Βιβλιογραφία

Agrawal R., Carey M., Faloutsos C., Ghosh S., Houtsma M., Imielinski T., Iyer B., Mahboob A., Miranda H., Srikant R. and Swami A.: "Quest: a Project on Database Mining", Proceedings ACM International Conference on Management of Data (SIGMOD), p.514, Minneapolis, MN, 1994.

Agrawal R., Imielinski T. and Swami A.: "Mining Association Rules between Sets of Items in Large Databases", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.207-216, Washington, DC, 1993.

Agrawal R. and Srikant R.: "Fast Algorithms for Mining Association Rules in Large Databases", Proceedings 20th International Conference on Very Large Data Bases (VLDB), pp.487-499, Santiago, Chile, 1994.

Barbara D., Faloutsos C., Hellerstein J., Ioannidis Y., Jagadish H.V., Johnson T., Ng R., Poosala V., Ross K. and Sevcik K.V.: "The New Jersey Data Redduction Report", IEEE Data Engineering Bulletin, Vol.20, No4, pp.3-45, 1996.

Berson A. and Smith S.: "Data Warehousing, Data Mining, and OLAP", McGraw Hill, 1997.

Breiman L., Friedman J., Olshen R. and Stone C.: "Classification and Regression Trees", Wadsworth, 1984

Brin S., Motwami R., Ullman J.D. and Tsur S.: "Dynamic Itemset Counting and Implication Rules for Market Basket Data", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.255-264, Tucson, AZ, 1997.

Cai Y., Cercone N. and Han J.: "Attribute-Oriented Induction in Relational Databases", chapter in book "Knowledge Discovery in Databases", by Piatetsky-Shapiro G. and Frawley W. (eds), AAAI Press / The MIT Press, 1st edition, pp.213-228, 1991.

Carbonell J., Michalski R. and Mitchell T.: "An Overview of Machine Learning", chapter in book "Machine Learning, an Artificial Intelligence Approach", by Michalski R., Carbonell J. and Mitchell T. (eds.), Morgan Kaufmann, Vol.1, pp.3-24, 1983.

Cercone N. and Tsuchiya M. (eds.): "Special issue on Learning and Discovery in Databases", IEEE Transactions on Knowledge and Data Engineering, Vol.5, No.6, pp.901-902, 1993.

Cerrito P.: "Introduction to Data Mining Using SAS Enterprise Miner", SAS Press, 2006. \bibitem Chan C.Y. and Ioannidis Y.: "Bitmap Index Design and Evaluation", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.355-366, Seattle, WA, 1998.

Chaudhuri S. and Dayal U.: "An Overview of Datawarehousing and OLAP TEchnology", ACM SIGMOD Record, Vol.26, No.1, pp.65-74, 1997.

Chen M.S., Han J. and Yu P.S.: "Data Mining: an Overview from a Database Perspective", IEEE Transactions on Knowledge and Data Engineering, Vol.8, No.6, pp.866-883, 1996.

Clifton C. and Marks D.: "Security and Privacy Implications of Data Mining", Proceedings ACM SIGMOD Workshop on Data Mining and Knowledge Discovery (DMKD), pp.15-19, Montreal, Canada, 1996.

Cohen P.R. and Jensen D.: "Overfitting Explained", Preliminary Papers 6th International Workshop on Artificial Intelligence and Statistics, pp.115-122, 1997.

Curotto C.L. and Ebecken N.F.F.: "Implementing Data Mining Algorithms in Microsoft SQL Server", WIT Press, 2005.

Domingos P.: "Why Does Bagging Work? a Bayesian Account and its Implications", Proceedings 3rd International Conference on Knowledge Discovery and Data Mining (KDD), pp.155-158, Newport Beach, CA, 1997.

Dunham M.: "Data Mining Introductory and Advanced Topics", Prentice Hall, 2003.

Duran B. and Odell P.: "Cluster Analysis: a Survey", Spinger-Verlag, Lecture Notes in Economics and Mathematical Systems, Vol.100, 1974.

Engels R., Lindner G. and Studer R.: "A Guided Tour through the Data Mining Jungle", Proceedings 3rd International Conference on Knowledge Discovery and Data Mining (KDD), pp.163-166, Newport Beach, CA, 1997.

Ester M., and Kriegel H.P. and Xu X.W.: "Knowledge Discovery in Large Spatial Databases - Focusing Techniques for Efficient Class Identification", Proceedings 4th International Symposium on Advances in Spatial Databases (SSD), pp.67-82, Portland, ME, 1995.

Ester M., Kriegel H.P.. Sander J. and Xu X.: "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", Proceedings 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp.226-231, Portland, OR, 1996.

Fayyad U.M. and Irani K.B.: "The Attribute Selection Problem in Decision Tree Generation", Proceedings 10th National Conference on Artificial Intelligence (AAAI), pp.104-110, San Jose, CA, 1992.

Fayyad U.M.: "Data Mining and Knowledge Discovery - Making Sense out of Data", IEEE Expert - Intelligent Systems and their Applications, Vol.11, No.5, pp.20-25, 1996.

Fayyad U., Piatetsky-Shapiro G. and Smyth P.: "Knowledge Discovery and Data Mining: Towards a Unifying Framework", Proceedings 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp.82-88, Portland, OR, 1996.

Fayyad U., Piatetsky-Shapiro G. and Smyth P.: "From Data Mining to Knowledge Discovery in Databases", AI Magazine, Vol.17, No.3, pp.37-54, 1996.

Fayyad U.M., Piatetsky-Shapiro G., Smyth P. and Uthurusamy R.: "Advances in Knowledge Discovery and Data Mining", MIT Press, 1996.

Fayyad U. and Uthurusamy R.: "Data Mining and Knowledge Discovery in Databases", Communications of the ACM, Vol.39, No.11, pp.24-27, 1996.

Frawley W.J.: "Using Function to Encode Domain and Contextual Knowledge in Statistical Induction", chapter in book "Knowledge Discovery in Databases", by Piatetsky-Shapiro G. and Frawley W.J. (eds.), pp.261-276, AAAI Press / MIT Press, 1991.

Frawley W.J., Piatetsky-Shapiro G. and Matheus C.J.: "Knowledge Discovery in Databases: an Overview", chapter in book "Knowledge Discovery in Databases", by Piatetsky-Shapiro G. and Frawley W.J. (eds.), pp.1-30, AAAI Press / MIT Press, 1991.

Frawley W., Piatetsky-Shapiro G. and Matheus C.: "Knowledge Discovery in Databases: an Overview", AI Magazine, pp.213-228, 1992.

Gehrke J., Ramakrishnan R. and Ganti V.: "Rainforest: a Framework for Fast Decision Tree Construction of large datasets", Data Mining and Knowledge Discovery, Vol.4, No.2-3, pp.127-162, 2000.

Gray J., Chaudhuri S., Bosworth A., Layman A., Reichart D., Venkatrao M., Pellow F. and Pirahesh H.: "Data Cube: a Relational Aggregation Operator Generalizing Goup-by, Cross-tab and Sub-totals", data Mining and Knowledge Discovery, Vol.1, No.1, pp.29-54, 1997.

Guha S., Rastogi R. and Shim K.: "CURE: an Efficient Clustering Algorithm for Large Databases", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.73-84, Seattle, WA, 1998.

Guha S., Rastogi R. and Shim K.: "ROCK: a Robust Clustering Algorithm for Categorical Attributes", Proceedings 15th IEEE International Conference on Data Engineering (ICDE), pp.512-521, Sidney, Australia, 1998.

Gupta A. and Mumick J.S.: "Materialized Views: Techniques, Implementations and Applications", MIT Press, 1999.

Han J. and Cai Y. and Cercone N.: "Knowledge Discovery in Databases: an Attribute-oriented Approach", Proceedings 18th International Conference on Very Large Data Bases (VLDB), pp.547-559, Vancouver, Canada, 1992.

Han J.: "Data Mining Techniques", Proceedings ACM International Conference on Management of Data (SIGMOD), p.545, Montreal, Canada, 1996.

Han J., Fu Y, Wang W., and Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A., Stefanovic N., Xia B. and Zaiane O.: "DBMiner: a System for Mining Knowledge in Large Relational Databases", Proceedings 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp.250-255, Portland, OR, 1996.

Han J. and Kamber M.: "Data Mining: Concepts and Techniques", 2nd edition, Morgan Kaufmann, 2006.

Hand D., Mannila H. and Smyth P.: "Principles of Data Mining", MIT Press, 2000.

Harinath S. and Quinn S.: "Professional SQL Server Analysis Services 2005 with MDX", John Wiley, 2006.

Hedberg S.R.: "The Data Gold Rush - Here's how Corporations, Researchers, and Scientists are Using Data-mining Techniques to Discover Everything from New Customers to New Galaxies", Byte Magazine, Vol.20, No.10, p.83, 1995.

Hinneburg A. and Keim D.: "An Efficient Approach to Clustering in Large Multimedia Databases with Noise", Proceedings 4th International Conference on Knowledge Discovery and Data Mining (KDD), pp.58-65, New York, NY, 1998.

Holsheimer M. and Siebes A.: "Data Mining, the Search for Knowledge in Databases", Technical report CS-R9406, CWI, Amsterdam, 1994.

Inmon W.H.: "The Data Warehouse and Data Mining", Communications of the ACM, Vol.39, No.11, pp.49-50, 1996.

Jain A.K. and Dubes R.C.: "Algorithms for Clustering Data", Prentice Hall, 1988.

Jain A.K., Murty M.N. and Flyn P.J.: "Data Clustering: a Survey", ACM Computing Surveys, Vol.31, No.3, pp.264-323, 1999.

Kantardzic M. "Data Mining: Concepts, Models, Methods, and Algorithms", Wiley-IEEE Press, 2002.

Kargupta H., Joshi A., Sivakumar K. and Yesh Y. (eds.): "Data Mining: Next Generation Challenges and Future Directions", AAAI Press, 2004.

Karypis G., Han E.H. and Kumar V.: "CHAMELEON: a Hierarchical Clustering Algorithm Using Dynamic Modeling", IEEE Computer, Vol.32, No.8, pp.68-75, 1999.

Kauffman L. and Rousseeuw P.J.: "Finding Groups in Data: an Introduction to Cluster Analysis", John Wiley, 1990.

Kersten M. and Holsheimer M.: "On the Symbiosis of a Data Mining Environment and a DBMS", Technical report, CWI, Amsterdam, 1995.

Kimbal R., Reeves L. and Ross M.: "The Data Warehouse Lifecycle Toolkit", John Wiley, 1998.

Kloesgen W.: "Knowledge Discovery in Databases and Data Mining", Proceedings 9th International Symposium on Foundations of Intelligent Systems (ISMIS), pp.623-632, Zakopane, Poland, 1996.

Kohavi R., Sommerfield D. and Dougherty J.: "Data Mining Using MLC++: a Machine Learning Library in C++", Proceedings 8th International Conference on Tools with Artificial Intelligence (ICTAI), pp.234-245, Toulouse, France, 1996.

Krivda C.: "Data-Mining Dynamite - Supercharge your Data-mining Projects with Data Cleansing, Data Warehouses, Parallel Processing, and Mega-storage", Byte Magazine, Vol.20, No.10, p.97, 1995.

Lachev T.: "Applied Microsoft Analysis Services 2005", Prologika, 2005.

Linoff G.: "Data Analysis using SQL and Excel", John Wiley, 2007.

MacQueen J.B.: "Some methods for Classification and Analysis of Multivariate Observations", Proceedings 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol.1, pp.281-297, 1967.

Mehta M., Agrawal R. and Rissanen J.: "SLIQ: a Fast Scalable Classifier for Data Mining", Proceedings 5th International Conference on Extending Database Technology (EDBT), pp.18-32, Avignon, France, 1996.

Melomed E., Gorbach I., Berger A. and Bateman P.: "Microsoft SQL Server 2005 Analysis Services", Sams Publishing, 2006.

Michalski R., Carbonell J. and Mitchell T. (eds.): "Machine Learning, an Artificial Intelligence Approach", Morgan Kaufmann, Vol.1, 1983.

Miller R. and Yang Y.: "Association Rules over Interval Data", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.452-461, Tucson, AZ, 1997.

Mitchell T.: "Machine Learning", McGraw Hill, 1997.

Mitra S. and Acharya T.: "Data Mining - Multimedia, Soft Computing and Bioinformatics", John Wiley, 2003.

Musick R.: "Belief Network Induction", Ph.D. dissertation, University of California, Berkeley, 1994.

Nanopoulos A. and Manolopoulos Y.: "Efficient Similarity Search for Market Basket Data", The VLDB Journal, Vol.11, No.2, pp.138-152, 2002.

Nanopoulos A., Theodoridis Y. and Manolopoulos Y.: "C2P: Clustering based on Closest Pairs", Proceedings 27th International Conference on Very Large Data Bases (VLDB), pp.331-340, Rome, Italy, 2001.

Nanopoulos A. and Manolopoulos Y.: "Memory-adaptive Association Rules Mining", Information Systems, Vol.29, No.5, pp.365-384, 2004.

Nanopoulos A., Theodoridis Y. and Manolopoulos Y.: "Indexed-based Density Sampling for Clustering Applications", Data and Knowledge Engineering, Vol.57, No.1, pp.37-63, 2006.

Nanopoulos A., Papadopoulos A. and Manolopoulos Y.: "Mining Association Rules in Very Large Clustered Domains", Information Systems, Vol.32, No.5, pp.649-669, 2007.

Ng R. and Han J.: "Efficient and Effective Clustering Methods for Spatial Data Mining", Proceedings 20th International Conference on Very Large Databases (VLDB), pp.144-155, Santiago, Chile, 1994.

Quinlan J.R.: "C4.5: Programs for Machine Learning", Morgan Kaufmann, 1992.

O'Neil P. and Graefe G.: "Multi-table Joins through Bitmapped Join Indices", ACM SIGMOD Record, Vol.24, No.3, pp.8-11, 1995.

Park J.S., Chen M.S. and Yu P.S.: "An Effective Hash Based Algorithm for Mining Association Rules", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.175-186, San Jose, CA, 1995.

Parsaye K. and Chignell M.: "Intelligent Database Tools and Applications", John Wiley, 1993.

Piatetsky-Shapiro G.: "Knowledge Discovery in Databases", IEEE Expert - Intelligent Systems and their Applications, Vol.6, No.5, pp.74-76, 1991.

Piatetsky-Shapiro G. and Frawley W. (eds.): "Knowledge Discovery in Databases", The MIT Press, 1991.

Piatetsky-Shapiro G.: "Discovery, Analysis and Presentation of Strong Rules", chapter in book "Knowledge Discovery in Databases", by Piatetsky-Shapiro G. and Frawley W.J. (eds.), pp.229-248, AAAI Press / MIT Press, 1991.

Piatetsky-Shapiro G.: "Knowledge Discovery in Real Databases: a Report on the IJCAI-89 Workshop", AI Magazine, Vol.11, No.5, pp.68-70, 1991.

Piatetsky-Shapiro G.: "Special Issue Introduction - Knowledge Discovery in Data-bases and Knowledge Bases", International Journal of Intelligent Systems, Vol.7, No.7, pp.587-589. 1992.

Procopiuc C.M., Jones M., Agarwal P.K. and Murali T.M.: "A Monte Carlo Algorithm for Fast Projective Clustering", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.418-427, Madison, WI, 2002.

Pyle D.: "Data Preparation for Data Mining", Morgan Kaufmann, 1999.

Quinlan J.R.: "Induction of Decision Trees", Machine Learning, Vol.1, No.1, pp.81-106, 1986.

Rastogi R. and Shim K.: "PUBLIC: a Decision Tree Classifier that Integrates Building and Pruning", Proceedings 22nd International Conference on Very Large Data Bases (VLDB), pp.404-415, New York, NY, 1998.

Ross K. and Srivastava D.: "Fast Computation of Sparse Datacubes", Proceedings 23rd International Conference on Very Large Data Bases (VLDB), pp.116-125, Athens, 1997.

Shaffer J., Agrawal R. and Mehta M.: "SPRINT: a Scalable Parallel Classifier for Data Mining", Proceedings 22nd International Conference on Very Large Data Bases (VLDB), pp.544-555, Bombay, India, 1996.

Sheikholeslami C., Chatterjee S. and Zhang A.: "WaveCluster: a Multi-resolution Clustering Approach for Very Large Spatial Databases", Proceedings 22nd International Conference on Very Large Data Bases (VLDB), pp.428-439, New York, NY, 1998.

Srikant R. and Agrawal R.: "Mining Quantitative Association Rules in Large Relational Databases", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.1-12, Montreal, Canada, 1996.

Srikant R., Vu Q. and Agrawal R.: "Mining Association Rules with Item Constraints", Proceedings 3rd International Conference on Knowledge Discovery and Data Mining (KDD), pp.67-73, Newport Beach, CA, 1997.

Tan P.N., Steinbach M. and Kumar V.: "Introduction to Data Mining", Pearson Addison Wesley, 2005.

Tang Z.H. and MacLennan J.: "Data Mining with SQL Server 2005", John Wiley, 2005.

Ullman J.D.: "Efficient Implementation of Data Cubes via Materialized Views", Proceedings 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp.386-388, Portland, OR, 1996.

Vickery B.: "Knowledge Discovery from Databases: an Introductory Review", Journal of Documentation, Vol.53, No.2, pp.107-122, 1997.

Walker M.: "How Feasible is Automated Discovery", IEEE Expert, pp.69-82, Spring 1987.

Wang W., Yang J. and Muntz R.: "STING: a Statistical Information Grid Approach to Spatial Data Mining", Proceedings 23rd International Conference on Very Large Data Bases (VLDB), pp.186-195, Athens, 1997.

Ye N. (ed.): "The Handbook of Data Mining", Taylor and Francis, 2003.

Zhang T., Ramakrishnan R., Linvy M.: "BIRCH: an Efficient Method for Very Large Databases", Proceedings ACM International Conference on Management of Data (SIGMOD), pp.103-114, Montreal, Canada, 1996.