
NoSQL Databases

1

Acknowledgements

• Material from

– Stanford courses (CS145 and CS347)

– Washington University

– Illinois University

– Cattell’s paper and website

2

Contents

• Intro, motivation, key definitions

• Overview

• Systems

– Cassandra

– HBase

• Applications

3

Not every data management/analysis
problem is best solved using a traditional DBMS

Database Management System (DBMS) provides….

 … efficient, reliable, convenient, and safe
 multi-user storage of and access to massive
 amounts of persistent data.

NoSQL Systems: Motivation

5

Traditional DBMSs

These types of DBMSs show severe limitations due to challenges
posed by big data.

One architectural feature that may not respond promptly is
consistency (the second of the ACID properties of transactions)

Atomicity

Consistency

Isolation

Durability

6

Traditional DBMSs
Consistency Types

Strict: The changes to the data are atomic and appear to take effect
instantaneously. This is the highest form of consistency.

Sequential: Every client sees all changes in the same order they were applied.

Causal: All changes that are causally related are observed in the same order by
all clients.

Eventual: When no updates occur for a period of time, eventually all updates
will propagate through the system and all replicas will be consistent.

Weak: No guarantee is made that all updates will propagate and changes may
appear out of order to various clients.

NoSQL Systems

Alternative to traditional relational DBMS

+ Flexible schema

+ Quicker/cheaper to set up

+ Massive scalability

+ Relaxed consistency  higher performance & availability

– No declarative query language  more programming

– Relaxed consistency  fewer guarantees

NoSQL Systems: Overview

NoSQL Systems

Several incarnations

 MapReduce framework

 Key-value stores
 Extensible record stores

 Document stores

 Graph database systems

NoSQL Systems: Overview

MapReduce Framework

Schemas and declarative queries are missed

Hive – schemas, SQL-like query language

Pig – more imperative but with relational operators

 Both compile to “workflow” of Hadoop (MapReduce) jobs

NoSQL Systems: Overview

Key-Value Stores

Extremely simple interface
 Data model: (key, value) pairs

 Operations: Insert(key,value), Fetch(key),
 Update(key), Delete(key)

Implementation: efficiency, scalability, fault-tolerance
 Records distributed to nodes based on key

 Replication

 Single-record transactions, “eventual consistency”

NoSQL Systems: Overview

Key-Value Stores

Extremely simple interface
 Data model: (key, value) pairs

 Operations: Insert(key,value), Fetch(key),
 Update(key), Delete(key)

 Some allow (non-uniform) columns within value
 Extensible record stores

 Some allow Fetch on range of keys

Example systems
 Google BigTable, Amazon Dynamo, Cassandra,
 Voldemort, HBase, …

NoSQL Systems: Overview

Document Stores

Like Key-Value Stores except value is document
 Data model: (key, document) pairs

 Document: JSON, XML, other semistructured formats

 Basic operations: Insert(key,document), Fetch(key),
 Update(key), Delete(key)

 Also Fetch based on document contents

Example systems
 CouchDB, MongoDB, SimpleDB, …

NoSQL Systems: Overview

Why Key-value Store?

• (Business) Key -> Value
• (twitter.com) tweet id -> information about tweet
• (kayak.com) Flight number -> information about

flight, e.g., availability
• (yourbank.com) Account number -> information

about it
• (amazon.com) item number -> information about

it

• Search is usually built on top of a key-value store

13

Isn’t that just a database?

• Yes

• Relational Databases
(RDBMSs) have been
around for ages

• MySQL is the most
popular among them

• Data stored in tables

• Schema-based, i.e.,
structured tables

• Queried using SQL

SQL queries: SELECT user_id from users WHERE
 username = “jbellis”

14

Cassandra Data Model
• Column Families:

– Like SQL tables

– but may be
unstructured (client-
specified)

– Can have index tables

• Hence “column-
oriented databases”/
“NoSQL”
– No schemas

– Some columns missing
from some entries

– “Not Only SQL”

– Supports get(key) and
put(key, value)
operations

– Often write-heavy
workloads

15

Contents

• Intro, motivation, key definitions

• Overview

• Systems

– Cassandra

– HBase

• Applications

16

17

18

19

20

21

22

23

24

25

Contents

• Intro, motivation, key definitions

• Overview

• Systems

– Cassandra

– HBase

• Applications

26

27

The Dawn of NOSQL

There are several features that may be different from system to system:

 data model

 storage model

 consistency model

 physical model

 failure handling

 secondary indices

 compression

 load balancing

 atomic operations

 locking policy

Cassandra

• Originally designed at Facebook
• Open-sourced
• Some of its myriad users:

28

Cassandra

• “Apache Cassandra is an open-source,
distributed, decentralized, elastically scalable,
highly available, fault-tolerant, tunably
consistent, column-oriented database that
bases its distribution design on Amazon’s
dynamo and its data model on Google’s Big
Table.”

• Clearly, it is buzz-word compliant!!

29

Basic Idea: Key-Value Store

30

key value

k1 v1

k2 v2

k3 v3

k4 v4

Table T:

Basic Idea: Key-Value Store

31

key value

k1 v1

k2 v2

k3 v3

k4 v4

Table T:

keys are sorted

• API:

– lookup(key)  value

– lookup(key range)  values

– getNext  value

– insert(key, value)

– delete(key)

• Each row has timestemp

• Single row actions atomic
(but not persistent in some systems?)

• No multi-key transactions

• No query language!

Fragmentation (Sharding)

32

key value

k1 v1

k2 v2

k3 v3

k4 v4

k5 v5

k6 v6

k7 v7

k8 v8

k9 v9

k10 v10

key value

k1 v1

k2 v2

k3 v3

k4 v4

key value

k5 v5

k6 v6

key value

k7 v7

k8 v8

k9 v9

k10 v10

server 1 server 2 server 3

• use a partition vector
• “auto-sharding”: vector selected automatically

tablet

Tablet Replication

33

key value

k7 v7

k8 v8

k9 v9

k10 v10

server 3 server 4 server 5

key value

k7 v7

k8 v8

k9 v9

k10 v10

key value

k7 v7

k8 v8

k9 v9

k10 v10

primary backup backup

• Cassandra:
Replication Factor (# copies)
R/W Rule: One, Quorum, All
Policy (e.g., Rack Unaware, Rack Aware, ...)
Read all copies (return fastest reply, do repairs if necessary)

• HBase: Does not manage replication, relies on HDFS

Need a “directory”

• Table Name: Key  Server that stores key
  Backup servers

• Can be implemented as a special table.

34

Tablet Internals

35

key value

k3 v3

k8 v8

k9 delete

k15 v15

key value

k2 v2

k6 v6

k9 v9

k12 v12

key value

k4 v4

k5 delete

k10 v10

k20 v20

k22 v22

memory

disk

Design Philosophy (?): Primary scenario is where all data is in memory.
Disk storage added as an afterthought

Tablet Internals

36

key value

k3 v3

k8 v8

k9 delete

k15 v15

key value

k2 v2

k6 v6

k9 v9

k12 v12

key value

k4 v4

k5 delete

k10 v10

k20 v20

k22 v22

memory

disk

flush periodically

• tablet is merge of all segments (files)
• disk segments imutable
• writes efficient; reads only efficient when all data in memory
• periodically reorganize into single segment

tombstone

Column Family

37

K A B C D E

k1 a1 b1 c1 d1 e1

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 a4 b4 c4 e4 e4

k5 a5 b5 null null null

Column Family

38

K A B C D E

k1 a1 b1 c1 d1 e1

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 a4 b4 c4 e4 e4

k5 a5 b5 null null null

• for storage, treat each row as a single “super value”
• API provides access to sub-values

(use family:qualifier to refer to sub-values
 e.g., price:euros, price:dollars)

• Cassandra allows “super-column”:
 two level nesting of columns
 (e.g., Column A can have sub-columns X & Y)

Vertical Partitions

39

K A B C D E

k1 a1 b1 c1 d1 e1

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 a4 b4 c4 e4 e4

k5 a5 b5 null null null

K A

k1 a1

k2 a2

k4 a4

k5 a5

K B

k1 b1

k4 b4

k5 b5

K C

k1 c1

k2 c2

k4 c4

K D E

k1 d1 e1

k2 d2 e2

k3 d3 e3

k4 e4 e4

can be manually implemented as

Vertical
Partitions

40

K A B C D E

k1 a1 b1 c1 d1 e1

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 a4 b4 c4 e4 e4

k5 a5 b5 null null null

K A

k1 a1

k2 a2

k4 a4

k5 a5

K B

k1 b1

k4 b4

k5 b5

K C

k1 c1

k2 c2

k4 c4

K D E

k1 d1 e1

k2 d2 e2

k3 d3 e3

k4 e4 e4

column family

• good for sparse data;
• good for column scans
• not so good for tuple reads
• API supports actions on full table; mapped to actions on column tables
• To decide on vertical partition, need to know access patterns

Failure Recovery (BigTable, HBase)

41

tablet server memory

log

GFS or HFS

master node
spare

tablet server

write ahead logging

ping

Failure recovery (Cassandra)
• No master node, all nodes in “cluster” equal

42

server 1 server 2 server 3

Failure recovery (Cassandra)
• No master node, all nodes in “cluster” equal

43

server 1 server 2 server 3

access any table in cluster
at any server

that server sends requests
to other servers

Cassandra Vs. SQL

• MySQL is the most popular (and has been for
a while)

• On > 50 GB data

• MySQL
– Writes 300 ms avg

– Reads 350 ms avg

• Cassandra
– Writes 0.12 ms avg

– Reads 15 ms avg

44

Cassandra Summary

• While RDBMS provide ACID (Atomicity
Consistency Isolation Durability)

• Cassandra provides BASE
– Basically Available Soft-state Eventual Consistency

– Prefers Availability over consistency

• Other NoSQL products
– MongoDB, Riak (look them up!)

• Next: HBase
– Prefers (strong) Consistency over Availability

45

46

Brewer's CAP Theorem

Brewer's CAP theorem states that a distributed system is not possible
to guarantee all three of the following properties simultaneously:

Consistency: all nodes see the same data at the same time

Availability: a guarantee that every request receives a response about
whether it succeeded or failed

Partition Tolerance (the system continues to operate despite arbitrary
message loss or failure of part of the system)

HBase

• Google’s BigTable was first “blob-based”
storage system

• Yahoo! Open-sourced it  HBase

• Major Apache project today

• Facebook uses HBase internally

• API
– Get/Put(row)

– Scan(row range, filter) – range queries

– MultiPut

47

HBase Storage hierarchy

• HBase Table

– Split it into multiple regions: replicated across
servers

• One Store per ColumnFamily (subset of columns with
similar query patterns) per region

• HFile

– SSTable from Google’s BigTable

 48

49

HBase Architecture

Master

RegionServer

HFile Memstore

Logs

API

HBase

ZooKeeper HDFS

The master is responsible for
assigning regions to RegionServers.

RegionServers are responsible for all read and write requests
for all regions they serve, and also split regions that have exceeded
the configured region size thresholds.

A reliable, highly available, persistent
and distributed coordination service.

The Hadoop Distributed File System.

In case of updates data are first
written to a write-ahead log.

In memory storage.

Low-level storage file
to store column families.

Contents

• Intro, motivation, key definitions

• Overview

• Systems

– Cassandra

– HBase

• Applications

50

51

52

53

54

HBase

55

Shell

56

Hbase Java Client

 import org.apache.hadoop.hbase.util.*;
 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.hbase.HBaseConfiguration;
 import org.apache.hadoop.hbase.client.HTable;
 import org.apache.hadoop.hbase.client.Result;
 import org.apache.hadoop.hbase.client.ResultScanner;
 import org.apache.hadoop.hbase.client.Scan;
 import org.apache.hadoop.hbase.util.Bytes;
 import java.io.IOException;

 public class TestHBase {

 public static void main(String[] arg) throws IOException {
 Configuration config = HBaseConfiguration.create();

57

Cont’d

 //read values of cf:a
 byte[] family = Bytes.toBytes("cf");
 byte[] qual = Bytes.toBytes("a");

 HTable testTable = new HTable(config, "test");

 Scan scan = new Scan();
 scan.addColumn(family, qual);
 ResultScanner rs = testTable.getScanner(scan);
 for (Result r = rs.next(); r != null; r = rs.next()) {
 byte[] valueObj = r.getValue(family, qual);
 String value = new String(valueObj);
 System.out.println(value);
 }

58

Cont’d

 //add a row with key “newtest”

 // and value of cf:a “new-value”

 Put put = new Put(Bytes.toBytes("newtest"));

 put.add(Bytes.toBytes("cf"), Bytes.toBytes("a"),
 Bytes.toBytes("new-value"));

 testTable.put(put);

59

