Agrawal R., Carey M., Faloutsos C., Ghosh S., Houtsma M., Imielinski T., Iyer
B., Mahboob A., Miranda H., Srikant R. and Swami A.: "Quest: a Project on
Database Mining", Proceedings ACM International Conference on Management
of Data (SIGMOD), p.514, Minneapolis, MN, 1994.
Agrawal R., Imielinski T. and Swami A.: "Mining Association Rules between Sets
of Items in Large Databases", Proceedings ACM International Conference on
Management of Data (SIGMOD), pp.207-216, Washington, DC, 1993.
Agrawal R. and Srikant R.: "Fast Algorithms for Mining Association Rules in
Large Databases", Proceedings 20th International Conference on Very Large
Data Bases (VLDB), pp.487-499, Santiago, Chile, 1994.
Barbara D., Faloutsos C., Hellerstein J., Ioannidis Y., Jagadish H.V., Johnson T.,
Ng R., Poosala V., Ross K. and Sevcik K.V.: "The New Jersey Data Redduction Report",
IEEE Data Engineering Bulletin, Vol.20, No4, pp.3-45, 1996.
Berson A. and Smith S.: "Data Warehousing, Data Mining, and OLAP", McGraw
Hill, 1997.
Breiman L., Friedman J., Olshen R. and Stone C.: "Classification and Regression
Trees", Wadsworth, 1984
Brin S., Motwami R., Ullman J.D. and Tsur S.: "Dynamic Itemset Counting and
Implication Rules for Market Basket Data", Proceedings ACM International
Conference on Management of Data (SIGMOD), pp.255-264, Tucson, AZ, 1997.
Cai Y., Cercone N. and Han J.: "Attribute-Oriented Induction in Relational
Databases", chapter in book "Knowledge Discovery in Databases", by
Piatetsky-Shapiro G. and Frawley W. (eds), AAAI Press / The MIT Press,
1st edition, pp.213-228, 1991.
Carbonell J., Michalski R. and Mitchell T.: "An Overview of Machine Learning",
chapter in book "Machine Learning, an Artificial Intelligence Approach", by
Michalski R., Carbonell J. and Mitchell T. (eds.), Morgan Kaufmann, Vol.1,
pp.3-24, 1983.
Cercone N. and Tsuchiya M. (eds.): "Special issue on Learning and Discovery
in Databases", IEEE Transactions on Knowledge and Data Engineering, Vol.5,
No.6, pp.901-902, 1993.
Cerrito P.: "Introduction to Data Mining Using SAS Enterprise Miner", SAS
Press, 2006.
\bibitem
Chan C.Y. and Ioannidis Y.: "Bitmap Index Design and Evaluation",
Proceedings ACM International Conference on Management of Data (SIGMOD),
pp.355-366, Seattle, WA, 1998.
Chaudhuri S. and Dayal U.: "An Overview of Datawarehousing and OLAP TEchnology",
ACM SIGMOD Record, Vol.26, No.1, pp.65-74, 1997.
Chen M.S., Han J. and Yu P.S.: "Data Mining: an Overview from a Database
Perspective", IEEE Transactions on Knowledge and Data Engineering, Vol.8,
No.6, pp.866-883, 1996.
Clifton C. and Marks D.: "Security and Privacy Implications of Data Mining",
Proceedings ACM SIGMOD Workshop on Data Mining and Knowledge Discovery
(DMKD), pp.15-19, Montreal, Canada, 1996.
Cohen P.R. and Jensen D.: "Overfitting Explained", Preliminary Papers 6th
International Workshop on Artificial Intelligence and Statistics, pp.115-122,
1997.
Curotto C.L. and Ebecken N.F.F.: "Implementing Data Mining Algorithms in
Microsoft SQL Server", WIT Press, 2005.
Domingos P.: "Why Does Bagging Work? a Bayesian Account and its Implications",
Proceedings 3rd International Conference on Knowledge Discovery and Data
Mining (KDD), pp.155-158, Newport Beach, CA, 1997.
Dunham M.: "Data Mining Introductory and Advanced Topics", Prentice Hall,
2003.
Duran B. and Odell P.: "Cluster Analysis: a Survey", Spinger-Verlag,
Lecture Notes in Economics and Mathematical Systems, Vol.100, 1974.
Engels R., Lindner G. and Studer R.: "A Guided Tour through the Data Mining
Jungle", Proceedings 3rd International Conference on Knowledge Discovery
and Data Mining (KDD), pp.163-166, Newport Beach, CA, 1997.
Ester M., and Kriegel H.P. and Xu X.W.: "Knowledge Discovery in Large Spatial
Databases - Focusing Techniques for Efficient Class Identification",
Proceedings 4th International Symposium on Advances in Spatial Databases (SSD),
pp.67-82, Portland, ME, 1995.
Ester M., Kriegel H.P.. Sander J. and Xu X.: "A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise", Proceedings
2nd International Conference on Knowledge Discovery and Data Mining (KDD),
pp.226-231, Portland, OR, 1996.
Fayyad U.M. and Irani K.B.: "The Attribute Selection Problem in Decision Tree
Generation", Proceedings 10th National Conference on Artificial
Intelligence (AAAI), pp.104-110, San Jose, CA, 1992.
Fayyad U.M.: "Data Mining and Knowledge Discovery - Making Sense out of Data",
IEEE Expert - Intelligent Systems and their Applications, Vol.11, No.5,
pp.20-25, 1996.
Fayyad U., Piatetsky-Shapiro G. and Smyth P.: "Knowledge Discovery and Data
Mining: Towards a Unifying Framework", Proceedings 2nd International
Conference on Knowledge Discovery and Data Mining (KDD), pp.82-88, Portland,
OR, 1996.
Fayyad U., Piatetsky-Shapiro G. and Smyth P.: "From Data Mining to Knowledge
Discovery in Databases", AI Magazine, Vol.17, No.3, pp.37-54, 1996.
Fayyad U.M., Piatetsky-Shapiro G., Smyth P. and Uthurusamy R.: "Advances in
Knowledge Discovery and Data Mining", MIT Press, 1996.
Fayyad U. and Uthurusamy R.: "Data Mining and Knowledge Discovery in
Databases", Communications of the ACM, Vol.39, No.11, pp.24-27, 1996.
Frawley W.J.: "Using Function to Encode Domain and Contextual Knowledge in
Statistical Induction", chapter in book "Knowledge Discovery in Databases", by
Piatetsky-Shapiro G. and Frawley W.J. (eds.), pp.261-276, AAAI Press / MIT Press,
1991.
Frawley W.J., Piatetsky-Shapiro G. and Matheus C.J.: "Knowledge Discovery in
Databases: an Overview", chapter in book "Knowledge Discovery in Databases", by
Piatetsky-Shapiro G. and Frawley W.J. (eds.), pp.1-30, AAAI Press / MIT Press, 1991.
Frawley W., Piatetsky-Shapiro G. and Matheus C.: "Knowledge Discovery in
Databases: an Overview", AI Magazine, pp.213-228, 1992.
Gehrke J., Ramakrishnan R. and Ganti V.: "Rainforest: a Framework for Fast
Decision Tree Construction of large datasets", Data Mining and Knowledge
Discovery, Vol.4, No.2-3, pp.127-162, 2000.
Gray J., Chaudhuri S., Bosworth A., Layman A., Reichart D., Venkatrao M., Pellow F.
and Pirahesh H.: "Data Cube: a Relational Aggregation Operator Generalizing Goup-by,
Cross-tab and Sub-totals", data Mining and Knowledge Discovery, Vol.1, No.1,
pp.29-54, 1997.
Guha S., Rastogi R. and Shim K.: "CURE: an Efficient Clustering Algorithm for
Large Databases", Proceedings ACM International Conference on Management
of Data (SIGMOD), pp.73-84, Seattle, WA, 1998.
Guha S., Rastogi R. and Shim K.: "ROCK: a Robust Clustering Algorithm for
Categorical Attributes", Proceedings 15th IEEE International Conference on
Data Engineering (ICDE), pp.512-521, Sidney, Australia, 1998.
Gupta A. and Mumick J.S.: "Materialized Views: Techniques, Implementations and
Applications", MIT Press, 1999.
Han J. and Cai Y. and Cercone N.: "Knowledge Discovery in Databases: an
Attribute-oriented Approach", Proceedings 18th International Conference on
Very Large Data Bases (VLDB), pp.547-559, Vancouver, Canada, 1992.
Han J.: "Data Mining Techniques", Proceedings ACM International Conference
on Management of Data (SIGMOD), p.545, Montreal, Canada, 1996.
Han J., Fu Y, Wang W., and Chiang J., Gong W., Koperski K., Li D., Lu Y.,
Rajan A., Stefanovic N., Xia B. and Zaiane O.: "DBMiner: a System for Mining
Knowledge in Large Relational Databases", Proceedings 2nd International
Conference on Knowledge Discovery and Data Mining (KDD), pp.250-255, Portland,
OR, 1996.
Han J. and Kamber M.: "Data Mining: Concepts and Techniques", 2nd edition,
Morgan Kaufmann, 2006.
Hand D., Mannila H. and Smyth P.: "Principles of Data Mining", MIT Press,
2000.
Harinath S. and Quinn S.: "Professional SQL Server Analysis Services 2005 with
MDX", John Wiley, 2006.
Hedberg S.R.: "The Data Gold Rush - Here's how Corporations, Researchers, and
Scientists are Using Data-mining Techniques to Discover Everything from New
Customers to New Galaxies", Byte Magazine, Vol.20, No.10, p.83, 1995.
Hinneburg A. and Keim D.: "An Efficient Approach to Clustering in Large
Multimedia Databases with Noise", Proceedings 4th International Conference
on Knowledge Discovery and Data Mining (KDD), pp.58-65, New York, NY, 1998.
Holsheimer M. and Siebes A.: "Data Mining, the Search for Knowledge in
Databases", Technical report CS-R9406, CWI, Amsterdam, 1994.
Inmon W.H.: "The Data Warehouse and Data Mining", Communications of the
ACM, Vol.39, No.11, pp.49-50, 1996.
Jain A.K. and Dubes R.C.: "Algorithms for Clustering Data", Prentice Hall,
1988.
Jain A.K., Murty M.N. and Flyn P.J.: "Data Clustering: a Survey", ACM
Computing Surveys, Vol.31, No.3, pp.264-323, 1999.
Kantardzic M. "Data Mining: Concepts, Models, Methods, and Algorithms",
Wiley-IEEE Press, 2002.
Kargupta H., Joshi A., Sivakumar K. and Yesh Y. (eds.): "Data Mining: Next
Generation Challenges and Future Directions", AAAI Press, 2004.
Karypis G., Han E.H. and Kumar V.: "CHAMELEON: a Hierarchical Clustering
Algorithm Using Dynamic Modeling", IEEE Computer, Vol.32, No.8, pp.68-75, 1999.
Kauffman L. and Rousseeuw P.J.: "Finding Groups in Data: an Introduction to
Cluster Analysis", John Wiley, 1990.
Kersten M. and Holsheimer M.: "On the Symbiosis of a Data Mining Environment
and a DBMS", Technical report, CWI, Amsterdam, 1995.
Kimbal R., Reeves L. and Ross M.: "The Data Warehouse Lifecycle Toolkit",
John Wiley, 1998.
Kloesgen W.: "Knowledge Discovery in Databases and Data Mining",
Proceedings 9th International Symposium on Foundations of Intelligent
Systems (ISMIS), pp.623-632, Zakopane, Poland, 1996.
Kohavi R., Sommerfield D. and Dougherty J.: "Data Mining Using MLC++: a
Machine Learning Library in C++", Proceedings 8th International Conference
on Tools with Artificial Intelligence (ICTAI), pp.234-245, Toulouse, France, 1996.
Krivda C.: "Data-Mining Dynamite - Supercharge your Data-mining Projects
with Data Cleansing, Data Warehouses, Parallel Processing, and Mega-storage",
Byte Magazine, Vol.20, No.10, p.97, 1995.
Lachev T.: "Applied Microsoft Analysis Services 2005", Prologika, 2005.
Linoff G.: "Data Analysis using SQL and Excel", John Wiley, 2007.
MacQueen J.B.: "Some methods for Classification and Analysis of Multivariate
Observations", Proceedings 5th Berkeley Symposium on Mathematical
Statistics and Probability, Vol.1, pp.281-297, 1967.
Mehta M., Agrawal R. and Rissanen J.: "SLIQ: a Fast Scalable Classifier
for Data Mining", Proceedings 5th International Conference on Extending
Database Technology (EDBT), pp.18-32, Avignon, France, 1996.
Melomed E., Gorbach I., Berger A. and Bateman P.: "Microsoft SQL Server 2005
Analysis Services", Sams Publishing, 2006.
Michalski R., Carbonell J. and Mitchell T. (eds.): "Machine Learning,
an Artificial Intelligence Approach", Morgan Kaufmann, Vol.1, 1983.
Miller R. and Yang Y.: "Association Rules over Interval Data", Proceedings
ACM International Conference on Management of Data (SIGMOD), pp.452-461,
Tucson, AZ, 1997.
Mitchell T.: "Machine Learning", McGraw Hill, 1997.
Mitra S. and Acharya T.: "Data Mining - Multimedia, Soft Computing and
Bioinformatics", John Wiley, 2003.
Musick R.: "Belief Network Induction", Ph.D. dissertation, University of
California, Berkeley, 1994.
Nanopoulos A. and Manolopoulos Y.: "Efficient Similarity Search for Market
Basket Data", The VLDB Journal, Vol.11, No.2, pp.138-152, 2002.
Nanopoulos A., Theodoridis Y. and Manolopoulos Y.: "C2P: Clustering based
on Closest Pairs", Proceedings 27th International Conference on Very
Large Data Bases (VLDB), pp.331-340, Rome, Italy, 2001.
Nanopoulos A. and Manolopoulos Y.: "Memory-adaptive Association Rules Mining",
Information Systems, Vol.29, No.5, pp.365-384, 2004.
Nanopoulos A., Theodoridis Y. and Manolopoulos Y.: "Indexed-based Density
Sampling for Clustering Applications", Data and Knowledge Engineering,
Vol.57, No.1, pp.37-63, 2006.
Nanopoulos A., Papadopoulos A. and Manolopoulos Y.: "Mining Association Rules
in Very Large Clustered Domains", Information Systems, Vol.32, No.5,
pp.649-669, 2007.
Ng R. and Han J.: "Efficient and Effective Clustering Methods for Spatial
Data Mining", Proceedings 20th International Conference on Very Large
Databases (VLDB), pp.144-155, Santiago, Chile, 1994.
Quinlan J.R.: "C4.5: Programs for Machine Learning", Morgan Kaufmann,
1992.
O'Neil P. and Graefe G.: "Multi-table Joins through Bitmapped Join Indices",
ACM SIGMOD Record, Vol.24, No.3, pp.8-11, 1995.
Park J.S., Chen M.S. and Yu P.S.: "An Effective Hash Based Algorithm for
Mining Association Rules", Proceedings ACM International Conference
on Management of Data (SIGMOD), pp.175-186, San Jose, CA, 1995.
Parsaye K. and Chignell M.: "Intelligent Database Tools and Applications",
John Wiley, 1993.
Piatetsky-Shapiro G.: "Knowledge Discovery in Databases", IEEE Expert -
Intelligent Systems and their Applications, Vol.6, No.5, pp.74-76, 1991.
Piatetsky-Shapiro G. and Frawley W. (eds.): "Knowledge Discovery in
Databases", The MIT Press, 1991.
Piatetsky-Shapiro G.: "Discovery, Analysis and Presentation of Strong Rules",
chapter in book "Knowledge Discovery in Databases", by Piatetsky-Shapiro G.
and Frawley W.J. (eds.), pp.229-248, AAAI Press / MIT Press, 1991.
Piatetsky-Shapiro G.: "Knowledge Discovery in Real Databases: a Report on
the IJCAI-89 Workshop", AI Magazine, Vol.11, No.5, pp.68-70, 1991.
Piatetsky-Shapiro G.: "Special Issue Introduction - Knowledge Discovery in
Data-bases and Knowledge Bases", International Journal of Intelligent
Systems, Vol.7, No.7, pp.587-589. 1992.
Procopiuc C.M., Jones M., Agarwal P.K. and Murali T.M.: "A Monte Carlo
Algorithm for Fast Projective Clustering", Proceedings ACM International
Conference on Management of Data (SIGMOD), pp.418-427, Madison, WI, 2002.
Pyle D.: "Data Preparation for Data Mining", Morgan Kaufmann, 1999.
Quinlan J.R.: "Induction of Decision Trees", Machine Learning, Vol.1,
No.1, pp.81-106, 1986.
Rastogi R. and Shim K.: "PUBLIC: a Decision Tree Classifier that Integrates
Building and Pruning", Proceedings 22nd International Conference on Very
Large Data Bases (VLDB), pp.404-415, New York, NY, 1998.
Ross K. and Srivastava D.: "Fast Computation of Sparse Datacubes",
Proceedings 23rd International Conference on Very Large Data Bases (VLDB),
pp.116-125, Athens, 1997.
Shaffer J., Agrawal R. and Mehta M.: "SPRINT: a Scalable Parallel Classifier
for Data Mining", Proceedings 22nd International Conference on Very Large
Data Bases (VLDB), pp.544-555, Bombay, India, 1996.
Sheikholeslami C., Chatterjee S. and Zhang A.: "WaveCluster: a Multi-resolution
Clustering Approach for Very Large Spatial Databases", Proceedings 22nd
International Conference on Very Large Data Bases (VLDB), pp.428-439, New York,
NY, 1998.
Srikant R. and Agrawal R.: "Mining Quantitative Association Rules in Large
Relational Databases", Proceedings ACM International Conference on
Management of Data (SIGMOD), pp.1-12, Montreal, Canada, 1996.
Srikant R., Vu Q. and Agrawal R.: "Mining Association Rules with Item
Constraints", Proceedings 3rd International Conference on Knowledge
Discovery and Data Mining (KDD), pp.67-73, Newport Beach, CA, 1997.
Tan P.N., Steinbach M. and Kumar V.: "Introduction to Data Mining",
Pearson Addison Wesley, 2005.
Tang Z.H. and MacLennan J.: "Data Mining with SQL Server 2005", John Wiley, 2005.
Ullman J.D.: "Efficient Implementation of Data Cubes via Materialized
Views", Proceedings 2nd International Conference on Knowledge
Discovery and Data Mining (KDD), pp.386-388, Portland, OR, 1996.
Vickery B.: "Knowledge Discovery from Databases: an Introductory Review",
Journal of Documentation, Vol.53, No.2, pp.107-122, 1997.
Walker M.: "How Feasible is Automated Discovery", IEEE Expert, pp.69-82,
Spring 1987.
Wang W., Yang J. and Muntz R.: "STING: a Statistical Information Grid Approach
to Spatial Data Mining", Proceedings 23rd International Conference on Very
Large Data Bases (VLDB), pp.186-195, Athens, 1997.
Ye N. (ed.): "The Handbook of Data Mining", Taylor and Francis, 2003.
Zhang T., Ramakrishnan R., Linvy M.: "BIRCH: an Efficient Method for Very
Large Databases", Proceedings ACM International Conference on Management
of Data (SIGMOD), pp.103-114, Montreal, Canada, 1996.