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Motivation 

We need more CPUs because: 

To run programs faster 

 

We need more disks because: 

modern applications require huge amounts of data 

with many disks we can perform I/O in parallel 

 

Assume that we are able to build a single disk with 500 TB capacity. This is 
enough to store more than 20 billion webpages (assuming an average size 
per page of 20KB).  

However, just to scan these 500 TB we need more than 4 months if the disk 
can bring 40 MB/sec. Imagine the time required to process the data ! 
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What is Happening Today 
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In the Near Future 

“IBM Research and Dutch astronomy agency 
Astron work on new technology to handle  

           one exabyte of raw data per day  

that will be gathered by the world largest radio 
telescope, the Square Kilometer Array, when 
activated in 2024.” 
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Some Challenges 

 Scalability 

 Load balancing 

 Fault Tolerance 

 Efficiency 

 Data Stream processing 

 Support for complex objects 

 Accuracy/Speed tradeoffs (with performance 
guarantees) 
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Parallel Architectures 

Shared Memory: processors share a common 
main memory and also share secondary storage 
(e.g., disks) 

Shared Disk: processors share only secondary 
storage, whereas each processor has its own 
private memory 

Shared Nothing: processors do not share 
anything, each one has private secondary 
storage and memory 
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Parallel Architectures 
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Scale-Up: put more resources into the system  

to make it bigger and more powerful 

 

 

 

 

Scale-Out: connect a large number of “ordinary” 
machines and create a cluster 

Scale-Out is more powerful than Scale-Up, and also 
less expensive 
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Scalability 
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Scalability: measures 

Among the three parallel architectures, shared-nothing is 
the one that scales best. This is the main reason for 
being adopted for building massively parallel systems 
(thousands of processors) 

 

- Speedup: monitor performance by increasing the 
number of processors 

- Sizeup: monitor performance by increasing only the 
dataset size 

- Scaleup: monitor performance by increase both the 
number of processors and the dataset size 
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The Speedup Curve 
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Real Curves are Non-Linear  

Why ? 

 

Start-up costs: cost for starting an operation in a 
processor 

Interference: cost for communication among processors 
and resource congestion 

Skew: either in data or tasks → the slowest processor 
becomes the bottleneck 

Result formation: partial results from each processor 
must be combined to provide the final result. 
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Cluster Configuration Example 

Aggregation switch 

Rack switch 

- 40 nodes/rack, 1000-4000 nodes in cluster 
- 1 Gbps bandwidth within rack, 8 Gbps out of rack 
- 8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?) 

Source: Matei Zaharia 
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Fault Tolerance 

Failures are very common in massively parallel systems  

 

Let P the probability that a disk will fail in the next month. If we have D disks in 
total, the probability that at least one disk will fail is given by: 

 

Prob {at least one disk failure} = 1 - (1- P)^D 

 

e.g., D = 10000, P = 0.0001 

 

Prob {at least one disk failure} = 0.63 
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Fault Tolerance 

Failures may happen because of: 

 

Hardware not working properly 

Disk failure 

Memory failure (8% of DIMMs have problems) 

Inadequate cooling (CPU overheating) 

 

Resource unavailability 

Due to overload 

 

We must provide fault tolerance in the cluster! 
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Fault Tolerance 

Simplest protocol: if there is a failure, restart the 
job. 

 

Assume a job that requires 1 week of processing. 
If there is a failure once per week, the job will 
never finish! 
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Fault Tolerance 

A better protocol: 

 

Replicate the data and also split the job in parts 
and replicate them as well. As an alternative, 
submit a smaller job (task) and if it fails then 
start another one. 

 

A large job must be decomposed to simpler ones.  



Problems with MPI/RPC 

Really hard to do at scale: 

• How to split problem across nodes? 

– Important to consider network and data locality 

• How to deal with failures? 

– If a typical server fails every 3 years, a 10,000-
node cluster sees 10 faults/day! 

• Even without failures: stragglers (a node is slow) 
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Hadoop 

A very successful model and platform to run jobs in massively 
parallel systems (thousands of processors and disks) 

 

It contains two parts:  

–  the Hadoop MapReduce layer 

–  the Hadoop Distributed File System (HDFS) 

 

 Hadoop is the open-source alternative of MapReduce and Google File 
System (GFS) invented by Google. It has been used in Google's data centers 
mainly for:  

 1) constructing and maintaining the Inverted Index and  

 2) executing the PageRank algorithm. 



                    20 

Hadoop Ecosystem - indicative 

Hadoop Distributed File System (HDFS) 

Hadoop MapReduce 

Pig 
(Scripts) 

Hive 
(SQL queries) 

Mahout 
(Machine Learning) 

Hbase 
(NoSQL) 

Ambari 
(Provisioning, Management, Monitoring) 
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Hadoop 

1 2 3 4 

1 2 4 1 2 3 1 3 4 2 3 4 

Replication 

The the file is split in chunks. Each is replicated three times in this example. 
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Processing in Hadoop 

Based on key-value pairs 

Each job is composed of one or more MR stages 

Each MR stage comprises: 

 the map phase 

 the shuffle-and-sort phase 

 the reduce phase 

The programmer focuses on the problem. 
Replication, fault tolerance, scheduling, re-
scheduling and other low level procedures are 
handled by Hadoop. 
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WordCount: the “hello world” of Hadoop 
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MapReduce API 

The programmer must implement the following functions: 

  

map(): accepts a set of key-value pairs and generates another list 
of key-value pairs.  

combine(): performs an aggregation before sending the data to 
reducers (reduces network traffic).  

partition(): uses a hash function to distribute data to reducers 
(load balancing, avoids hotspots). 

reduce(): accepts a key and a list of values for this specific key 
and performs an aggregation. 

 

Note: combine() and partition() are optional 



WordCount in Hadoop 
import java.io.IOException; 

import java.util.*; 

         

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.conf.*; 

import org.apache.hadoop.io.*; 

import org.apache.hadoop.mapreduce.*; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 

         

public class WordCount { 

         

 public static class Map extends Mapper<LongWritable, Text, 

Text, IntWritable> { 

    private final static IntWritable one = new IntWritable(1); 

    private Text word = new Text(); 

         

   public void map(LongWritable key, Text value, Context 

context) throws IOException, InterruptedException { 

        String line = value.toString(); 

        StringTokenizer tokenizer = new StringTokenizer(line); 

        while (tokenizer.hasMoreTokens()) { 

            word.set(tokenizer.nextToken()); 

            context.write(word, one); 

        } 

    } 

 }  

         

 public static class Reduce extends Reducer<Text, IntWritable, 

Text, IntWritable> { 
 

    public void reduce(Text key, Iterable<IntWritable> values, 

Context context)  

      throws IOException, InterruptedException { 

        int sum = 0; 

        for (IntWritable val : values) { 

            sum += val.get(); 

        } 

        context.write(key, new IntWritable(sum)); 

    } 

 } 

  public static void main(String[] args) throws Exception { 

      Configuration conf = new Configuration(); 

      Job job = new Job(conf, "wordcount"); 

      job.setOutputKeyClass(Text.class); 

      job.setOutputValueClass(IntWritable.class); 

      job.setMapperClass(Map.class); 

      job.setReducerClass(Reduce.class); 

      job.setInputFormatClass(TextInputFormat.class); 

      job.setOutputFormatClass(TextOutputFormat.class); 

      FileInputFormat.addInputPath(job, new Path(args[0])); 

      FileOutputFormat.setOutputPath(job, new Path(args[1])); 

      job.waitForCompletion(true); 

   } 

         

}  
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WordCount: the driver program 

public static void main(String[] args) throws Exception { 

      Configuration conf = new Configuration(); 

      Job job = new Job(conf, "wordcount"); 

      job.setOutputKeyClass(Text.class); 

      job.setOutputValueClass(IntWritable.class); 

      job.setMapperClass(Map.class); 

      job.setReducerClass(Reduce.class); 

      job.setInputFormatClass(TextInputFormat.class); 

      job.setOutputFormatClass(TextOutputFormat.class); 

      FileInputFormat.addInputPath(job, new Path(args[0])); 

      FileOutputFormat.setOutputPath(job, new 

Path(args[1])); 

      job.waitForCompletion(true); 

   } 
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WordCount: the map() function 

public static class Map extends Mapper<LongWritable, Text, Text, 

IntWritable> { 

    private final static IntWritable one = new IntWritable(1); 

    private Text word = new Text(); 

         

   public void map(LongWritable key, Text value, Context context) 

throws IOException, InterruptedException { 

        String line = value.toString(); 

        StringTokenizer tokenizer = new StringTokenizer(line); 

        while (tokenizer.hasMoreTokens()) { 

            word.set(tokenizer.nextToken()); 

            context.write(word, one); 

        } 

    } 

 }  
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WordCount: the reduce() function 

public static class Reduce extends Reducer<Text, IntWritable, 

Text, IntWritable> { 

 

    public void reduce(Text key, Iterable<IntWritable> values, 

Context context)  

      throws IOException, InterruptedException { 

        int sum = 0; 

        for (IntWritable val : values) { 

            sum += val.get(); 

        } 

        context.write(key, new IntWritable(sum)); 

    } 

 } 



                    29 

Workflow in Hadoop 

HDFS HDFS 
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Hadoop Internals 

 

 
NameNode: It is the master of HDFS that controls the slave DataNodes to perform low 
level I/O tasks. The NameNode is the bookkeeper of HDFS and responsible to generate 
and distribute file splits. 
 
Secondary NameNode: It helps the NameNode to maintain the good shape of HDFS and 
participates in the recovery process.  
 
DataNode: Each slave machne runs a DataNode daemon. Its main responsibility is to 
read/write HDFS blocks from/to the local file system. May communicate with other 
DataNodes for replication. 
 
JobTracker: This daemon lies in between the user application and the Hadoop cluster. 
The main responsibility is to generate an execution plan for the user's job and to create 
tasks and monitor their progress.  
 
TaskTracker: This is the slave daemon for JobTracker. Each TaskTracker is responsible 
for executing the individual tasks that the JobTracker assigns. There is a single 
TaskTracker per slave node. 
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Hadoop Internals 
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Hadoop Internals 

JobTracker 

TaskTracker 

Map Reduce 
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Map Reduce 

TaskTracker 

Map Reduce 
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Hadoop Internals 

YARN (Yet Another Resource Negotiator) 

Also known as MapReduce2, it was designed to overcome 

• scalability problems when we have many thousands of cores in 
the cluster. 

• Tight coupling with the MapReduce programming model 

Up to now, the JobTracker takes care of resource allocation, job 
scheduling (matching tasks with TaskTrackers) and task 
progress monitoring (keeping track of tasks, restarting failed or 
slow tasks, and doing task bookkeeping, such as maintaining 
counter totals). 

YARN splits the responsibility of the JobTracker to several 
components. 



MRv1    vs    MRv2 

 

From “Apache Hadoop™ YARN Moving beyond MapReduce and Batch Processing with 
Apache Hadoop™ 2”, by Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline, 
Joseph Niemiec,Jeff Markham 
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Theoretical Issues in MR 

Paper titles: 

     “Upper and Lower Bounds on the Cost of a Map-Reduce Computation” 

     “On the Computational Complexity of MapReduce” 

     “A new Computation Model for Cluster Computing” 

     “Fast Greedy Algorithms in MapReduce and Streaming” 

     “Minimal MapReduce Algorithms” 

     “Filtering: A Method for Solving Graph Problems in MapReduce” 

     “A Model of Computation for MapReduce 
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MR Limitations 

Difficult to design efficient/optimal algorithms  

– everything must be expressed in key-value pairs and  

– Manually programmed by users, 

– Strictly following a 2-phase (MapReduce) programming paradigm 

A lot of disk I/Os (mappers reading HDFS and writing local data) 

A lot of network traffic (shuffling is expensive) 

Difficult to handle data skew (the curse of the last reducer!) 

Not very good for iterative processing (requires many MR stages) 

 

Not very good for streaming applications 
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MR Limitations (w.r.t. Graphs) 

MapReduce is not the ideal platform for graph 
processing and mining graph objects, due to the 
iterative nature of most algorithms. 

 

Each iteration in MapReduce is usually expensive 
because due to I/O operations in HDFS.  



Need for Specialized Systems 

 



Slide by Volker Markl 

wrong 
platform? 

XQuery? SQL-- 

column 
store++ 

scalable  
parallel sort 

Too many ad-hoc solutions 



Spark 

• Aims to create a unified cluster computing platform. 

• Very successful as of today! 

General Batch Processing 

Pregel 

Dremel 

Impala 
GraphLab 

Giraph 

Drill 
Tez 

S4 
Storm 

Specialized Systems 

(iterative, interactive, ML, streaming, graph, SQL, etc) 

(2004 – 2013) 

(2014 – ?) 

Mahout 


