more demanding modelling 
environments. It underlined the need for more abstraction skills to navigate through 

175



different metamodelling levels whilst preserving the notational and semantic 
consistency of the associated artefacts of every level [7]. The expansion and use of 
CASE-Shells technology also assisted in realising the need for more co-operation 
and interaction among teams, indicating clearly the needs for tool and method 
standardisation and integration.  
 
Emphasis has also been given to the inadequacy of capturing computational 
characteristics of metamodels and the dynamic knowledge of a method, which is 
found in methodological data and processes’ transformations, heuristic rules and 
recommendations, methodological constructs’ explosions and refinements, dynamic 
rules of naming and so on. For instance, in case of MetaEdit+ tool, it is explicitly 
stated that “none of the metamodeling techniques support grammar specification 
for formal textual descriptions, such as process specifications, data dictionaries or 
textual grammars. These are especially important to better integrate modeling tools 
and models into other tasks of ISD, such as generating prototypes, program code, 
or visualizing available data and program structures.” [14]. 
 
Thus, we will examine and apply formal concepts to alleviate limitations of 
metamodelling techniques in MetaCASE environments. Furthermore, we show how 
such methodological issues of computation, testing, integration [8] and properties 
of communication and representation [2, 27] can be achieved at the level of 
metametamodelling. 

 
4 A Formal and Agile Way of Metamodelling Methods 
 
We considered the family of formal dynamic models of Finite State Machines 
(FSMs) and general machines [28] as process metamodels that aid to alleviate the 
previously identified limitations through diagrammatic and theoretical abstraction 
[8, 13]. We remodelled OPRR and GOPRR as machines models. We demonstrate 
our outcomes using examples of this new type of metamodelling, which results in 
providing testable, computational and evolutionary method models.  
 
4.1 Expressing and Understanding Methods in Terms of their Dynamics  
 
The lifecycle of a method represents how a method is created, used, reused, 
maintained with re-engineering [14] and finally is archived, if it is no longer 
required for modelling. Our conceptualisation of a method as a dynamic entity is 
given next (Fig. 1), using JSD notation to depict its lifecycle. This indicates clearly 
the events that affect a method’s life changes, and how they occur, that is in 
sequence, iteration, selection or multiple selection [8]. 
 
This diagrammatic conceptualisation of a method shows that the data of the method 
undergoes many changes depending on the various events that happen in its 
environment and affect it. We selected some of these events and chose to model 
them in JSD notation, which is a suitable notation to show dynamic interactions. 
These events may be internally triggered, which basically have to do with the 
modelling process by the method’s modellers such as ‘Method Modification’, or 

176



externally triggered such as ‘Appearance of New Tools’ in the market or time 
triggered such as ‘Method Licence Expires’, and so on.  
 
All these events are interdependent (Fig. 1), and consequently affect the method’s 
status; for example the ‘Appearance of New Tools’ may trigger the ‘Method 
Modification’ event. However, not all these interactions are shown clearly with JSD 
notation; even the modelling of these events has to be facilitated with mid-
pseudoevents, as, for instance, in the case of ‘Method Re-engineering’, which needs 
to be facilitated in its modelling by ‘Method Modification’ and this in sequence by 
‘Method Use’.  
 
 
 
 

METHOD 

Method 
Method's  

Main Life 
Method 

Stopped Being used 

Method Use * Appearance  
of New Tools 

New 
 Domain Needs  

____ 
 Modification 

Method 
Re-engineering 

o o 

o o 

Creation   

o o Method 

____ 

Reuse 
as-is 

o o 
Method 

Extension - Constructs 

Implementation Testing  ..... 
...... 

 
 
 
Fig. 1: Method Modelling - The entity life-cycle of any development method  
 
 
This representation of a method clarifies the notion of a method as a dynamic object 
but it also inherits the modelling problems of the JSD notation. The next step is to 
describe how we can map the generic semantic and syntactic constructs of a 
method to a formal machine model. Subsequently, we show how to construct its 
isomorphic diagrammatic representation.  
 
The family of ‘machines’ is very rich both in diagrammatic structures and evolution 
semantics and very expressive in potential pragmatics modelling. Hence, various 
method models should be able to be expressed as alternative isomorphic models in 
this class of computational rigour.  

 

177



4.2 An Agile Theoretical Construction as a Generic Formal Model of a Method  
 
Since a method is a process model, its dynamic nature can be described and 
depicted in such a notation that its syntax and semantics be directly mapped to FSM 
and general machine notation [13]. 
 
If a λ-NFA   K = (Q, Σ, δ, s, F) 
 
then a method M = (Q', Σ', δ', s', F') can be defined as a computational structure 
with the following semantic constructs: 
 

Q' = {an alphabet of stages which contain information on the 
technique/method being modelled; this sometimes can indicate information 
on an incomplete method diagram under construction} 

 
Σ' = {an alphabet of formation instances}, a formation instance is the 
construct with the participation elements from the next possible alphabets, 
subsets of Σ' which represent the requirements 

 
Σ'1 = {an alphabet of events} 
Σ'2 = {an alphabet of data} 
Σ'3 = {an alphabet of properties} 

 ... 
 

and so on, in case we want to extend the method’s morphological features and 
utilise new methodological generic constructs that are different in nature and 
semantics from the above and therefore belong to different categories, that is 
different alphabets. 

 
Additionally, the method’s dynamic definitional construct can be smoothly mapped 
to the transition relation/function of any type of machine model. So,  

 
δ'⊆Q'×(Σ' ∪ {λ})×Q' 

 
is the transition relationship, which takes as input a combination set of all (or some) 
of the members of the above alphabets (or different, depending on the technique) 
and transforms it to the next stage. The result of the state of the particular 
transformation will be recorded in the state of the graph before the next 
transformation takes place, with the output of the previous one(s) to behave as the 
input in the next transitional function.  
 
The following two mappings are also important for method modelling because they 
define the start and the final states of a method. Thus, issues of computability, 
completeness and testability are always of importance in CAME environments as 
well as for the instances of the methods and their implementation.  

178



 
s'∈Q' is a start state i.e. the technique in its initial state, before any design 
construction takes place. 

 
F'⊆Q' is a set of theoretically final states that a method can reach.  
 

Theoretically, there are also unreachable states, and this means that a method can 
never reach these states. Careful thinking of this aspect could associate it to the 
testing of method construction process, which is an issue to be addressed at 
metametamodelling level. 

 
4.3 A Graphical Representation of a Generic Method Architecture 
 
The pictorial representation of the conceptual structure of methods facilitates the 
understanding of their constructs. So, in order to sufficiently represent 
diagrammatically the previous methodological constructs of the family of 
machines, we hereby present the diagrammatic constructs that can participate in 
methods and in their instance formation. More details on the theoretical foundations 
of these syntactic constructs and their applicability in various case studies can be 
found in [8, 13, 29, 30].  

 
The main focus at this stage of the representation is to attempt to clarify, relate and 
finally communicate adequately the system knowledge that is captured in a method. 
In doing so, we will map the concepts of the MetaEdit+ modelling architecture, i.e. 
GOPRR to those of an FSM. The mapping is also necessary to indicate the agile 
ways by which this representation can be used in order to semantically capture the 
domain knowledge.  
 
4.4 Modelling Agilely a Method and the Process of its Modelling  
 
Following our new theoretical and diagrammatic knowledge of what constitutes a 
method (Fig. 1), we next present in Fig. 2 the equivalent isomorphic FSM model 
(metamodel) of the generic model of any method as it was depicted using JSD 
notation in Fig. 1. After our alternative way of metamodelling with FSMs, a method 
and its modelling process can both be expressed formally and dynamically, reusing 
the same notation (for method and process modelling integration).  

 
The Conceptualisation of a Method as a FSM 
 
Firstly, Fig. 2 shows a formal diagrammatic representation of a method in terms of 
a Finite State Machine, which corresponds to the theoretical method representation 
that we described earlier, in which a method is described as a dynamic entity.  
 
This is a more compact model, which does not need to model pseudo-events to 
facilitate method modelling such as in JSD notation in Fig. 1. It depicts only the 
‘real’ events and shows clearly their interactions and how they affect a method. 
Furthermore, these can be expressed as regular expressions and therefore a 

179



method’s generic specification(s) and instances can have all the benefits of 
formality, computability and testability [13].  
 
Following the consistency of the notation for the isomorphic model of a method as 
a Finite State Machine, we can state the following:  
 
Since the FSM transitions model the events that affect a method M throughout its 
life, then consequently the FSM states, which belong to Q′, model the status of the 
method M after being affected by a particular event. For instance, in Fig. 3 some of 
the isomorphic diagram’s information can be presented as follows:  
 
 

2

4

3

0 1
8

4

5

6

7

Create

Create

λ

λ

λ

λ

Use

Extend

Reuse

Re-engineer

New needs & Tools

λ

λ

New needs & Tools

New needs & Tools

λ
 
 
Fig. 2: Method Modelling–The formalised generic model of a method, as model for 
the ‘target process’ 

 
 

The events that affect the method M belong to set ∑′ (= an alphabet of M’s events) 
and this set can be denoted as 
 
        ∑′ = {Create method, extend method, re-engineer method, ..., λ} 
 
The states of the life of a method M (labelled only as natural numbers in the 
diagram) belong to set Q′ (= an alphabet of M’s states); this set can be denoted as  
 
        Q′ = {State 0, state 1, state 2 = generic method created, state 3 = instantiated 
                method created, ... state 7 = re-engineered method, state 8 = archived  
                method},  with  

180



 
         s′= State 0∈Q′ as the initial state of M,  
 
meaning that nothing has happened yet to alter the state of the method (no graph, 
table or matrix exist) and  
 
         F′ = {State 8 = archived method}⊂Q′ as the set of final states of M,  

    
   which means that some event(s) affected M not to be in use any more.  

 
Such events might be new needs and tools appear (externally triggered), method 
licence expires (time triggered), metamodeller changes notation (internally 
triggered) and so on. 
 
The events that cause the state changes in a method’s life are plenty. A method can 
be affected by many events during its lifetime so we just chose a few characteristic 
ones to name and depict in Fig 2. In fact we put some unlabelled transitions, which 
may also model some events that may happen and affect a method’s life. The same 
is true for its states: some event, which is not included here may happen in the 
future and that may cause a method to change its state to an unknown at present 
state. Such a case can be seen in Fig. 3.  

 
 

1

1

Instantiated
Method

Generic
Method

Method

Method

Create

Create

Create
Method

Generic
Instance

o o

 
 

Fig. 3: JSD and FSM equivalent notation: Creating a method may result either at 
the graph of its generic or the graph of its instantiated structure. 
 
Therefore, the sets, which represent the alphabets of states and events may have 
many more members than the events and states that we chose to represent here. Fig. 
3 presents in JSD and in the equivalent FSM notation the event create method (for 
method creation). In practice, this event may be either create generic method or 
create instantiated method (especially in MetaCASE tool environment). The 
resulted state for the method’s status will be either the instantiated graph of the 
method or the generic (polymorphic) graph of the metamethod.  
 

181



The previous JSD and FSM methodological constructs can just be added to the 
diagrams presented in Fig. 1 and 2 respectively. The reuse, extensibility and 
consistent expansion between different levels of detail (as will be seen in the next 
figures) of this dynamic notation is a major advantage when utilising these 
metamodelling concepts in CASE-Shells environments. In this type of FSM 
diagram we do not need to use state indicators for selection, sequence or iteration of 
events since these are encapsulated in the syntactic details of the diagram. 
Moreover, it includes a complete method/technique modelling of an instance. In 
modelling an instance of a method, our information on events and initial, final and 
other states is more definite and the modelling could be complete.  
 
Utilising the same construction rules that are mentioned in this section, and taking 
our metadata from GOPRR metamodel and the process guidelines to construct a 
method (section 3.1), we also metarepresent the process (or metaprocess) of 
modelling a metamethod (metametamodel) with GOPRR in the Method Workbench 
of MetaEdit+. This is depicted in Fig. 4. 
 
The Conceptualisation of ‘the process of modelling a method’ as a FSM 
 
Reusing the same notation and theoretical model of the FSM method 
representation, in which a method itself is addressed as a process model, we utilise 
it once more in a more abstract level (next metalevel) in order to depict ‘the way of 
modelling a method’. Fig. 4 shows a formal diagrammatic representation of the 
process of modelling a method in terms of a FSM.  
 
In Fig. 4, we represent the modelling process that takes place when we model a 
method with the Method Workbench of the MetaEdit+. The arrows with labels A, 
B, C, ..., J correspond to the functions A, B, C, ..., J of section 3.1, that is:  
 

A = Identify and define the object types of the method;  
B = Define the properties of the object types;  
 ... ...  
J = Define explosions and decompositions of the object types in the graph type. 

 
The main concept and philosophy of this representation of the process of modelling 
a method is the following:  

 
The arrows (transitions of FSM) depict the activities (or transactions or events) that 
take place for the modelling. Again they comprise an alphabet Σ′, where the states 
of FSM correspond to information given on the particular stage of modelling. The 
State alphabet is Q′. The set of final state(s) F′⊂Q′ indicates that the method’s 
modelling process has been completed. The last state, for instance, can be called 
‘method completed’, which means that the generic structure (or an instance of the 
method modelling a particular situation) has been ended.  
 

182



More analytically, we can attribute the above to the following mathematical 
notation, according to the method’s formal description (FSM isomorphic model) as 
specified in section 4.2: 
 

Σ′ = {A = Identify and define the object types of the method, B = Define the 
properties of the object types, C, ... I, J = Define explosions and 
decompositions of the object types in the graph type, λ}.  

 
Q′ = {0, 1, 2, ... 10}, where indicated state descriptions could be the 
following, according to the effects of the particular events: 

 
s′ = initial state = State 0 = method at its initial status – no event has taken  
       place yet to form any construction 
 
State 1 = ‘method status with object types defined’ in the graph/table/matrix 
... 
F′ = {State 10 = ‘method completed’}⊂Q′ after defining all explosions  
       and decompositions of the object types in the graph/matrix/table 
 
 

 
 

1

30

2

4

5

10

A

B

C

6

D

E

F

G

G

G

7

8

9

 
 
 
Fig. 4: Method Metamodelling - The formalised generic model of a ‘process of 
modelling a method’  
 
 
Hence, reusing the same notation and constructs we re-modelled again the “process 
of modeling” and depicting a method; thus, we achieved ‘notational’ integration 
for both ways of modelling.  

183



4.4    The Meta-Agileness (!) and its Meaning in terms of Method Engineering 
 

Tardieu states that dynamic modelling should explore the capability “to express 
both the target process and the development process”. He continues supporting 
that: “This new challenge is both exciting and important, because it may lead us to 
information systems which could evolve in their structure as they are operating” 
[31]. The last three diagrammatic models of Fig. 2, Fig. 3 and Fig. 4 realise these 
requirements, and obey to a formal conception of a method as a process model, 
according to the new theoretical knowledge of what constitutes a method. 
 
Under this type of process modelling, the generic structure of a method can be any 
morphologically complete construct of the method, otherwise called a ‘particular’ 
technique of the method. That might be, for instance, a graph in case of ERDs, 
DFDs, Object or Class Diagrams, a table in case of Decision Tables, a Schema’s 
textual description in case of Z-method and so on [13]. As can be seen, the 
abstraction rules are specific and quite general for metamodelling agilely a wide 
range of specifications [8]. 
 
In different metamodelling environments (automated or non-automated) the 
activities of modelling may be different according to the emphasis on the modelling 
constructs. For instance, if the method’ s or tool’ s metamodelling architecture is 
other than GOPRR, then the modelling process with a Finite State Machine can be 
customised and adjusted to the guidelines given to follow that particular 
metamodelling process. In addition, both method and its modelling process can be 
further computed and tested because of the syntactic and semantic strengths of FSM 
notation. 
 
The advantages of this notation is its flexibility and adaptability to accommodate 
changes. This means that if we want to add any process modelling guidelines or any 
new modelling states, then we just reuse the same specification structure and just 
add the new constructs to the FSM isomorphic graph, by simply making the 
suitable connections to the already existed states and transitions. This facility is 
extremely useful when CASE and MetaCASE tools undergo changes and need to 
be extended and integrated [34, 35] in order to facilitate the accommodation of new 
modelling paradigms; and therefore extend their own functionality, testability [36] 
and metaagility (!) in order to become more competitive and more marketable.  

 
5. Conclusions, Ongoing Research and Future Directions 

 
We referred to the capabilities of the MetaCASE tools technology and examined 
MetaEdit+, a MetaCASE and CAME tool. We further examined the semantic and 
syntactic constructs of GOPRR, the main architectural metamodel for modelling 
methods and their instances in MetaEdit+ and in other CASE-Shells modelling 
environments. The following have been identified: (i) lack of expression of both 
data and control, (ii) the need to express the computational characteristics of 
methods for facilitating future implementations and (iii) the redesign of the generic 
structure of methods in order for them and their instances to be agile and testable. 

184



We utilised the concepts of FSMs in order to define new representations of a 
method syntactically and semantically, in such a way that they address the above 
limitations holistically.  
 
This work can provide ME with a general and agile solution to the metamodelling 
problems we listed in the first sections of this paper for MetaCASE and CAME 
environments. The diverse cognitive needs of human behaviour gave rise to 
metamodelling for expression through shared process models that represent agreed 
views [2]. Unavoidably, metamodellers, method and knowledge engineers will 
always need evolutionary and expanding models [37] to capture their thinking 
patterns and concepts and communicate them with others.  
 
Ongoing work has indicated that a more generic approach, the X-Machine [13, 21, 
22, 36] can be utilised in order to extend this modelling power to higher levels of 
metamodelling. For instance, what it was achieved in Fig. 3 and 4 previously, that 
is to show the method and method process modelling using one integrated notation 
for both diagrammatic models, it can be achieved in a more expressive way only 
with one diagram. In this way, the benefits of computability and testing can also be 
an advantage for the software process itself at many levels.  

 
‘Look around you. Computation happens everywhere, all the time, 
initiated by everybody, and affecting us all ... Computation is essential, 
powerful, beautiful, challenging, ever-expanding - and so is its theory.’ 
(Lewis, H. R. & Papadimitriou, C. H., ‘Elements of the Theory of 
Computation’, Prentice Hall, 1998).  

 
 

Acknowledgements: This research was supported by a scholarship from the Finnish 
Centre for International MObility (CIMO). The author thanks all the researchers of 
the MetaPHOR group and MetaCASE Consulting Ltd. and Dr Osmo Vikman from 
NOKIA Research Centre, Helsinki. Special thanks to Prof. Kalle Lyytinen, Prof. 
Minna Koskinen and Mr Janne Kaipala for sharing various research thoughts; also 
Prof. Mike Holcombe and Dr Marian Gheorghe for the guidance and constructive 
comments on the Ph.D. thesis.  
 
References 

 
1. Berki, E. and Georgiadou, E.: "A Comparison of Quantitative Frameworks 

for Information Systems Development Methodologies", In the Proc. of the 
12th International Conference of the Israel Society for Quality, Jerusalem, 
Dec. (1998) 

2. Berki, E. Isomäki, H., Jäkälä, M.:”Holistic Communication Modelling: 
Enhancing Human-Centred Design through Empowerment”, In the Proc. 
of Harris, D., Duffy, V., Smith, M., Stephanidis, C.(Eds.) Cognitive, 
Social and Ergonomic Aspects, Vol 3 of HCI International 22-27 June, 
University of Crete, pp. 1208-1212, Lawrence Erlbaum Associates, Inc. 
Greece (2003) 

185



3. Kovitz, B. “Hidden skills that support phased and agile requirements 
engineering”, pp. 135-141, Requirements Engineering, Vol. 8, Apr (2003) 

4. Marttiin, P., Rossi, M., Tahvanainen, V-P & Lyytinen, K. A.: 
“Comparative Review of CASE Shells – A preliminary framework and 
research outcomes”, Information and Management, Vol. 25, pp. 11-31, 
(1993) 

5. Rossi, M.: “Advanced Computer Support for Method Engineering: 
Implementation of CAME Environment in MetaEdit+”, Ph.D. Thesis, 
Jyvaskyla Studies in Computer Science, Economics and Statistics, 
University of Jyvaskyla, (1998) 

6. Smolander, K., Tahvanainen, V-P., Lyytinen, K.: ”How  to  Combine 
Tools and Methods in Practice – a field study”, in the Proc. of Steinholz, 
B., Solvberg, A., Bergman, L. (eds.) of Advanced Information Systems 
Engineering, LNCS no 436, Springer-Verlag, pp. 195-214, Berlin (1990) 

7. Kelly, S. & Smolander, K. “Evolution and issues in metaCASE”, 
Information and Software Technology, vol.38. no 4, April (1996) 

8. Berki, E.: “Systems Development Method Engineering, The Formal 
NEWS: The Formal Notation for Expressing a Wide-range of 
Specifications, The Construction of a Formal Specification Metamodel”, 
Mphil/PhD Transfer Report, Faculty of Science, Computing & 
Engineering, University of North London, (1999) 

9. Beizer, B.: "Foundations of Software Testing Techniques", 12th 
International Conference & Exposition on Testing Computer Software, 
June 12-15, Washington, DC, (1995) 

10. Fujiwara, S., v. Bochmann, G., Khedek, F., Amalou, M. & Ghedamsi, A.: 
“Test Selection Based on Finite State Models”, IEEE Transactions on 
Software Engineering, Vol. 17, No. 6, Jun. (1991) 

11. Pressman, R.: “Software Engineering – A practitioner’s approach”, 
McGraw-Hill, Eur. Edition (1994) 

12. Koskinen, M.: “Process Metamodelling: Conceptual Foundations and 
Application”, Ph.D. Thesis, Jyvaskyla Studies in Computing - 7, 
University of Jyvaskyla, Nov. (2000) 

13. Berki, E: “Establishing a Scientific Discipline for Capturing the Entropy of 
Systems Process Models: CDM-FILTERS – A Computational and 
Dynamic Metamodel as a Flexible and Integrating Language for the 
Testing, Expression and Re-engineering of Systems”,  PhD Thesis, Faculty 
of Science, Computing & Engineering, University of N. London, (2001) 

14. Tolvanen, J-P.: “Incremental Method Engineering with Modeling Tools”, 
PhD Thesis, University of Jyvaskyla, Jyvaskyla (1998) 

15. Shapiro, J. and Berki, E.: “Encouraging Effective use of CASE tools for 
Discrete Event Modelling through Problem-based Learning”, in the Proc. 
of Hawkins, C., Georgiadou, E., Perivolaropoulos, L., Ross, M. and 
Staples, G. (Eds.) the BCS INSPIRE IV Conference: Training and 
Teaching for the Understanding of Software Quality, pp.313-327, 
University of Crete, Greece, Sep. (1999) 

16. Berki, E., Georgiadou, E. & Holcombe, M.: “Process Metamodelling and 
Method Engineering as Tools for Improved Software Quality Management 

186



- A Chronological Review and Evaluation Critique Considering the Need 
for a New Scientific Discipline”, In the Proc. of: M. Ross & S. Staples 
(Eds.) Software Quality Management Conference, Glasgow, UK, (2003) 

17. Brinkkemper, S.: “Method Engineering with Web-Enabled Methods”, In 
Brinkkemper, S., Lindencrorna, E. & Solvberg, A. (Eds): Information 
Systems Engineering, State of the Art and Research Themes, pp. 123-134 
Springer-Verlag London Ltd. Jun. (2000) 

18. Kelly, S. “Towards a Comprehensive MetaCASE and CAME 
Environment, Conceptual, Architectural, Functional and Usability 
Advances in MetaEdit+”, Ph.D. Thesis, University of Jyvaskyla, (1997) 

19. Marttiin, P.: “Customisable Process Modelling Support and Tools for 
Design Environment”, Ph.D. Thesis, University of Jyvaskyla, (1998) 

20. Saeki, M.: “A meta-model for method integration”, Information and 
Software Technology, 39, 925-932, Elsevier, (1998) 

21. Ipate, F. and Holcombe, M.: "Specification and Testing using Generalised 
Machines: a Presentation and a Case Study", Software Testing, 
Verification and Reliability, 8, 61-81, (1998) 

22. Berki, E., Georgiadou, E.: "Resolving Data Flow Diagramming 
Deficiencies by using Finite State Machines", 5th International Conference 
on Software Quality, Dundee, Scotland, Jul. (1996) 

23. Chow, T.S.: “Testing Software Design Modeled by Finite-State 
Machines”, IEEE Transactions on Software Engineering, vol. SE-4, no 3, 
May (1978) 

24. Kelly, S., Lyytinen, K. and Rossi, M.: "MetaEdit+: A Fully Configurable 
Multi-User and Multi-Tool CASE and CAME Environment", In 
Constantopoulos, P., Mylopoulos, J. and Vassiliou, Y (Eds) Advances in 
Information Systems Engineering, 8th International Conference CAiSE'96, 
pp. 1-21, LNCS 1080, University of Crete, Greece, May 20-24, (1996) 

25. Smolander, K.: “OPRR – A Model for Modelling Systems Development 
Methods”, Lic. Thesis, Dept. of Computer Science, University of 
Jyväskylä, (1991) 

26. Bergsten, P., Bubenko, J. jr, Dahl, R., Gustafsson and Johansson, L.-A.: 
“RAMATIC: - A CASE Shell for Implementation of Specific CASE 
Tools”, SISU Research Institute, Gothenburg, (1989) 

27. Johannesson, P.: “Representation and communication – a speech act based 
approach to information systems design”, pp. 291-303, Information 
Systems, Vol. 20, No 4, ISSN 0306-4379, Jun. (1995) 

28. Eilenberg, S.: "Automata, Languages and Machines", Vol. A, Academic 
Press, (1974) 

29. Wood, D.: "Theory of Computation", J. Wiley and Sons (1987) 
30. Holcombe, M. and Ipate, F.: "Correct Systems - Building a Business 

Process Solution", Springer-Verlag, (1998) 
31. Tardieu, H.: “Issues for Dynamic Modelling through Recent 

Developments in European Methods”, Dynamic Modelling of Information 
Systems II, H.G. Sol & R.L. Crosslin (eds.), North Holland/Elsevier 
Science Publishers, pp. 3-23, (1992) 

187



32. Cockburn, A. “Agile Software Development”, The Agile Software 
Development Series, Addison-Wesley, (2002) 

33. Holcombe, M., Bogdanov, K., Gheorghe, M. “Functional test set 
generation for extreme programming”, In the Proc. of the 2nd International 
Conference on Extreme Programming and Flexible Processes in Software 
Engineering (XP2001), 20-23 May, Sardinia, Italy, pp. 109-113, (2001) 

34. Jarke, M.: “Strategies for Integrating CASE Environments”, IEEE 
Software, pp. 54-61, Mar. (1992) 

35. Kudrass, T., Lehmbach, M. & Buchmann, A.: “Tool-Based Re-
Engineering of a Legacy MIS: An Experience Report”, in the Proc. of the 
8th International Conference, CAiSE’96, Heraklion, Crete, Greece, Lecture 
Notes in Computer Science 1080, Constantopoulos, P., Mylopoulos, J. & 
Vassiliou, Y. (Eds.), pp. 116-135, Springer, May (1996) 

36. Holcombe, M.: "X-Machines as a Basis for Dynamic System Specification 
" Software Engineering Journal, March (1988). 

37. Whittaker, J.: “What Is Software Testing? And Why Is It So Hard?”, IEEE 
Software, pp. 70-79, January/February (2000) 

38. Tsalgatidou, A., Karakostas, V. Loucopoulos, P.: “Rule-Based 
Requirements Specification and Validation”, in the Proceedings of CAiSE-
90, Lecture Notes in Computer Science, 436, G. Goos & J. Hartmanis 
(eds.), Springer-Verlag, pp. 251-264, Stockholm, May (1990) 

 
 
 
 
 

188


