
A Fast Natural Algorithm for Searching:

Preliminary version

Joshua J. Arulanandham, Cristian S. Calude, Michael J. Dinneen

Department of Computer Science, The University of Auckland, Auckland,
New Zealand

{jaru003,cristian,mjd}@cs.auckland.ac.nz

Abstract. In this note we present two natural algorithms—one for sorting and
another for searching a sorted list of items. Both algorithms work in O(

√
N)

time, N being the size of the list. A combination of these algorithms can search
an unsorted list in O(

√
N) time, an impossibility for classical algorithms. The

same complexity is achieved by Grover’s quantum search algorithm; in contrast
to Grover’s algorithm which is probabilistic, our method is guaranteed correct.
Two applications will conclude this note.

1 Introduction

Sorting and searching are fundamental for computer processing, so any attempt to
design fast methods for either operation is important. Looking up a name in a telephone
directory given a telephone number is exponentially more difficult than looking up a
telephone number given a name. Indeed, in the second case log N steps are enough, but
in the first case we need about N/2 steps on average and N steps in the worst case.
Can we do it better?

In [3] we have proposed Bead–Sort, a natural sorting algorithm. Working closely
on the same theme, and using a physical mechanism similar to the one used for Bead–
Sort, we propose a natural algorithm for searching a sorted list in O(

√
N) time. To

perform search on an unsorted list, we can first use Bead–Sort to quickly sort the list
(in O(

√
N) time as detailed in Section 2) and then apply the proposed search procedure

on the resulting sorted list; the combination of the two algorithms works in O(
√

N)
time, N being the size of the list. Two applications and a comparison between Grover’s
algorithm (a quantum algorithm searching an unsorted list in O(

√
N) time) and our

procedure will conclude the paper.

In Section 2 we review Bead–Sort; in Section 3 we introduce the natural search tech-
nique and prove its correctness with formal arguments; in Section 4 we discuss how
the method can be adapted to sort and search databases; in Section 5 we introduce a
natural (dynamic) data structure called BeadStack (for efficiently finding the minimum
and the maximum of a set of integers as well as allowing real–time insertions and dele-
tions). We show that BeadStack compares well with the recently proposed SquareList
data structure. Finally, in Section 6 we compare Grover’s algorithm with our algorithm
and we finish with some concluding remarks.

Proceedings of the 1st South-East European
Workshop on Formal Methods, SEEFM'03
November 2003, Thessaloniki, Greece

189



2 Bead–Sort

The following is a review of the sorting algorithm we proposed in [3]. The sorting
algorithm for positive integers, which we call Bead–Sort, is based on a simple natural
phenomenon. In what follows, we represent positive integers by a set of beads sliding
through rods as in an abacus (see Figure 1). Figure 1(a) shows the numbers 4 and 3
(represented by beads) attached to rods; beads displayed in Figure 1(a) appear to be
suspended in the air, just before they start sliding down. Figure 1(b) shows the state of
the frame (a frame is a structure with the rods and beads) after the beads are allowed
to slide down. A row of beads representing number 3 has “emerged” on top of the
number 4 (the extra bead in number 4 has dropped down one row). Figure 1(c) shows
numbers of different sizes, suspended one over the other (in a random order). We allow
beads (representing numbers 3, 2, 4 and 2) to slide down to obtain the same set of
numbers, but in a sorted order again (see Figure 1(d)). In this process, the smaller
numbers “emerge” above the larger ones and this creates a natural comparison (an
online animation of the above process can be seen at [1]; for a simulation see [4]).

43

3 4

2

3

4

2︷ ︸︸ ︷︷ ︸︸ ︷

︷ ︸︸ ︷

︷ ︸︸ ︷
︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷

︷ ︸︸ ︷

(a) (b) (c) (d)

Fig. 1. Illustrating Bead–Sort.

We now present the Bead–Sort natural algorithm. Consider a set A of n positive
integers to be sorted and assume the biggest number in A is m. Then, the frame should
have at least m rods and n rows. (See Figure 2; Rods (vertical lines) are counted always
from left to right and rows are counted from top to bottom.1) The Bead–Sort algorithm
is the following:

The Bead–Sort natural algorithm

For all a ∈ A drop a beads (one bead per rod) along the rods 1, 2 . . . , a.
Finally, the beads, seen row by row, from the 1st row to the nth row repre-
sent A in ascending order.

1 Note that in [3] we have used the term “level” instead of “row”, and counted the levels from
bottom to top.

190



. . .

1 2 3 m

n

1

. . .

.

Rods

2

3

R
ow

s

.

.

.

Fig. 2. Bead–Sort conventions.

See [3, 2] for a formal proof of correctness and for various implementations of Bead–
Sort. The time complexity of Bead–Sort is actually the time taken by the beads to settle
down in a state of rest. We assume that the whole of the input is first read (imagine
the initial state of the frame to be a set of unsorted rows of beads “suspended” in the
air), and then the beads are allowed to drop down in parallel. The beads can be viewed
as free falling objects accelerating due to gravity.2 Hence, in the worst case, the time
taken by the beads to settle down is

√
2h
g , where h is the height of the rods and g

is the acceleration due to gravity. If we fix the height of the rods to be the same as
the size (N) of the list, then the time complexity is given by

√
2N
g , i.e. O(

√
N). Note

that the complexity analysis of Bead–Sort[3] was done using a different perspective: we
have analyzed the complexity by viewing certain actions as “computational steps” and
then by counting them rather than by measuring the time taken for the whole process;
treating “dropping of beads” as a single step, we have obtained the complexity O(1) for
an implementation of Bead–Sort where all beads are dropped in parallel. The present
analysis is more realistic.

3 Searching for a needle in a “bead–stack”

Consider the problem of searching for a given integer in a list of positive integers (that is
already sorted using Bead–Sort). And, let us imagine that the sorted list is represented

2 The distance d travelled by a free falling object in time t is given by d = 1
2
gt2, where g is

the acceleration due to gravity.

191



in the form of beads in the same “beads–rods” apparatus used for Bead–Sort. We use
the following simple observation to do the search. Suppose that the list already contains
an integer, say 3 (this means, there is a row of 3 beads in the frame). Now, introduce
one more ‘3’ into the list by dropping 3 beads, as before from left to right, one bead
per rod. We would eventually find the new integer (3, in our case) just above the other
‘3’ that is already in the list (see Figure 3), thus preserving the sorted order.3 We
can show that, when we introduce an integer n into the list, at least one of the beads
representing n (the bead sliding along the nth rod, to be precise) will eventually find
itself just above the already existing integer n. The main point in the above illustration
is this: the search for the integer n can be reduced to simply introducing a new row of
n beads into the list and tracking the last bead as it falls down, say, with some device.
The newly introduced beads actually “locate” the integer, if present. But, how would
the above method indicate the absence of an integer n in the list? Actually, we would
have to drop n + 1 “search beads” to determine whether an integer n is in the list or
not. In what follows, we present the general (natural) algorithm for searching, and a
proof of its correctness.

‘old’ row of 3 beads

‘new’ row of 3 beads

4

1

3

6

2

Rows

5

4

1

3

6

2

Rows

5

Fig. 3. Introducing a new integer into the list.

To do the search, we use an extra apparatus—a tracking mechanism along with
the beads and rods. It consists of very thin tapes with markings as shown in Figure 4
(similar to the “measuring tape” or the “inch tape”) whose ends are attached to the
search beads. (Search beads are those that are dropped into the list and tracked.) When
the search beads are let down, the tapes unfold, exposing the markings on them; the
readings seen against the “measurement level” (see Figure 4) at any point of time
give the row position of the search beads attached to them. The natural algorithm for
searching follows:

The Bead–Search natural algorithm
3 Note, however, that not all the beads that we introduce (call them “search beads”) might

appear in the newly formed row of 3 beads. In the example shown in Figure 3, the new row
of 3 beads contains only two of the search beads.

192



To search for an integer n and to determine its location in the list if present, do the
following:

1. Drop n + 1 search beads (one bead per rod) along the rods 1, 2 . . . ,
n + 1 (and wait for them to settle down).
2. Compare the readings (taken against the measurement level) of the
nth and the (n + 1)th search beads. Call them read(n) and read(n + 1).
3. If read(n) = read(n + 1), then the integer n is not in the list.
If read(n) �= read(n + 1), then the integer n is in the list, and can
be found on the row read(n + 1).

More precisely, when read(n + 1) − read(n) = x, the integer n occurs in the list
x times, starting from row read(n) + 1 to row read(n + 1). A few self–explanatory
illustrations—searching for integer 3 (present in the list) and 2 (not present in the list)
are given in Figures 4 and 5. (Note that the search beads that are dropped down can
be pulled up after searching.)

3

0

2

1

0 0 0 measurement level 4

1

3

2

0

0

(a) (b)

search−beads

1

3

4

5

6

2

Rows

1

Rows

3

4

5

6

2

Fig. 4. Searching for the integer 3.

We now show that step 3 in the natural algorithm is indeed correct. In other words,
we show that read(n) = read(n + 1) if and only if the integer n is not in the list.

Suppose, read(n) = read(n + 1) = r. It is clear that the integer n is not on row
r, since the bead–position given by the nth rod and the row r is now presently being
occupied by the nth search bead. It is also clear that either there is a bead on (r +1)th

193



3

0

2

1

3

0

2

1

0 0 0 measurement level

(b)(a)

Rows

6

4

3

2

1

5

Rows

6

4

3

2

1

5

Fig. 5. Searching for the integer 2.

row, in rod n + 1 stopping the (n + 1)th search bead from dropping further (in which
case, there is an integer greater than n on row r + 1) or, row r is the last row in the
mechanical frame. In both the cases, however, n cannot be beneath the row r (note
that the list is sorted). Also, the integer n cannot be in one of the rows above r (i.e., the
rows 1 to r−1). This is because there is no bead in rod n on any of the rows 1 to r−1;
otherwise, the nth search bead would not have descended down to the rth row. Thus,
the integer n is not in any of the rows. It now follows that when read(n) = read(n+1),
the integer n cannot be in the list. Before proving the converse, let us first observe the
following simple fact: for every i, j such that i < j, the number of beads in rod i is
greater than or equal to the number of beads in rod j (after the beads settle down). This
is because we always drop beads from left to right, one bead per rod. Therefore, when
read(n) �= read(n + 1), we can immediately deduce that read(n) < read(n + 1).
Now, we are ready to prove the converse. Suppose read(n) �= read(n + 1), and let
read(n + 1) = r. This means, the (n + 1)th search bead has dropped to the row r;
thus, there is no bead in the (n + 1)th rod on all rows starting from 1 to r, except for
the search bead. But, since read(n) < read(n + 1), there are beads in the nth rod on
rows r, r − 1, r − 2, . . . ,read(n) + 1. It follows that there is an integer n on all these
above rows. I.e., the integer n is present in the list, read(n + 1) − read(n) times.
(Indeed, it can also be shown that the list cannot have the integer n in a row other
than these.)

The time complexity of this search operation is similar to that of Bead–Sort; it is
the time taken by the search beads to settle down in their final positions, and hence
the complexity is O(

√
N), as before.

194



4 Sorting and searching a database

First of all, we observe that Bead–Sort does not rearrange (physically) the rows of beads
representing positive integers. For instance, see Figures 1(a) and 1(b): we do find a row
of beads representing number 3 on top in Figure 1(b), but this is not the same row of
beads that we originally used in Figure 1(a) to represent number 3. (They, in fact, still
remain at the bottom, even after “sorting” has occurred.) Thus, the “original number 3”
has not moved up at all! This property is both the strength as well as the weakness of
Bead–Sort— you do not have to swap or shuffle the (objects that represent) numbers
in order to produce a sorting effect; but, the very same property has a negative effect
when we attempt to sort a (hypothetical) database like the one shown in Table 1. We
now illustrate the fact that ordinary Bead–Sort cannot accomplish this.

Table 1. Toy database.

customer ID vehicle color
(Key) (Information associated with key)

4 black
1 white
2 grey

Represent customer ID as usual, with beads. Also, represent vehicle color using, say,
the color of the beads as shown in Figure 6. Now, from the resulting “sorted” list, it is

Fig. 6. Sorting a database: mere colored beads do not help.

clear that we cannot extract the right mapping between the keys and their associated
information easily. The mapping is lost, though we have got the keys themselves sorted.
However, we can solve this problem in an indirect way as discussed below.

Represent customer ID with rows of beads in frame 1; see Figure 7. (We assume
that the keys are unique.) The search beads are ready to slide down along each rod

195



in frame 1 and will be used for a purpose discussed later. Represent vehicle color with
a different set of beads (call these “color beads”) on a separate frame, i.e. frame 2 as
shown in Figure 7; for representing a vehicle color, use one bead with a distinct color.4

We place the black bead representing the vehicle color “black” (the first entry in the
database) on the first rod, the white bead representing “white” (the second entry in
the database) on the second rod, and so on. Note that the color beads are not free
falling objects, but can be made to drop down by coupling them with the search beads
in frame 1.

Having represented both customer ID and vehicle color individually, we now rep-
resent the mapping between them in the following way. For instance, to map the cus-
tomer ID “4” with vehicle color “black”, we just couple the 5th search bead (of frame 1)
with the black colored bead; to map customer ID “1” with vehicle color “white”, we
connect the 2nd search bead to the white colored bead. In general, to map a key n to
the information associated with it (in), we couple the (n + 1)th search bead with the
bead on frame 2 representing in. (Note that all these are part of the input setting up
process, and does not involve a search by itself.)

Now, how do we sort the database? First, sort the customer IDs by allowing the
beads on frame 1 to drop down. After they are sorted, allow all search beads in frame 1
to roll down. As detailed in Section 3, the (n + 1)th search bead, after settling down,
will be exactly on the same row as the customer ID n. (Recall from Section 3 that the
reading corresponding to the (n + 1)th search bead gives the location of integer n in
the list, if present.) Also, the search bead would have pulled down along with it, its
“partner”, i.e. the color bead representing in (the one coupled with it) to exactly the
same row, thus aligning each customer ID with its corresponding vehicle color. Indeed
we could initiate a search on the database, after the sorting is over.

The major drawback with the above technique is that every time we wish to insert a
new (key + information) into the database, we would have to redo the whole alignment
procedure once again.

5 The BeadStack Min/Max data structure

In this section we propose a natural (dynamic) data structure called BeadStack. The
operations of interest are finding the minimum and the maximum of a set of inte-
gers, along with insertion and deletion operations. Our data structure has performance
comparable to the recently proposed SquareList data structure (see [6]). We list the
best running times for various “classic” data structures in Table 2 and compare it to
BeadStack.

The BeadStack data structure is our standard collection of beads on rods, where
each row of beads (flush left) represents a positive integer. We assume the presence
of physical devices (whose design is not detailed in this paper) to read the number of
4 We use a distinct colored bead to represent information associated with a particular key

just for the sake of illustration; one could have used “labels” or “tags” (that are stuck on
the beads, say) to represent the same.

196



Initial state (before sorting)(a)

Final state (after sorting)(b)

search−beads

1

2

4

frame 2frame 1

frame 1 frame 2

measurement level

measurement level

1

2

3

4

5

6

Row

3 4 55 6 4 56

Fig. 7. Sorting a database: a different approach.

197



Table 2. Expected performance of common data structures.

Data Structure Insert Delete Find min Find max

Priority Queue (Heap) Θ(lg N) Θ(N) Θ(1) Θ(N)

Binomial Heap Θ(lg N) Θ(lg N) Θ(lg N) Θ(N)

Skiplist Θ(lg N) Θ(lg N) Θ(lg N) Θ(lg N)

Fibonacci Heap Θ(1) Θ(lg N) Θ(1) Θ(N)

SquareList Θ(
√

N) Θ(
√

N) Θ(1) Θ(1)

BeadStack Θ(
√

N) Θ(
√

N) Θ(1) Θ(1)

beads in any given row and to automatically keep track of the current–top–row (the
top row keeps changing as we insert/delete rows of beads), so that the system always
“knows” which is the current–top–row. The “Find min” operation is simply to read
and return the number of beads in the top row. Likewise, the “Find max” operation is
simply to read and return the number of beads in the bottom row. These two operations
can be done in Θ(1) time. The insertion operation is done simply by dropping another
row of beads on top of the existing stack of integers; it requires Θ(

√
N) time in the

worst case. The deletion operation is done by performing a “search” to find the row
containing the integer to delete, followed by the removal of that physical row of beads.
As shown in an earlier section, this again can be done in time Θ(

√
N), which is the

cost of the search operation plus a constant time for deletion.

6 Conclusions

The proposed search algorithm works in O(
√

N) time for any unsorted list, an impossi-
bility for classical algorithms. This is a significant complexity reduction: for example, a
classical computer will have to look on average at 500,000 items to perform a search in
an unsorted list of 1,000,000 items as opposed to only 1,000 required by our algorithm.

It compares well with the quantum computer where Grover’s quantum algorithm
(see [5]) has the same (quantum) time complexity, hence it makes sense to briefly
compare these algorithms. First, a common weakness is that in both cases the time
complexity refers only to the actual “computational time”, i.e. the time necessary to
read the input is not taken into consideration. Note that reading the input is not trivial:
it requires the preparation of an equally distributed superposition of all possible indices
of the items in the list containing the target index in case of Grover’s algorithm and
the set up of beads, rods and their connections in our case. In a sense both operations
involve O(N) steps. The advantage of our algorithm over Grover’s is its deterministic
nature: in contrast with the probabilistic nature of Grover’s algorithm, a Monte Carlo
type of procedure producing fast a probable result (with high probability), our method
is guaranteed correct.

Of course, we have discussed an algorithm involving a physical device that might
be (impractically) huge, especially when the list size it can handle is large. We have

198



to sort the list before search could be performed, and it is not possible to extract
the original (unsorted) list after searching. Also, we have assumed that the beads are
free falling objects uninfluenced by friction due to air resistance. Though we have not
concentrated on the energy consumption for the operation of the device by taking into
account, the mass of beads, friction, etc. we wish to make the following observations.
Once the beads are allowed to drop down, they are propelled by “free energy” derived
from gravity. Instead, as one of the referees had suggested, one could accelerate the
beads to a greater extent (than what is achieved by gravity) thus obtaining higher
speeds of computation, though at the cost of spending extra energy.

7 Acknowledgement

We acknowledge Pulkit Grover for his critical comments on this paper. We also wish
to thank the referees for their suggestions.

References

1. J. J. Arulanandham. The Bead–Sort. Animation, www.cs.auckland.ac.nz/∼jar-

-u003/BeadSort.ppt.
2. J. J. Arulanandham. Implementing Bead-Sort with P systems, In Proc. 3rd International

Conference on Unconventional Models of Computation, UMC ’02, 2002, 115–125.
3. J. J. Arulanandham, C. S. Calude, M. J. Dinneen. Bead–Sort: A natural sorting algorithm,

EATCS Bull., 76 (2002), 153–162.
4. L. Giavitto, J. Cohen, O. Michel. MGS simulation of Arulanandham–

Calude–Dinneen Bead–Sort, http://www.lami.univ-evry.fr/mgs/ImageGallery/

mgs gallery.html#beadsort.

5. L. K. Grover. A fast quantum mechanical algorithm for database search, Proceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of Computing, 1996, 212–219.

6. Mark Sams. The SquareList Data Structure, Dr. Dobb’s Journal, pages 37–40, May 2003,
http://www.ddj.com.

199


