
LAB: Working with HDFS and MapReduceLAB: Working with HDFS and MapReduce

A t i G iAnastasios Gounaris
Apostolos N. Papadopoulos

O tlineOutline

HDFS
- creating folders

i fil- copying files
- ...

Hadoop Programming with Java
- WordCounto dCou
- MaxTemp

2

ReminderReminder

3

ReminderReminder

4HDFS HDFS

TargetTarget

To be able to write distributed programsTo be able to write distributed programs
over a Hadoop cluster.

The examples are simple for illustration purposes BUT the
process we will follow is the same either we have an easy

diffi lt blor a difficult problem.

5

HDFSHDFS

To get a list of all available commands

hadoop fs -helphadoop fs help

The File System (FS) shell includes various shell-like
commands that directly interact with the Hadoopcommands that directly interact with the Hadoop
Distributed File System (HDFS) as well as other file
systems that Hadoop supportsy p pp

6

HDFSHDFS

Listing files

hadoop fs -ls /hadoop fs ls /

Initially the folder is empty

HDFSHDFS

Creating and deleting directories
C tCreate:
hadoop fs -mkdir /input1hadoop fs mkdir /input1

hadoop fs -rmdir /input1

Run:

hadoop fs -mkdir /input1hadoop fs mkdir /input1

hadoop fs -mkdir /input2

HDFSHDFS

Putting/getting files to/from HDFS

hadoop fs -put fname.txt /<hdfs path>/inputp p / _p / p

hadoop fs -get /<hdfs_path>/fname.txt .

HDFS PreparationHDFS Preparation

Input data
All i t d t fil i tAll necessary input data files we are going to use

need to be moved to hdfs:

h d f t l d t t /i t1hadoop fs -put leonardo.txt /input1

hadoop fs -put weather/* /input2hadoop fs put weather/ /input2

HDFSHDFS

Show file contents

hadoop fs -cat /input1/leonardo.txtp p

HDFSHDFS

File copy from directory1 of hdfs to directory2
hadoop fs -cp /directory1/leonardo txt /directory2/leonardo txthadoop fs cp /directory1/leonardo.txt /directory2/leonardo.txt

View the file
hadoop fs -cat /input1/leonardo.txt

Delete the fileDelete the file
hadoop fs -rm /input1/leonardo.txt

HDFSHDFS

Delete a directory and ALL CONTENTS

hadoop fs -rm -r /some-directoryhadoop fs rm r /some directory

BE VERY CAREFUL WHEN YOU USE IT!

HDFS PreparationHDFS Preparation

We will create an output directory to store the
output of hadoop jobsoutput of hadoop jobs

hadoop fs -mkdir /output

Hadoop with JavaHadoop with Java

We will focus on two examples of Hadoop jobs using the Java
programming language.programming language.

WordCount: given a collection of text documents find the numberWordCount: given a collection of text documents, find the number
of occurrences of each word in the collection.

M T i fil t i i t t t fi dMaxTemp: given a file containing temperature measurements, find
the maximum temperature recording per year.

WordCount: the mapperWordCount: the mapper
public static class TokenizerMapper extends Mapper<Object, Text, Text,

IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();private Text word = new Text();

public void map (Object key, Text value, Context context)public void map (Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());StringTokenizer itr new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set (itr.nextToken());(())

context.write (word, one);

}

}

}

WordCount: the reducerWordCount: the reducer
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context)

th IOE ti I t t dE ti {throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

WordCount: main functionWordCount: main function
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

WordCount: compiling the codeWordCount: compiling the code

Go inside the java-wordcount folder, by executing
the following command from your home folder:the following command from your home folder:

cd <PATH>/java-wordcount

The relevant code is contained in the fileThe relevant code is contained in the file
WordCount.java

WordCount: compiling the codeWordCount: compiling the code

To compile the code run the command:

javac -classpath "$(yarn classpath)" WordCount.java

The file WordCount class must have been producedThe file WordCount.class must have been produced.

WordCount: building the jarWordCount: building the jar

We will create the file
jwc.jar

Please execute
jar cf wc.jar WordCount*.class

Everything is set! Lets run the job on the clusterEverything is set! Lets run the job on the cluster.

WordCount: running the job ?WordCount: running the job -?

Execute the following command:

hadoop jar wc.jar WordCount /input1/ /output/wc

input output

Put your username here

WordCount: exploring the resultsWordCount: exploring the results

hadoop fs -ls //output/wc

You should see something like thisYou should see something like this

-rw-r--r-- 1 user supergroup 0 2015-10-14 18:02 /output/wc/_SUCCESS

-rw-r--r-- 1 user supergroup 337639 2015-10-14 18:02 /output/wc/part-r-00000p g p p p

WordCount: exploring the resultsWordCount: exploring the results

Examine the last lines of the output:

hadoop fs -tail /output/wc/part-r-00000

MaxTemp: the mapperMaxTemp: the mapper
public class MaxTempMapper extends Mapper<LongWritable, Text, Text,

IntWritable> {
private static final int MISSING = 9999;

@Override
public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {p , p p {

String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;int airTemperature;
if (line.charAt(87) == '+') { // parseInt doesn't like leading plus

signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}
String quality = line.substring(92, 93);g q y g(,);
if (airTemperature != MISSING && quality.matches("[01459]")) {

context.write(new Text(year), new IntWritable(airTemperature));
}

}}
}

MaxTemp: the reducerMaxTemp: the reducer
public class MaxTempReducer extends Reducer<Text, IntWritable, Text,

IntWritable>{

@Override

public void reduce(Text key Iterable<IntWritable> valuespublic void reduce(Text key, Iterable<IntWritable> values,

Context context)

throws IOException, InterruptedException {throws IOException, InterruptedException {

int maxValue = Integer.MIN VALUE;int maxValue Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());(, g ())

}

context.write(key, new IntWritable(maxValue));

}

}

MaxTemp: main functionMaxTemp: main function
public class MaxTemperature {
public static void main(String[] args) throws Exception {

if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
S t it(1) }System.exit(-1); }

Job job = new Job();
job setJarByClass(MaxTemperature class);job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");

FileInputFormat addInputPath(job new Path(args[0]));FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);j p y
job.setOutputValueClass(IntWritable.class);

//job.setNumReduceTasks(2); // 2 reducers
System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

MaxTemp: compiling the codeMaxTemp: compiling the code

Go inside the java-wordcount folder, by executing
the following command from your home folder:the following command from your home folder:

cd <PATH>/java-maxtemp

The relevant code is contained in the fileThe relevant code is contained in the file
MaxTemperature.java

MaxTemp: compiling the codeMaxTemp: compiling the code

o compile the code run the command:

javac -classpath "$(yarn classpath)" MaxTemp.java

The file MaxTemp class must have been producedThe file MaxTemp.class must have been produced.

MaxTemp: building the jarMaxTemp: building the jar

We will create the file
jmt.jar

Please execute
jar cf mt.jar MaxTemp*.class

Everything is set! Lets run the job on the clusterEverything is set! Lets run the job on the cluster.

MaxTemp: running the jobMaxTemp: running the job

Execute the following command:

hadoop jar mt.jar MaxTemp /input2 /output/mt

input output

Put your username here

MaxTemp: exploring the results ?MaxTemp: exploring the results - ?

hadoop fs -ls /output/mt

You should see something like thisYou should see something like this

-rw-r--r-- 1 user supergroup 0 2015-10-14 18:05 /output/mt/_SUCCESS

-rw-r--r-- 1 user supergroup 180 2015-10-14 18:05 /output/mt/part-r-00000

MaxTemp: exploring the resultsMaxTemp: exploring the results

Examine the last lines of the output:

hadoop fs -tail /output/mt/part-r-00000

Your turn nowYour turn now...
We have 2-column data from two populations, R and S,We have 2 column data from two populations, R and S,

stored in text files as follows:
R,2,60R,2,60

R,5,190

S,2,12, ,

S,2,45

R,6,1

S,7,10

We want
1) to group all the records of population S by the 1st field1) to group all the records of population S by the 1st field,
2) for each group to sum the values of the 2nd field
3) Provided that population R has a similar 1st field in one of

the records

