
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

Supermarket shelf management – Market-basket model:
 Goal: Identify items that are bought together by

sufficiently many customers
 Approach: Process the sales data collected with barcode

scanners to find dependencies among items
 A classic rule:
 If one buys diaper and milk, then he is likely to buy beer
 Don’t be surprised if you find six-packs next to diapers!

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Rules Discovered:
 {Milk} --> {Coke}
 {Diaper, Milk} --> {Beer}

3

 A large set of items
 e.g., things sold in a

supermarket
 A large set of baskets,

each is a small subset of items
 e.g., the things one customer buys on one day

 A general many-many mapping (association)
between two kinds of things
 But we ask about connections among “items”,

not “baskets”
1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

 Given a set of baskets
 Want to discover

association rules
 People who bought

{x,y,z} tend to buy {v,w}
 Amazon!

 2 step approach:
 1) Find frequent itemsets
 2) Generate association rules

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 4

Rules Discovered:
 {Milk} --> {Coke}
 {Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

 Items = products; Baskets = sets of products
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of
data about what customers buy together
 Tells how typical customers navigate stores, lets

them position tempting items
 Suggests tie-in “tricks”, e.g., run sale on diapers and

raise the price of beer
 High support needed, or no $$’s

 Amazon’s people who bought X also bought Y

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 5

 Baskets = sentences; Items = documents
containing those sentences
 Items that appear together too often could

represent plagiarism
 Notice items do not have to be “in” baskets

 Baskets = patients; Items = drugs & side-effects
 Has been used to detect combinations

of drugs that result in particular side-effects
 But requires extension: Absence of an item

needs to be observed as well as presence
1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 6

 Finding communities in graphs (e.g., web)
 Baskets = nodes; Items = outgoing neighbors
 Searching for complete bipartite subgraphs Ks,t of a

big graph

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 7

 How?
 View each node i as a

basket Bi of nodes i it points to
 Ks,t = a set Y of size t that

occurs in s buckets Bi

 Looking for Ks,t  set of
support s and look at layer t –
all frequent sets of size t

…

…

A dense 2-layer graph

Use this to define topics:
What the same people on the
left talk about on the right

s
no

de
s

t n
od

es

First: Define
Frequent itemsets
Association rules:
 Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
Apriori algorithm
PCY algorithm + 2 refinements

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 8

 Simplest question: Find sets of items that
appear together “frequently” in baskets

 Support for itemset I: Number of baskets
containing all items in I
 Often expressed as a fraction

of the total number of baskets
 Given a support threshold s,

then sets of items that appear
in at least s baskets are called
frequent itemsets

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 9

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of
{Beer, Bread} = 2

 Items = {milk, coke, pepsi, beer, juice}
 Minimum support = 3 baskets

 B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, b} B4= {c, j}
 B5 = {m, p, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 10

, {b,c} , {c,j}. {m,b}

11

 Association Rules:
If-then rules about the contents of baskets

 {i1, i2,…,ik} → j means: “if a basket contains
all of i1,…,ik then it is likely to contain j”

 In practice there are many rules, want to find
significant/interesting ones!

 Confidence of this association rule is the
probability of j given I = {i1,…,ik}

)support(

)support()conf(
I

jIjI ∪
=→

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Not all high-confidence rules are interesting
 The rule X → milk may have high confidence for many

itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

 Interest of an association rule I → j:
difference between its confidence and the fraction
of baskets that contain j

 Interesting rules are those with

high positive or negative interest values
 For uninteresting rules the fraction of baskets containing j

will be the same as the fraction of the subset baskets
including {I, j}. So, confidence will be high, interest low.

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 12

]Pr[)conf()Interest(jjIjI −→=→

 B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, b} B4= {c, j}
 B5 = {m, p, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c
 Confidence = 2/4 = 0.5
 Interest = |0.5 – 5/8| = 1/8
 Item c appears in 5/8 of the baskets
 Rule is not very interesting!

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 13

 Problem: Find all association rules with
support ≥s and confidence ≥c
 Note: Support of an association rule is the support

of the set of items on the left side
 Hard part: Finding the frequent itemsets!
 If {i1, i2,…, ik} → j has high support and

confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 14

)support(
)support()conf(

I
jIjI ∪

=→

 Step 1: Find all frequent itemsets I
 (we will explain this next)

 Step 2: Rule generation
 For every subset A of I, generate a rule A → I \ A
 Since I is frequent, A is also frequent
 Variant 1: Single pass to compute the rule confidence
 conf(A,B→C,D) = supp(A,B,C,D)/supp(A,B)

 Variant 2:
 Observation: If A,B,C→D is below confidence, so is A,B→C,D
 Can generate “bigger” rules from smaller ones!

 Output the rules above the confidence threshold

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 15

 B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, c, b, n} B4= {c, j}
 B5 = {m, p, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

 Min support s=3, confidence c=0.75
 1) Frequent itemsets:
 {b,m} {b,c} {c,m} {c,j} {m,c,b}

 2) Generate rules:
 b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5
 m→b: c=4/5 … b,m→c: c=3/4
 b→c,m: c=3/6

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 16

1. Maximal Frequent itemsets:
no immediate superset is frequent

2. Closed itemsets:
no immediate superset has the
same count (> 0).
 Stores not only frequent information,

but exact counts

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 17

 Count Maximal (s=3) Closed
A 4 No No
B 5 No Yes
C 3 No No
AB 4 Yes Yes
AC 2 No No
BC 3 Yes Yes
ABC 2 No Yes

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 18

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.

 Back to finding frequent itemsets
 Typically, data is kept in flat files

rather than in a database system:
 Stored on disk
 Stored basket-by-basket
 Baskets are small but we have

many baskets and many items
 Expand baskets into pairs, triples, etc.

as you read baskets
 Use k nested loops to generate all

sets of size k

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 21

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,
and boundaries between

baskets are –1.
Note: We want to find frequent itemsets. To find them, we
have to count them. To count them, we have to generate them.

22

 The true cost of mining disk-resident data is
usually the number of disk I/O’s

 In practice, association-rule algorithms read
the data in passes – all baskets read in turn

 We measure the cost by the number of
passes an algorithm makes over the data

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

23

 For many frequent-itemset algorithms,
main-memory is the critical resource
 As we read baskets, we need to count

something, e.g., occurrences of pairs of items
 The number of different things we can count

is limited by main memory
 Swapping counts in/out is a disaster (why?)

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 The hardest problem often turns out to be
finding the frequent pairs of items {i1, i2}
 Why? Often frequent pairs are common, frequent

triples are rare
 Why? Probability of being frequent drops exponentially

with size; number of sets grows more slowly with size.
 Let’s first concentrate on pairs, then extend to

larger sets
 The approach:
 We always need to generate all the itemsets
 But we would only like to count/keep track of those

itemsets that in the end turn out to be frequent
1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 24

 Naïve approach to finding frequent pairs
 Read file once, counting in main memory

the occurrences of each pair:
 From each basket of n items, generate its

n(n-1)/2 pairs by two nested loops
 Fails if (#items)2 exceeds main memory
 Remember: #items can be

100K (Wal-Mart) or 10B (Web pages)
 Suppose 105 items, counts are 4-byte integers
 Number of pairs of items: 105(105-1)/2 = 5*109
 Therefore, 2*1010 (20 gigabytes) of memory needed

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 25

Two Approaches:
 Approach 1: Count all pairs using a matrix
 Approach 2: Keep a table of triples [i, j, c] =

“the count of the pair of items {i, j} is c.”
 If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0
 Plus some additional overhead for the hashtable

Note:
 Approach 1 only requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair

(but only for pairs with count > 0)

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 26

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 27

4 bytes per pair

Triangular Matrix Triples

12 per
occurring pair

Triangular Matrix Approach
 n = total number items
 Count pair of items {i, j} only if i<j

 Keep pair counts in lexicographic order:
 {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

 Pair {i, j} is at position (i –1)(n– i/2) + j –1
 Total number of pairs n(n –1)/2; total bytes= 2n2
 Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair

(but only for pairs with count > 0)
 Beats triangular matrix if less than 1/3 of

possible pairs actually occur

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 28

 A two-pass approach called
a-priori limits the need for
main memory

 Key idea: monotonicity
 If a set of items I appears at

least s times, so does every subset J of I.
 Contrapositive for pairs:

If item i does not appear in s baskets, then no
pair including i can appear in s baskets

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 30

 Pass 1: Read baskets and count in main memory
the occurrences of each individual item
 Requires only memory proportional to #items

 Items that appear at least s times are the
frequent items

 Pass 2: Read baskets again and count in main
memory only those pairs where both elements
are frequent (from Pass 1)
 Requires memory proportional to square of frequent

items only (for counts)
 Plus a list of the frequent items (so you know what

must be counted)

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 31

32

Item counts

Pass 1 Pass 2

Frequent items

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

M
ai

n
m

em
or

y Counts of
pairs of

frequent items
(candidate

pairs)

 You can use the
triangular matrix
method with n = number
of frequent items
 May save space compared

with storing triples
 Trick: re-number

frequent items 1,2,…
and keep a table relating
new numbers to original
item numbers

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 33

Item counts

Pass 1 Pass 2

Counts of pairs
of frequent

items

Frequent
items

Old
item
#s

M
ai

n
m

em
or

y

Counts of
pairs of

frequent items

34

 For each k, we construct two sets of
k-tuples (sets of size k):
 Ck = candidate k-tuples = those that might be

frequent sets (support > s) based on information
from the pass for k–1
 Lk = the set of truly frequent k-tuples

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

C1 L1 C2 L2 C3 Filter Filter Construct Construct

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

 Hypothetical steps of the A-Priori algorithm
 C1 = { {b} {c} {j} {m} {n} {p} }
 Count the support of itemsets in C1

 Prune non-frequent: L1 = { b, c, j, m }
 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
 Count the support of itemsets in C2

 Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }
 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
 Count the support of itemsets in C3

 Prune non-frequent: L3 = { {b,c,m} }

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 35

Note that one can be more careful
here with rule generation. For
example, we know {b,m,j} cannot be
frequent since {m,j} is not frequent

 One pass for each k (itemset size)
 Needs room in main memory to count

each candidate k–tuple
 For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most memory

 Many possible extensions:
 Lower the support s as itemset gets bigger
 Association rules with intervals:
 For example: Men over 65 have 2 cars

 Association rules when items are in a taxonomy
 Bread, Butter → FruitJam
 BakedGoods, MilkProduct → PreservedGoods

 1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 36

 Observation:
In pass 1 of a-priori, most memory is idle
 We store only individual item counts
 Can we use the idle memory to reduce

memory required in pass 2?
 Pass 1 of PCY: In addition to item counts,

maintain a hash table with as many
buckets as fit in memory
 Keep a count for each bucket into which

pairs of items are hashed
 Just the count, not the pairs that hash to the bucket!

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 38

FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

 Pairs of items need to be generated from the
input file; they are not present in the file

 We are not just interested in the presence
of a pair, but we need to see whether it is
present at least s (support) times

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 39

New
in

PCY

 If a bucket contains a frequent pair, then
the bucket is surely frequent
 But we cannot use the hash to eliminate any

member of this bucket
 Even without any frequent pair, a bucket

can still be frequent
 But, for a bucket with total count less than s,

none of its pairs can be frequent
 Pairs that hash to this bucket can be eliminated as

candidates (even if the pair consists of 2 frequent items)

 Pass 2:
Only count pairs that hash to frequent buckets
 1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 40

 Replace the buckets by a bit-vector:
 1 means the bucket count exceeded the support s

(a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits, so
the bit-vector requires 1/32 of memory

 Also, decide which items are frequent
and list them for the second pass

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 41

42

 Count all pairs {i, j} that meet the
conditions for being a candidate pair:

1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in

the bit vector is 1 (i.e., frequent bucket)

 Both conditions are necessary for the
pair to have a chance of being frequent

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

43

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Hash table
for pairs

 M
ai

n
m

em
or

y

Counts of
candidate

pairs

44

 Buckets require a few bytes each:
 Note: we don’t have to count past s
 #buckets is O(main-memory size)

 On second pass, a table of (item, item, count)
triples is essential (we cannot use triangular
matrix approach, why?)
 Thus, hash table must eliminate approx. 2/3 of the

candidate pairs for PCY to beat a-priori.

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Limit the number of candidates to be counted
 Remember: Memory is the bottleneck
 Still need to generate all the itemsets but we only

want to count/keep track of the ones that are frequent
 Key idea: After Pass 1 of PCY, rehash only those

pairs that qualify for Pass 2 of PCY
 i and j are frequent, and
 {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to
buckets, so fewer false positives

 Requires 3 passes over the data
1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 45

46

First
hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of
candidate
 pairs

Pass 1 Pass 2 Pass 3

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Count items
Hash pairs {i,j}

Hash pairs {i,j}
into Hash2 iff:

i,j are frequent,
{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:
i,j are frequent,
{i,j} hashes to

freq. bucket in B1
{i,j} hashes to

freq. bucket in B2

First
hash table Second

hash table Counts of
candidate

pairs

M
ai

n
m

em
or

y

 Count only those pairs {i, j} that satisfy
these candidate pair conditions:

1. Both i and j are frequent items
2. Using the first hash function, the pair

hashes to a bucket whose bit in the
first bit-vector is 1.

3. Using the second hash function, the pair
hashes to a bucket whose bit in the
second bit-vector is 1.

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 47

1. The two hash functions have to be
independent

2. We need to check both hashes on the
third pass
 If not, we would end up counting pairs of

frequent items that hashed first to an
infrequent bucket but happened to hash
second to a frequent bucket

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 48

 Key idea: Use several independent hash
tables on the first pass

 Risk: Halving the number of buckets doubles
the average count
 We have to be sure most buckets will still not

reach count s

 If so, we can get a benefit like multistage,
but in only 2 passes

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 49

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 50

First hash
table

Second

hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of
candidate
 pairs

Pass 1 Pass 2

First
hash table

Second
hash table

Counts of
candidate

pairs

M
ai

n
m

em
or

y

 Either multistage or multihash can use more
than two hash functions

 In multistage, there is a point of diminishing
returns, since the bit-vectors eventually
consume all of main memory

 For multihash, the bit-vectors occupy exactly
what one PCY bitmap does, but too many
hash functions makes all counts > s

51 1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k

 Can we use fewer passes?

 Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets
 Random sampling
 SON (Savasere, Omiecinski, and Navathe)
 Toivonen (see textbook)

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 53

 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory
 So we don’t pay for disk I/O each

time we increase the size of itemsets
 Reduce support threshold

proportionally
to match the sample size

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 54

Copy of
sample
baskets

Space
 for
counts

M
ai

n
m

em
or

y

 Optionally, verify that the candidate pairs are
truly frequent in the entire data set by a
second pass (avoid false positives)

 But you don’t catch sets frequent in the whole

but not in the sample
 Smaller threshold, e.g., s/125, helps catch more

truly frequent itemsets
 But requires more space

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 55

56

 Repeatedly read small subsets of the baskets
into main memory and run an in-memory
algorithm to find all frequent itemsets
 Note: we are not sampling, but processing the

entire file in memory-sized chunks

 An itemset becomes a candidate if it is found
to be frequent in any one or more subsets of
the baskets.

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

57

 On a second pass, count all the candidate
itemsets and determine which are frequent in
the entire set

 Key “monotonicity” idea: an itemset cannot
be frequent in the entire set of baskets unless
it is frequent in at least one subset.

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 SON lends itself to distributed data mining

 Baskets distributed among many nodes
 Compute frequent itemsets at each node
 Distribute candidates to all nodes
 Accumulate the counts of all candidates

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 58

 Phase 1: Find candidate itemsets
 Map?
 Reduce?

 Phase 2: Find true frequent itemsets
 Map?
 Reduce?

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 59

	Frequent Itemset Mining & Association Rules
	Association Rule Discovery
	The Market-Basket Model
	Association Rules: Approach
	Applications – (1)
	Applications – (2)
	Applications – (3)
	Outline
	Frequent Itemsets
	 Example: Frequent Itemsets
	Association Rules
	Interesting Association Rules
	Example: Confidence and Interest
	Finding Association Rules
	Mining Association Rules
	Example
	Compacting the Output
	Example: Maximal/Closed
	2 Announcements
	�Finding Frequent Itemsets
	Itemsets: Computation Model
	Computation Model
	Main-Memory Bottleneck
	Finding Frequent Pairs
	Naïve Algorithm
	Counting Pairs in Memory
	Comparing the 2 Approaches
	Triangular Matrix Approach
	�A-Priori Algorithm
	A-Priori Algorithm – (1)
	A-Priori Algorithm – (2)
	Main-Memory: Picture of A-Priori
	Detail for A-Priori
	Frequent Triples, Etc.
	Example
	A-Priori for All Frequent Itemsets
	�PCY (Park-Chen-Yu) Algorithm
	PCY (Park-Chen-Yu) Algorithm
	PCY Algorithm – First Pass
	Observations about Buckets
	PCY Algorithm – Between Passes
	PCY Algorithm – Pass 2
	Main-Memory: Picture of PCY
	Main-Memory Details
	Refinement: Multistage Algorithm
	Main-Memory: Multistage
	Multistage – Pass 3
	Important Points
	Refinement: Multihash
	Main-Memory: Multihash
	PCY: Extensions
	Frequent Itemsets �in < 2 Passes
	Frequent Itemsets in < 2 Passes
	Random Sampling (1)
	Random Sampling (2)
	SON Algorithm – (1)
	SON Algorithm – (2)
	SON – Distributed Version
	SON: Map/Reduce

