An Introduction to Cluster Computing with Apache Hadoop

Anastasios Gounaris
Apostolos N. Papadopoulos

Assistant Professors
Data Engineering Lab,
Department of Informatics
Aristotle University of Thessaloniki
GREECE

http://delab.csd.auth.gr/courses/c_bigdata/index.html
Outline

- Why one machine is not enough?
- Parallel architectures
- Important issues in cluster computing
- Hadoop MapReduce
- Theoretical Issues
- Spark
Motivation

We need **more CPUs** because:

- To run programs faster

We need **more disks** because:

- modern applications require huge amounts of data
 - with many disks we can perform I/O in parallel

Assume that we are able to build a single disk with **500 TB** capacity. This is enough to store **more than 20 billion webpages** (assuming an average size per page of **20KB**).

However, **just to scan** these 500 TB we need **more than 4 months** if the disk can bring **40 MB/sec**. Imagine the time required to process the data!
What is Happening Today

DATA NEVER SLEEPS

How Much Data Is Generated Every Minute?

THE MOBILE WEB RECEIVES 217 NEW USERS.

YOUTUBE USERS UPLOAD 48 HOURS OF NEW VIDEO.

EMAIL USERS SEND 204,166,667 MESSAGES.

GOOGLE RECEIVES OVER 2,000,000 SEARCH QUERIES.

WORDPRESS USERS PUBLISH 347 NEW BLOG POSTS.

FACEBOOK USERS SHARE 684,478 PIECES OF CONTENT.

571 NEW WEBSITES ARE CREATED.

FOURSQUARE USERS PERFORM 2,083 CHECK-INS.

FLICKR USERS ADD 3,125 NEW PHOTOS.

INSTAGRAM USERS SHARE 3,600 NEW PHOTOS.

TUMBLR BLOG OWNERS PUBLISH 27,778 NEW POSTS.

APPLES RECEIVES ABOUT 47,000 APP DOWNLOADS.

BRANDS & ORGANIZATIONS ON FACEBOOK RECEIVE 34,722 “LIKES.”

SHAP CONSUMERS SPEND $272,070 ON WEB SHOPPING.

TWEETERS USERS SEND OVER 100,000 TWEETS.

WITH NO SIGNS OF SLOWING, THE DATA KEPS GROWING

The global internet population grew 4.79 percent from 2010 to 2011 and now represents 2.1 BILLION PEOPLE.

These users are real, and they are out there leaving data trails everywhere they go. The team at Domo can help you make sense of this seemingly insurmountable heap of data, with solutions that help executives and managers bring all of their critical information together in one intuitive interface, and then use that insight to transform the way they run their business. To learn more, visit www.domo.com.

SOURCE: HTTP://NEWS.INVESTORS.COM, ROYAL PINDOM.COM, BLOG.GROVO.COM, BLOG.HUBSPOT.COM, SIMPLYZESTY.COM, POWORLD.COM, MITECHMAGAZINE.COM, DIGBY.COM
In the Near Future

“IBM Research and Dutch astronomy agency Astron work on new technology to handle one exabyte of raw data per day that will be gathered by the world largest radio telescope, the Square Kilometer Array, when activated in 2024.”
Some Challenges

- Scalability
- Load balancing
- Fault Tolerance
- Efficiency
- Data Stream processing
- Support for complex objects
- Accuracy/Speed tradeoffs (with performance guarantees)
Parallel Architectures

Shared Memory: processors share a common main memory and also share secondary storage (e.g., disks)

Shared Disk: processors share only secondary storage, whereas each processor has its own private memory

Shared Nothing: processors do not share anything, each one has private secondary storage and memory
Parallel Architectures

shared memory

shared disk

shared nothing
Scalability

Scale-Up: put more resources into the system to make it bigger and more powerful.

Scale-Out: connect a large number of “ordinary” machines and create a cluster.

Scale-Out is **more powerful** than Scale-Up, and also **less expensive**.
Scalability: measures

Among the three parallel architectures, shared-nothing is the one that **scales best**. This is the main reason for being adopted for building massively parallel systems (thousands of processors)

- **Speedup**: monitor performance by increasing the number of processors
- **Sizeup**: monitor performance by increasing only the dataset size
- **Scaleup**: monitor performance by increase both the number of processors and the dataset size
The Speedup Curve
Real Curves are Non-Linear

Why?

Start-up costs: cost for starting an operation in a processor

Interference: cost for communication among processors and resource congestion

Skew: either in data or tasks → the slowest processor becomes the bottleneck

Result formation: partial results from each processor must be combined to provide the final result.
Cluster Configuration Example

- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 Gbps bandwidth within rack, 8 Gbps out of rack
- 8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Source: Matei Zaharia
Fault Tolerance

Failures are very common in massively parallel systems

Let P the probability that a disk will fail in the next month. If we have D disks in total, the probability that at least one disk will fail is given by:

$$\text{Prob \{ at least one disk failure \} = 1 - (1 - P)^D}$$

e.g., $D = 10000$, $P = 0.0001$

$$\text{Prob \{ at least one disk failure \} = 0.63}$$
Fault Tolerance

Failures may happen because of:

Hardware not working properly
 - Disk failure
 - Memory failure (8% of DIMMs have problems)
 - Inadequate cooling (CPU overheating)

Resource unavailability
 - Due to overload

We must provide fault tolerance in the cluster!
Fault Tolerance

Simplest protocol: if there is a failure, restart the job.

Assume a job that requires 1 week of processing. If there is a failure once per week, the job will never finish!
Fault Tolerance

A better protocol:

Replicate the data and also split the job in parts and replicate them as well. As an alternative, submit a smaller job (task) and if it fails then start another one.

A large job must be decomposed to simpler ones.
Problems with MPI/RPC

Really hard to do at scale:

• How to split problem across nodes?
 – Important to consider network and data locality

• How to deal with failures?
 – If a typical server fails every 3 years, a 10,000-node cluster sees 10 faults/day!

• Even without failures: stragglers (a node is slow)
Hadoop

A very successful model and platform to run jobs in massively parallel systems (thousands of processors and disks)

It contains two parts:

- the Hadoop MapReduce layer
- the Hadoop Distributed File System (HDFS)

Hadoop is the open-source alternative of MapReduce and Google File System (GFS) invented by Google. It has been used in Google's data centers mainly for:

1) constructing and maintaining the Inverted Index and
2) executing the PageRank algorithm.
Hadoop Ecosystem - indicative

- Hadoop Distributed File System (HDFS)
- Hadoop MapReduce
- Pig (Scripts)
- Hive (SQL queries)
- Mahout (Machine Learning)
- Ambari (Provisioning, Management, Monitoring)
- Oozie (Workflow & Scheduling)
- Spark/Flink
- Hbase (NoSQL)
- ZooKeeper (Coordination)
- Sqoop (Data Integration)
- Oozie
- Pig
- Hive
- HDFS
- mahout
- oozie
- ambari
- hbase
- zookeeper
- sqoop
- hdfs
- hive
- mapreduce
- spark
- flink
- hadoop
- apachecentral
- apache
- apachehadoopcentral
Hadoop

Replication

The file is split in chunks. Each is replicated three times in this example.
Processing in Hadoop

Based on key-value pairs

Each job is composed of one or more MR stages

Each MR stage comprises:

- the map phase
- the shuffle-and-sort phase
- the reduce phase

The programmer focuses on the problem.

Replication, fault tolerance, scheduling, re-scheduling and other low level procedures are handled by Hadoop.
WordCount: the “hello world” of Hadoop
The programmer must implement the following functions:

map: accepts a set of key-value pairs and generates another list of key-value pairs.

combine: performs an aggregation before sending the data to reducers (reduces network traffic).

partition: uses a hash function to distribute data to reducers (load balancing, avoids hotspots).

reduce: accepts a key and a list of values for this specific key and performs an aggregation.

Note: combine() and partition() are optional.
public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 job.waitForCompletion(true);
 }
}
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 job.waitForCompletion(true);
}
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }
}
Workflow in Hadoop
Hadoop Internals

NameNode: It is the master of HDFS that controls the slave DataNodes to perform low level I/O tasks. The NameNode is the bookkeeper of HDFS and responsible to generate and distribute file splits.

Secondary NameNode: It helps the NameNode to maintain the good shape of HDFS and participates in the recovery process.

DataNode: Each slave machine runs a DataNode daemon. Its main responsibility is to read/write HDFS blocks from/to the local file system. May communicate with other DataNodes for replication.

JobTracker: This daemon lies in between the user application and the Hadoop cluster. The main responsibility is to generate an execution plan for the user's job and to create tasks and monitor their progress.

TaskTracker: This is the slave daemon for JobTracker. Each TaskTracker is responsible for executing the individual tasks that the JobTracker assigns. There is a single TaskTracker per slave node.
Hadoop Internals

Master

JobTracker NameNode

Slave

TaskTracker DataNode

Slave

TaskTracker DataNode
Hadoop Internals
YARN (Yet Another Resource Negotiator)
Also known as MapReduce2, it was designed to overcome

• scalability problems when we have many thousands of cores in the cluster.

• Tight coupling with the MapReduce programming model

Up to now, the JobTracker takes care of resource allocation, job scheduling (matching tasks with TaskTrackers) and task progress monitoring (keeping track of tasks, restarting failed or slow tasks, and doing task bookkeeping, such as maintaining counter totals).

YARN splits the responsibility of the JobTracker to several components.
Figure 3.1 The Hadoop 1.0 ecosystem. MapReduce and HDFS are the core components, while other components are built around the core.

Figure 3.2 YARN adds a more general interface to run non-MapReduce jobs within the Hadoop framework.

From “Apache Hadoop™ YARN Moving beyond MapReduce and Batch Processing with Apache Hadoop™ 2”, by Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline, Joseph Niemiec, Jeff Markham
Theoretical Issues in MR

Paper titles:

- “Upper and Lower Bounds on the Cost of a Map-Reduce Computation”
- “On the Computational Complexity of MapReduce”
- “A new Computation Model for Cluster Computing”
- “Fast Greedy Algorithms in MapReduce and Streaming”
- “Minimal MapReduce Algorithms”
- “Filtering: A Method for Solving Graph Problems in MapReduce”
- “A Model of Computation for MapReduce”
MR Limitations

Difficult to design efficient/optimal algorithms
 - everything must be expressed in key-value pairs and
 - Manually programmed by users,
 - Strictly following a 2-phase (Map→Reduce) programming paradigm
A lot of disk I/Os (mappers reading HDFS and writing local data)
A lot of network traffic (shuffling is expensive)
Difficult to handle data skew (the curse of the last reducer!)
Not very good for iterative processing (requires many MR stages)

Not very good for **streaming applications**
MR Limitations (w.r.t. Graphs)

MapReduce is not the ideal platform for graph processing and mining graph objects, due to the iterative nature of most algorithms.

Each iteration in MapReduce is usually expensive because due to I/O operations in HDFS.
Need for Specialized Systems

- General Batch Processing
- Specialized Systems:
 iterative, interactive, streaming, graph, etc.

MapReduce

- Pregel
- Giraph
- Dremel
- Drill
- GraphLab
- Tez
- FI
- Impala
- MillWheel
- S4
- Storm
Too many ad-hoc solutions

- SQL--
- XQuery?
- wrong platform?

- SQL++
- scalable parallel sort

Slide by Volker Markl
Spark

- Aims to create a unified cluster computing platform.
- Very successful as of today!

General Batch Processing

Specialized Systems
(iterative, interactive, ML, streaming, graph, SQL, etc)