NoSQL Databases

I THINK WE SHOULD
BUILD AN SGQL
DATABASE.

=

E-mnll: BCOTTADAMS ™ ADL . COM

DOES HE UNDERSTAND
WHAT HE SAID OR
IS5 IT SOMETHING
HE SAL IN A TRADE
MAGALINE AD7

£ 1958 Unitod Foature Syndicate, inc. [NVE]

rd

i
|

WHAT COLOR DO YOU
WANT THAT DATABASET

T THINK ‘
MAUVE HAS
THE MOST




Acknowledgements

* Material from
— Stanford courses (CS145 and CS347)
— Washington University
— Illinois University
— Cattell’s paper and website



Contents

Intro, motivation, key definitions
Overview
Systems

— Cassandra
— HBase

Applications



NoSQL Systems: Motivation
Not every data management/analysis

problem is best solved using a traditional DBMS

Database Management System (DBMS) provides....

..efficient, reliable, convenient, and safe
multi-user storage of and access to massive
amounts of persistent data.




Traditional DBMSs

These types of DBMSs show severe limitations due to challenges
posed by big data.

One architectural feature that may not respond promptly is
consistency (the second of the ACID properties of transactions)

tomicity
onslstency

solation

o H QB

urability




Traditional DBMSs

Consistency Types

Strict: The changes to the data are atomic and appear to take effect
instantaneously. This is the highest form of consistency.

Sequential: Every client sees all changes in the same order they were applied.

Causal: All changes that are causally related are observed in the same order by
all clients.

Eventual: When no updates occur for a period of time, eventually all updates
will propagate through the system and all replicas will be consistent.

Weak: No guarantee is made that all updates will propagate and changes may
appear out of order to various clients.



NoSQL Systems: Overview
NoSQL Systems

Alternative to traditional relational DBMS

+ Flexible schema

+ Quicker/cheaper to set up

+ Massive scalability

+ Relaxed consistency — higher performance & availability

— No declarative query language — more programming
— Relaxed consistency — fewer guarantees



NoSQL Systems: Overview

NoSQL Systems

Several incarnations

= MapReduce framework

= Key-value stores
= Extensible record stores

= Document stores
Graph database systems



NoSQL Systems: Overview

Schemas and declarative queries are missed

MapReduce Framework

Hive — schemas, SQL-like query language
Pig — more imperative but with relational operators

= Both compile to “workflow” of Hadoop (MapReduce) jobs



NoSQL Systems: Overview

Key-Value Stores

Extremely simple interface
= Data model: (key, value) pairs

= Operations: Insert(key,value), Fetch(key),
Update(key), Delete(key)

Implementation: efficiency, scalability, fault-tolerance
= Records distributed to nodes based on key
= Replication
= Single-record transactions, “eventual consistency”



NoSQL Systems: Overview

Key-Value Stores

Extremely simple interface
= Data model: (key, value) pairs

= Operations: Insert(key,value), Fetch(key),
Update(key), Delete(key)

= Some allow (non-uniform) columns within value
= Extensible record stores

= Some allow Fetch on range of keys

Example systems

= Google BigTable, Amazon Dynamo, Cassandra,
Voldemort, HBase, ...



NoSQL Systems: Overview

Like Key-Value Stores except value is document
= Data model: (key, document) pairs
= Document: JSON, XML, other semistructured formats

= Basic operations: Insert(key,document), Fetch(key),
Update(key), Delete(key)

= Also Fetch based on document contents

Document Stores

Example systems
= CouchDB, MongoDB, SimpleDB, ...



Why Key-value Store?

(Business) Key -> Value
(twitter.com) tweet id -> information about tweet

(kayak.com) Flight number -> information about
flight, e.g., availability

(yourbank.com) Account number -> information
about it

(amazon.com) item number -> information about
it

Search is usually built on top of a key-value store



Isn’ t that just a database?

Yes

Relational Databases
(RDBMSs) have been blog relational database
around for ages

MySQL is the most VAT
popular among them T e

dhutch

Data stored in tables

Schema-based, i.e., -
structured tables sports

fashian

Queried using SQL technclogy

SQL queries: SELECT user_id from users WHERE
username = " jbellis”

14



Cassandra Data Model

Column Families:
— Like SQL tables
— but may be blog keyspace

unstructured (client- \

specified)
— Can have index tables

Hence column- T name 7 suate

oriented databases”/ '_ mm
“NOS Ql.” egilmare P

— No schemas

Jbellis dhutch

— Some columns missing

dhutch jbellis

from some entries —<Z \| TR

— “Not Only sQL”

— Supports get(key) and bellis e —
put(key, value)

1289847840615

operations e

1289847844275

— Often write-heavy

workloads

15



Contents

Intro, motivation, key definitions
Overview
Systems

— Cassandra
— HBase

Applications



Cattell, SIGMOD Record 2010

Early “Proof of Concepts”

* Memcached: demonstrated that in-
memory indexes (DHT) can be highly
scalable

 Dynamo: pioneered eventual consistency
for higher availability and scalability

« BigTable: demonstrated that persistent
record storage can be scaled to thousands

of nodes



Cattell, SIGMOD Record 2010

ACID v.s. BASE

« ACID = Atomicity, Consistency, Isolation,
and Durability

« BASE = Basically Available, Soft state,
Eventually consistent

| Suciu - CSEP544 Fall 2011 An
18



Cattell, SIGMOD Record 2010

Data Model

« Tuple =row In a relational db

« Document = nested values, extensible
records (think XML or JSON)

« Extensible record = families of attributes

have a schema, but new attributes may be
added

« Object = like In a programming language,
but without methods

Dan Suciu -- CSEP344 Fall 2011

19



Cattell, SIGMOD Record 2010

1. Key-value Stores

Think “file system” more than “database”
* Persistence,

Replication

Versioning,

Locking

Transactions

Sorting

Dan Suciu — CSEPS544 Fall 2011



Cattell, SIGMOD Record 2010

1. Key-value Stores

Voldemort, Riak, Redis, Scalaris, Tokyo
Cabinet, Memcached/Membrain/Membase

Consistent hashing (DHT)
Only primary index: lookup by key
No secondary indexes

Transactions: single- or multi-update TXNs
— locks, or MVCC

Dan Suciu —- C3SEPS44 Fall 2011

21



Cattell, SIGMOD Record 2010

2. Document Stores

* A"document” = a pointerless object = e.g.
JSON = nested or not = schema-less

 In addition to KV stores, may have
secondary indexes

Dan Suciu — CSEPS44 Fall 2011

22



Cattell, SIGMOD Record 2010

2. Document Stores

« SimpleDB, CouchDB, MongoDB,
Terrastore

« Scalability:
— Replication (e.g. SimpleDB, CounchDB -
means entire db is replicated),

— Sharding (MongoDB);
— Both

Dan Suciu -- CSEP544 Fall 2011 24

23



Cattell, SIGMOD Record 2010

3. Extensible Record Stores

* Typical Access: Row ID, Column ID, Timestamp

 Rows: sharding by primary key
— BigTable: split table into tablets = units of distribution

* Columns: "column groups" = indication for which
columns to be stored together (e.g. customer

name/address group, financial info group, login
info group)

« HBase, HyperTable, Cassandra, PNUT, BigTable

Dan Suciu - CSEPS44 Fall 2011

24



Cattell, SIGMOD Record 2010

4. Scalable Relational Systems

 Means RDBS that are offering sharding

» Key difference: NoSQL make it difficult or
Impossible to perform large-scope operations
and transactions (to ensure performance),
while scalable RDBMS do not *preclude*
these operations, but users pay a price only
when they need them.

 MySQL Cluster, VoltDB, Clusterix, ScaleDB,
Megastore (the new BigTable)

Dan Suciu —- CSEPS44 Fall 2011

25



Contents

Intro, motivation, key definitions
Overview

Systems
— Cassandra
— HBase

Applications



The Dawn of NOSQL

There are several features that may be different from system to system:

o data model

e storage model

e consistency model
e physical model

o failure handling

« secondary indices
e COmMpression

« load balancing

« atomic operations
e locking policy



Cassandra

* Originally designed at Facebook
* Open-sourced
 Some of its myriad users:

7.\ Adobe Applsigale

= Symantec.

[

\

ERICSSON 2

VA
d) (B2

28



Cassandra

 “Apache Cassandra is an open-source,
distributed, decentralized, elastically scalable,
highly available, fault-tolerant, tunably
consistent, column-oriented database that
bases its distribution design on Amazon’s
dynamo and its data model on Google’s Big
Table.”

* Clearly, it is buzz-word compliant!!



Basic Idea

Table T:

. Key-Value Store

key value
k1 vl
k2 v2
k3 v3
k4 v4




Basic Idea: Key-Value Store

Table T:

key value
k1 vl
k2 v2
k3 v3
k4 v4

keys are sorted

k\

API:
— lookup(key) — value
— lookup(key range) — values
— getNext — value
— insert(key, value)
— delete(key)
Each row has timestemp

Single row actions atomic
(but not persistent in some systems?)

No multi-key transactions
No query language!



Fragmentation (Sharding)

| | |
! server 1 ! server 2 ! server 3
1 1 1
: key value |, :
: k1 vl : :
key value : k2 v2 : :
k1 vi =% k3 v3 ; ;
k2 v2 ; k4 va ; ;
k3 v3 ! ! !
: : key value : tablet
k4 v4 | | '
kS V5 ' (S VS f
[ [ [ Y
K6 V6 i i k6 LI v
k7 v/ : : : key value
o T o 1 E 7 | v
k10 10 \ \ K8 v
Y : : : k9 v9
! ! 'l k10 v10
| | |
1 1

use a partition vector
“auto-sharding”: vector selected automatically

32



Tablet Replication

Cassandra:

| | |

: server 3 : server 4 : server 5

| | |

| | |

| | 1

1 1 |

: key value : key value : key value
: k7 v7 : k7 v7 : k7 v7
| k8 v8 | k8 v8 I k8 v8
| | |

| ko v9 | k9 v9 I k9 V9
; k10 vio | ] k10 vio | k10 v10
: : :

1 ) 1 1

; primary ; backup ! backup

| | |

1 1 1

Replication Factor (# copies)

R/W Rule: One, Quorum, All

Policy (e.g., Rack Unaware, Rack Aware, ...)

Read all copies (return fastest reply, do repairs if necessary)

HBase: Does not manage replication, relies on HDFS



Need a “directory”

* Table Name: Key — Server that stores key
— Backup servers

 Can be implemented as a special table.



Tablet Internals

key value
k3 v3
k8 v8
ko delete memory
k15 v15
key value key value
k2 v2 k4 v4
k6 V6 k5 delete disk
k9 e k10 v10
k12 v12 k20 v20
k22 v22

Design Philosophy (?): Primary scenario is where all data is in memory.
Disk storage added as an afterthought



Tablet Internals

tombstone

key value

k3 v3

k8 v8 )

ko delete - memory

k15 v15
key value key value \ flush periodically
k2 v2 k4 v4
k6 V6 k5 delete disk
k9 e k10 v10
k12 v12 k20 v20

k22 v22

tablet is merge of all segments (files)

disk segments imutable

writes efficient; reads only efficient when all data in memory
periodically reorganize into single segment

36



Column Family

K A B C D E

k1 al bl cl dl el
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 ad b4 c4 el ed
k5 a5 b5 null null null




Column Family

K A B C D E

k1 al bl cl dl el

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 ad b4 c4 ed e4

ks |[ a5 b5 null null null
—

for storage, treat each row as a single “super value”

S

API provides access to sub-values

(use family:qualifier to refer to sub-values

e.g., price:euros, price:dollars )
Cassandra allows “super-column”:
two level nesting of columns

(e.g., Column A can have sub-columns X & Y )

38



Vertical Partitions

K A B C D E

k1 al bl cl dl el

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 ad b4 c4 el ed

k5 a5 b5 null null null

‘ can be manually implemented as

K A K B K C K D E
k1 al k1 bl k1 cl k1 dl el
k2 a2 k4 b4 k2 c2 k2 d2 e2
k4 a4 k5 b5 k4 c4 k3 d3 e3
k5 a5 k4 ed ed




Vertical [ A [ e [ ¢ [ o ]
k1 al bl cl di el
Pa rtitions k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 ad b4 c4 ed ed
k5 a5 b5 null null null
‘ column family
K A K B K C K ‘D E .
k1 al k1 bl k1 cl k1 d1 | el
k2 a2 k4 b4 k2 c2 k2 d2 e2
k4 a4 k5 b5 k4 c4 k3 d3 e3
k5 a5 k4 ed ed

good for sparse data;
good for column scans

not so good for tuple reads
API supports actions on full table; mapped to actions on column tables

To decide on vertical partition, need to know access patterns

40




Failure Recovery (BigTable, HBase)

ping

memory

tablet server

<€

‘%rite ahead logging

master node

spare
tablet server

GFS or HFS




Failure recovery (Cassandra)

 No master node, all nodes in “cluster” equal

server 1 server 2 server 3




Failure recovery (Cassandra)
 No master node, all nodes in “cluster” equal

access any table in cluster
at any server \

\"

server 1 server 2 server 3

.
—>

n
»

A

that server sends requests
to other servers



Cassandra Vs. SQL

MySQL is the most popular (and has been for
a while)

On > 50 GB data
MySQL

— Writes 300 ms avg
— Reads 350 ms avg

Cassandra
— Writes 0.12 ms avg
— Reads 15 ms avg



Cassandra Summary

While RDBMS provide ACID (Atomicity
Consistency Isolation Durability)

Cassandra provides BASE

— Basically Available Soft-state Eventual Consistency
— Prefers Availability over consistency

Other NoSQL products
— MongoDB, Riak (look them up!)

Next: HBase
— Prefers (strong) Consistency over Availability



Brewer's CAP Theorem

Brewer's CAP theorem states that a distributed system is not possible
to guarantee all three of the following properties simultaneously:

Consistency: all nodes see the same data at the same time
Availability: a guarantee that every request receives a response about
whether it succeeded or failed

Partition Tolerance (the system continues to operate despite arbitrary
message loss or failure of part of the system)




HBase

Google’s BigTable was first “blob-based”
storage system

Yahoo! Open-sourced it > HBase
Major Apache project today
Facebook uses HBase internally

API

— Get/Put(row)

— Scan(row range, filter) — range queries
— MultiPut



HBase Storage hierarchy

e HBase Table

— Split it into multiple regions: replicated across
servers

* One Store per ColumnFamily (subset of columns with
similar query patterns) per region

e HFile
— SSTable from Google’s BigTable



HBase Architecture

RegionServers are responsible for all read and write requests
for all regions they serve, and also split regions that have exceeded
the configured region size thresholds.

The master is responsible for
assigning regions to RegionServers.

Low-level storage file
to store column families.

emory storage.

In case of updates data are first

[ ZooKeeper/ } [ HDFS written to}a write-ahead log.

A reliable, highly available, persistent

and distributed coordination service. Ui baees Satluies e Spsimm.

49



Contents

Intro, motivation, key definitions
Overview
Systems

— Cassandra
— HBase

Applications



Cattell, SIGMOD Record 2010

Application 1

* \Web application that needs to display lots
of customer information; the users data is
rarely updated, and when it is, you know

when it changes because updates go
through the same interface. Store this

Information persistently using a KV store.

Key-value store

Dan Suciu - CSEPS44 Fall 2011

51



Cattell, SIGMOD Record 2010

Application 2

* Department of Motor Vehicle: lookup
objects by multiple fields (driver's name,
license number, birth date, etc); "eventual
consistency” Is ok, since updates are
usually performed at a single location.

Document Store

Dan Suciu - CSEPS44 Fall 2011

52



Cattell, SIGMOD Record 2010

Application 3

- eBay stile application. Cluster customers
by country; separate the rarely changed
"core” customer information (address,
emall) from frequently-updated info
(current bids).

Extensible Record Store

Dan Suciu — CSEP344 Fall 2011

53



Cattell, SIGMOD Record 2010

Application 4

« Everything else (e.g. a serious DMV
application)

Scalable RDBMS

Dan Suciu — CSEP344 Fall 2011



HBase



Shell

Create a table named test with a single column family named c£. Venfy its creation by listing all tables and then msert some values.

hbase (main) :003:0> create 'test', 'cf!
0 row(s) in 1.2200 seconds
hbase (main) :003:0> list 'test!'

1 row(s) in 0.0550 seconds
hbase (wain) :004:0> put 'test', 'rowl', 'cf:a', 'valuel'
0 row(s) in 0.0560 seconds
hbase (main) :005:0> put 'test!', 'row2', 'cf:b', 'valuel'
0 row(s) in 0.0370 seconds
hbase (main) :006:0> put 'test', 'row3d', 'cf:c', 'valued'
0O row(s) in 0.0450 seconds

Above we mserted 3 values, one at a time. The first insert 15 at row1, column cf : a2 with a value of value1. Columns in HBase are comg
case).

Venfy the data insert by running a scan of the table as follows

hbase (main) :007:0> scan 'test!

ROW COLUMN+CELL

rowl coluin=cf:a, timestamp=1288380727188, wvalue=valuel
rowz column=cf:b, timestamp=12883807338440, wvalue=valuel
rowd columm=cf:c, timestaap=1288380747365, wvalue=valuel

3 row(s) in 0.0590 seconds

Get a single row

hbase (main) :005:0> get 'test', 'rowl'

COLUMN CELL

cf:a timestamp=1288380727188, wvalue=valuel 56

1 row(s) in 0.0400 seconds



Hbase Java Client

import org.apache.hadoop.hbase.util.*;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;

import org.apache.hadoop.hbase.util.Bytes;

import java.io.lOException;

public class TestHBase {

public static void main(String[] arg) throws IOException {
Configuration config = HBaseConfiguration.create();

57



Cont’d

//read values of cf:a
byte[] family = Bytes.toBytes("cf");
byte[] qual = Bytes.toBytes("a");

HTable testTable = new HTable(config, "test");

Scan scan = new Scan();
scan.addColumn(family, qual);

ResultScanner rs = testTable.getScanner(scan);
for (Result r = rs.next(); r != null; r = rs.next()) {
byte[] valueObj = r.getValue(family, qual);
String value = new String(valueObj);

System.out.printin(value);

}

58



Cont’d

//add a row with key “newtest”
// and value of cf:a “new-value”
Put put = new Put(Bytes.toBytes("newtest"));

put.add(Bytes.toBytes("cf"), Bytes.toBytes("a"),
Bytes.toBytes("new-value"));

testTable.put(put);

59



