

An Introduction to Cluster Computing

with Apache Hadoop

Anastasios Gounaris
Apostolos N. Papadopoulos

Assistant Professors

Data Engineering Lab,
Department of Informatics

Aristotle University of Thessaloniki
GREECE

http://delab.csd.auth.gr/courses/c_bigdata/index.html

 2

Outline

- Why one machine is not enough ?

- Parallel architectures

- Important issues in cluster computing

- Hadoop MapReduce

- Theoretical Issues

- Spark

 3

Motivation

We need more CPUs because:

To run programs faster

We need more disks because:

modern applications require huge amounts of data

with many disks we can perform I/O in parallel

Assume that we are able to build a single disk with 500 TB capacity. This is
enough to store more than 20 billion webpages (assuming an average size
per page of 20KB).

However, just to scan these 500 TB we need more than 4 months if the disk
can bring 40 MB/sec. Imagine the time required to process the data !

 4

What is Happening Today

 5

In the Near Future

“IBM Research and Dutch astronomy agency
Astron work on new technology to handle

 one exabyte of raw data per day

that will be gathered by the world largest radio
telescope, the Square Kilometer Array, when
activated in 2024.”

 6

Some Challenges

 Scalability

 Load balancing

 Fault Tolerance

 Efficiency

 Data Stream processing

 Support for complex objects

 Accuracy/Speed tradeoffs (with performance
guarantees)

 7

Parallel Architectures

Shared Memory: processors share a common
main memory and also share secondary storage
(e.g., disks)

Shared Disk: processors share only secondary
storage, whereas each processor has its own
private memory

Shared Nothing: processors do not share
anything, each one has private secondary
storage and memory

 8

Parallel Architectures

P P P

M M M

Interconnection P P P

Interconnection

Shared Memory Interconnection

P P P

M M M

shared memory shared disk shared nothing

Scale-Up: put more resources into the system

to make it bigger and more powerful

Scale-Out: connect a large number of “ordinary”
machines and create a cluster

Scale-Out is more powerful than Scale-Up, and also
less expensive

 9

Scalability

 10

Scalability: measures

Among the three parallel architectures, shared-nothing is
the one that scales best. This is the main reason for
being adopted for building massively parallel systems
(thousands of processors)

- Speedup: monitor performance by increasing the
number of processors

- Sizeup: monitor performance by increasing only the
dataset size

- Scaleup: monitor performance by increase both the
number of processors and the dataset size

 11

The Speedup Curve

 12

Real Curves are Non-Linear

Why ?

Start-up costs: cost for starting an operation in a
processor

Interference: cost for communication among processors
and resource congestion

Skew: either in data or tasks → the slowest processor
becomes the bottleneck

Result formation: partial results from each processor
must be combined to provide the final result.

 13

Cluster Configuration Example

Aggregation switch

Rack switch

- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 Gbps bandwidth within rack, 8 Gbps out of rack
- 8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Source: Matei Zaharia

 14

Fault Tolerance

Failures are very common in massively parallel systems

Let P the probability that a disk will fail in the next month. If we have D disks in
total, the probability that at least one disk will fail is given by:

Prob {at least one disk failure} = 1 - (1- P)^D

e.g., D = 10000, P = 0.0001

Prob {at least one disk failure} = 0.63

 15

Fault Tolerance

Failures may happen because of:

Hardware not working properly

Disk failure

Memory failure (8% of DIMMs have problems)

Inadequate cooling (CPU overheating)

Resource unavailability

Due to overload

We must provide fault tolerance in the cluster!

 16

Fault Tolerance

Simplest protocol: if there is a failure, restart the
job.

Assume a job that requires 1 week of processing.
If there is a failure once per week, the job will
never finish!

 17

Fault Tolerance

A better protocol:

Replicate the data and also split the job in parts
and replicate them as well. As an alternative,
submit a smaller job (task) and if it fails then
start another one.

A large job must be decomposed to simpler ones.

Problems with MPI/RPC

Really hard to do at scale:

• How to split problem across nodes?

– Important to consider network and data locality

• How to deal with failures?

– If a typical server fails every 3 years, a 10,000-
node cluster sees 10 faults/day!

• Even without failures: stragglers (a node is slow)

 19

Hadoop

A very successful model and platform to run jobs in massively
parallel systems (thousands of processors and disks)

It contains two parts:

– the Hadoop MapReduce layer

– the Hadoop Distributed File System (HDFS)

 Hadoop is the open-source alternative of MapReduce and Google File
System (GFS) invented by Google. It has been used in Google's data centers
mainly for:

 1) constructing and maintaining the Inverted Index and

 2) executing the PageRank algorithm.

 20

Hadoop Ecosystem - indicative

Hadoop Distributed File System (HDFS)

Hadoop MapReduce

Pig
(Scripts)

Hive
(SQL queries)

Mahout
(Machine Learning)

Hbase
(NoSQL)

Ambari
(Provisioning, Management, Monitoring)

O
o
z
ie

(W

o
rk

fl
o

w
 &

 S
c
h

e
d

u
lin

g
)

Z
o
o
K

e
e
p
e
r

(C
o
o
rd

in
a
ti
o
n
)
S

q
o
o

p

(D
a
ta

 In
te

g
ra

tio
n
)

Spark/
Flink

 21

Hadoop

1 2 3 4

1 2 4 1 2 3 1 3 4 2 3 4

Replication

The the file is split in chunks. Each is replicated three times in this example.

 22

Processing in Hadoop

Based on key-value pairs

Each job is composed of one or more MR stages

Each MR stage comprises:

 the map phase

 the shuffle-and-sort phase

 the reduce phase

The programmer focuses on the problem.
Replication, fault tolerance, scheduling, re-
scheduling and other low level procedures are
handled by Hadoop.

 23

WordCount: the “hello world” of Hadoop

 24

MapReduce API

The programmer must implement the following functions:

map(): accepts a set of key-value pairs and generates another list
of key-value pairs.

combine(): performs an aggregation before sending the data to
reducers (reduces network traffic).

partition(): uses a hash function to distribute data to reducers
(load balancing, avoids hotspots).

reduce(): accepts a key and a list of values for this specific key
and performs an aggregation.

Note: combine() and partition() are optional

WordCount in Hadoop
import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text,

Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context

context) throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class Reduce extends Reducer<Text, IntWritable,

Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,

Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 }

}

 26

WordCount: the driver program

public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new

Path(args[1]));

 job.waitForCompletion(true);

 }

 27

WordCount: the map() function

public static class Map extends Mapper<LongWritable, Text, Text,

IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 28

WordCount: the reduce() function

public static class Reduce extends Reducer<Text, IntWritable,

Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,

Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

 29

Workflow in Hadoop

HDFS HDFS

 30

Hadoop Internals

NameNode: It is the master of HDFS that controls the slave DataNodes to perform low
level I/O tasks. The NameNode is the bookkeeper of HDFS and responsible to generate
and distribute file splits.

Secondary NameNode: It helps the NameNode to maintain the good shape of HDFS and
participates in the recovery process.

DataNode: Each slave machne runs a DataNode daemon. Its main responsibility is to
read/write HDFS blocks from/to the local file system. May communicate with other
DataNodes for replication.

JobTracker: This daemon lies in between the user application and the Hadoop cluster.
The main responsibility is to generate an execution plan for the user's job and to create
tasks and monitor their progress.

TaskTracker: This is the slave daemon for JobTracker. Each TaskTracker is responsible
for executing the individual tasks that the JobTracker assigns. There is a single
TaskTracker per slave node.

 31

Hadoop Internals

Master

JobTracker

TaskTracker

NameNode

DataNode

Slave

TaskTracker DataNode

Slave

 32

Hadoop Internals

JobTracker

TaskTracker

Map Reduce

TaskTracker

Map Reduce

TaskTracker

Map Reduce

Client

Master

Slave Slave Slave

 33

Hadoop Internals

YARN (Yet Another Resource Negotiator)

Also known as MapReduce2, it was designed to overcome

• scalability problems when we have many thousands of cores in
the cluster.

• Tight coupling with the MapReduce programming model

Up to now, the JobTracker takes care of resource allocation, job
scheduling (matching tasks with TaskTrackers) and task
progress monitoring (keeping track of tasks, restarting failed or
slow tasks, and doing task bookkeeping, such as maintaining
counter totals).

YARN splits the responsibility of the JobTracker to several
components.

MRv1 vs MRv2

From “Apache Hadoop™ YARN Moving beyond MapReduce and Batch Processing with
Apache Hadoop™ 2”, by Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline,
Joseph Niemiec,Jeff Markham

 35

Theoretical Issues in MR

Paper titles:

 “Upper and Lower Bounds on the Cost of a Map-Reduce Computation”

 “On the Computational Complexity of MapReduce”

 “A new Computation Model for Cluster Computing”

 “Fast Greedy Algorithms in MapReduce and Streaming”

 “Minimal MapReduce Algorithms”

 “Filtering: A Method for Solving Graph Problems in MapReduce”

 “A Model of Computation for MapReduce

 36

MR Limitations

Difficult to design efficient/optimal algorithms

– everything must be expressed in key-value pairs and

– Manually programmed by users,

– Strictly following a 2-phase (MapReduce) programming paradigm

A lot of disk I/Os (mappers reading HDFS and writing local data)

A lot of network traffic (shuffling is expensive)

Difficult to handle data skew (the curse of the last reducer!)

Not very good for iterative processing (requires many MR stages)

Not very good for streaming applications

 37

MR Limitations (w.r.t. Graphs)

MapReduce is not the ideal platform for graph
processing and mining graph objects, due to the
iterative nature of most algorithms.

Each iteration in MapReduce is usually expensive
because due to I/O operations in HDFS.

Need for Specialized Systems

Slide by Volker Markl

wrong
platform?

XQuery? SQL--

column
store++

scalable
parallel sort

Too many ad-hoc solutions

Spark

• Aims to create a unified cluster computing platform.

• Very successful as of today!

General Batch Processing

Pregel

Dremel

Impala
GraphLab

Giraph

Drill
Tez

S4
Storm

Specialized Systems

(iterative, interactive, ML, streaming, graph, SQL, etc)

(2004 – 2013)

(2014 – ?)

Mahout

