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Supermarket shelf management – Market-basket model: 
 Goal: Identify items that are bought together by 

sufficiently many customers 
 Approach: Process the sales data collected with barcode 

scanners to find dependencies among items 
 A classic rule: 
 If one buys diaper and milk, then he is likely to buy beer 
 Don’t be surprised if you find six-packs next to diapers! 
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TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Rules Discovered: 
    {Milk} --> {Coke} 
    {Diaper, Milk} --> {Beer} 
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 A large set of items 
 e.g., things sold in a  

supermarket 
 A large set of baskets,  

each is a small subset of items 
 e.g., the things one customer buys on one day 

 

 A general many-many mapping (association) 
between two kinds of things 
 But we ask about connections among “items”,  

not “baskets” 
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 



 Given a set of baskets 
 Want to discover  

association rules 
 People who bought 

{x,y,z} tend to buy {v,w} 
 Amazon! 

 

 2 step approach: 
 1) Find frequent itemsets 
 2) Generate association rules 
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Rules Discovered: 
    {Milk} --> {Coke} 
    {Diaper, Milk} --> {Beer} 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input: 

Output: 



 Items = products; Baskets = sets of products 
someone bought in one trip to the store 

 Real market baskets: Chain stores keep TBs of 
data about what customers buy together 
 Tells how typical customers navigate stores, lets 

them position tempting items 
 Suggests tie-in “tricks”, e.g., run sale on diapers and 

raise the price of beer 
 High support needed, or no $$’s 

 Amazon’s people who bought X also bought Y 
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 Baskets = sentences; Items = documents 
containing those sentences 
 Items that appear together too often could 

represent plagiarism 
 Notice items do not have to be “in” baskets 

 

 Baskets = patients; Items = drugs & side-effects 
 Has been used to detect combinations  

of drugs that result in particular side-effects 
 But requires extension: Absence of an item  

needs to be observed as well as presence 
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 Finding communities in graphs (e.g., web) 
 Baskets = nodes; Items = outgoing neighbors 
 Searching for complete bipartite subgraphs Ks,t of a 

big graph 
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 How? 
 View each node i as a  

basket Bi of nodes i it points to 
 Ks,t = a set Y of size t that 

occurs in s buckets Bi 

 Looking for Ks,t  set of 
support s and look at layer t – 
all frequent sets of size t 

…
 

…
 

A dense 2-layer graph 

Use this to define topics:  
What the same people on the  
left talk about on the right 

s 
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s 

t n
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First: Define 
Frequent itemsets 
Association rules: 
 Confidence, Support, Interestingness 

Then: Algorithms for finding frequent itemsets 
Finding frequent pairs 
Apriori algorithm 
PCY algorithm + 2 refinements 
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 Simplest question: Find sets of items that 
appear together “frequently” in baskets 

 Support for itemset I: Number of baskets 
containing all items in I 
 Often expressed as a fraction  

of the total number of baskets 
 Given a support threshold s,  

then sets of items that appear  
in at least s baskets are called  
frequent itemsets 
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of  
{Beer, Bread} = 2 



 Items = {milk, coke, pepsi, beer, juice} 
 Minimum support = 3 baskets 

 B1 = {m, c, b}  B2 = {m, p, j} 
 B3 = {m, b}  B4= {c, j} 
 B5 = {m, p, b}  B6 = {m, c, b, j} 
 B7 = {c, b, j}  B8 = {b, c} 
  

 Frequent itemsets: {m}, {c}, {b}, {j}, 
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, {b,c} , {c,j}. {m,b} 
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 Association Rules: 
If-then rules about the contents of baskets 

 {i1, i2,…,ik} → j  means: “if a basket contains 
all of i1,…,ik then it is likely to contain j” 

 In practice there are many rules, want to find 
significant/interesting ones! 

 Confidence of this association rule is the 
probability of j given I = {i1,…,ik} 

 
 )support(

)support()conf(
I

jIjI ∪
=→
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 Not all high-confidence rules are interesting 
 The rule X → milk may have high confidence for many 

itemsets X, because milk is just purchased very often 
(independent of X) and the confidence will be high 

 Interest of an association rule I → j:  
difference between its confidence and the fraction 
of baskets that contain j 

 
 Interesting rules are those with  

high positive or negative interest values 
 For uninteresting rules the fraction of baskets containing j 

will be the same as the fraction of the subset baskets 
including {I, j}. So, confidence will be high, interest low. 
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]Pr[)conf()Interest( jjIjI −→=→



 B1 = {m, c, b}  B2 = {m, p, j} 
 B3 = {m, b}  B4= {c, j} 
 B5 = {m, p, b}  B6 = {m, c, b, j} 
 B7 = {c, b, j}  B8 = {b, c} 
 

 Association rule: {m, b} →c 
 Confidence = 2/4 = 0.5 
 Interest = |0.5 – 5/8| = 1/8 
 Item c appears in 5/8 of the baskets 
 Rule is not very interesting! 
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 Problem: Find all association rules with 
support ≥s and confidence ≥c 
 Note: Support of an association rule is the support 

of the set of items on the left side 
 Hard part: Finding the frequent itemsets! 
 If {i1, i2,…, ik} → j has high support and 

confidence, then both {i1, i2,…, ik} and 
{i1, i2,…,ik, j} will be “frequent” 
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)support(
)support()conf(
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 Step 1: Find all frequent itemsets I 
 (we will explain this next) 

 Step 2: Rule generation 
 For every subset A of I,  generate a rule A → I \ A  
 Since I is frequent, A is also frequent 
 Variant 1: Single pass to compute the rule confidence 
 conf(A,B→C,D) = supp(A,B,C,D)/supp(A,B) 

 Variant 2:  
 Observation: If A,B,C→D is below confidence, so is A,B→C,D 
 Can generate “bigger” rules from smaller ones!  

 Output the rules above the confidence threshold 
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 B1 = {m, c, b}  B2 = {m, p, j} 
 B3 = {m, c, b, n} B4= {c, j} 
 B5 = {m, p, b}  B6 = {m, c, b, j} 
 B7 = {c, b, j}  B8 = {b, c} 

 Min support s=3, confidence c=0.75 
 1) Frequent itemsets: 
 {b,m} {b,c}  {c,m}  {c,j}  {m,c,b} 

 2) Generate rules: 
 b→m: c=4/6      b→c: c=5/6        b,c→m: c=3/5 
 m→b: c=4/5            …                   b,m→c: c=3/4 
                  b→c,m: c=3/6 
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1. Maximal Frequent itemsets:  
no immediate superset is frequent 

 

2. Closed itemsets:  
no immediate superset has the  
same count (> 0). 
 Stores not only frequent information,  

but exact counts 
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 Count Maximal (s=3) Closed 
A  4  No    No 
B  5  No    Yes 
C  3  No    No 
AB 4  Yes    Yes 
AC 2  No    No 
BC 3  Yes    Yes 
ABC 2  No    Yes 
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Frequent, but 
superset BC 
also frequent. 

Frequent, and 
its only superset, 
ABC, not freq. 

Superset BC 
has same count. 

Its only super- 
set, ABC, has 
smaller count. 





 Back to finding frequent itemsets 
 Typically, data is kept in flat files  

rather than in a database system: 
 Stored on disk 
 Stored basket-by-basket 
 Baskets are small but we have  

many baskets and many items 
 Expand baskets into pairs, triples, etc.  

as you read baskets 
 Use k nested loops to generate all  

sets of size k 
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Item 

Item 

Item 

Item 

Item 

Item 

Item 

Item 

Item 

Item 

Item 

Item 

Etc. 

Items are positive integers, 
and boundaries between 

baskets are –1. 
Note: We want to find frequent itemsets. To find them, we 
have to count them. To count them, we have to generate them. 
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 The true cost of mining disk-resident data is 
usually the number of disk I/O’s 

 

 In practice, association-rule algorithms read 
the data in passes –  all baskets read in turn 

 

 We measure the cost by the number of 
passes an algorithm makes over the data 
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 For many frequent-itemset algorithms,  
main-memory is the critical resource 
 As we read baskets, we need to count  

something, e.g., occurrences of pairs of items 
 The number of different things we can count  

is limited by main memory 
 Swapping counts in/out is a disaster (why?) 
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 The hardest problem often turns out to be 
finding the frequent pairs of items {i1, i2} 
 Why? Often frequent pairs are common, frequent 

triples are rare 
 Why? Probability of being frequent drops exponentially 

with size; number of sets grows more slowly with size. 
 Let’s first concentrate on pairs, then extend to 

larger sets 
 The approach: 
 We always need to generate all the itemsets 
 But we would only like to count/keep track of those 

itemsets that in the end turn out to be frequent 
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 Naïve approach to finding frequent pairs 
 Read file once, counting in main memory  

the occurrences of each pair: 
 From each basket of n items, generate its  

n(n-1)/2 pairs by two nested loops 
 Fails if (#items)2 exceeds main memory 
 Remember: #items can be  

100K (Wal-Mart) or 10B (Web pages) 
 Suppose 105 items, counts are 4-byte integers 
 Number of pairs of items: 105(105-1)/2 = 5*109 
 Therefore, 2*1010 (20 gigabytes) of memory needed 
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Two Approaches: 
 Approach 1: Count all pairs using a matrix 
 Approach 2: Keep a table of triples [i, j, c] = 

“the count of the pair of items {i, j} is c.” 
 If integers and item ids are 4 bytes, we need 

approximately 12 bytes for pairs with count > 0 
 Plus some additional overhead for the hashtable 

Note: 
 Approach 1 only requires 4 bytes per pair 
 Approach 2 uses 12 bytes per pair  

(but only for pairs with count > 0) 
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4 bytes per pair 

Triangular Matrix Triples 

12 per 
occurring pair 



Triangular Matrix Approach 
 n = total number items 
 Count pair of items {i, j} only if i<j 

 Keep pair counts in lexicographic order: 
 {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},… 

 Pair {i, j} is at position (i –1)(n– i/2) + j –1 
 Total number of pairs n(n –1)/2; total bytes= 2n2 
 Triangular Matrix requires 4 bytes per pair 
 Approach 2 uses 12 bytes per pair  

(but only for pairs with count > 0) 
 Beats triangular matrix if less than 1/3 of  

possible pairs actually occur 
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 A two-pass approach called  
a-priori limits the need for  
main memory 

 Key idea: monotonicity 
 If a set of items I appears at  

least s times, so does every subset J of I. 
 Contrapositive for pairs:  

If item i does not appear in s baskets, then no 
pair including i can appear in s baskets 

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 30 



 Pass 1: Read baskets and count in main memory 
the occurrences of each individual item 
 Requires only memory proportional to #items 

 Items that appear at least s times are the 
frequent items 

 Pass 2: Read baskets again and count in main 
memory only those pairs where both elements 
are frequent (from Pass 1) 
 Requires memory proportional to square of frequent 

items only (for counts) 
 Plus a list of the frequent items (so you know what 

must be counted) 
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Item counts 

Pass 1 Pass 2 

Frequent items 
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M
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n 
m

em
or

y Counts of  
pairs of 

frequent items 
(candidate 

pairs) 



 You can use the 
triangular matrix 
method with n = number 
of frequent items 
 May save space compared 

with storing triples 
 Trick: re-number 

frequent items 1,2,… 
and keep a table relating 
new numbers to original 
item numbers 
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Item counts 

Pass 1 Pass 2 

Counts of pairs 
of frequent 

items 

Frequent 
items 

Old 
item 
#s 

M
ai

n 
m

em
or

y 

Counts of  
pairs of  

frequent items 
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 For each k, we construct two sets of 
k-tuples  (sets of size k): 
 Ck = candidate k-tuples = those that might be 

frequent sets (support > s) based on information 
from the pass for k–1 
 Lk = the set of truly frequent k-tuples 
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C1 L1 C2 L2 C3 Filter Filter Construct Construct 

All 
items 

All pairs 
of items 
from L1 

Count 
the pairs 

To be 
explained 

Count 
the items 



 Hypothetical steps of the A-Priori algorithm 
 C1 = { {b} {c} {j} {m} {n} {p} } 
 Count the support of itemsets in C1 

 Prune non-frequent: L1 = { b, c, j, m } 
 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} } 
 Count the support of itemsets in C2 

 Prune non-frequent: L2 = { {b,m} {b,c}  {c,m}  {c,j} } 
 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} } 
 Count the support of itemsets in C3 

 Prune non-frequent: L3 = { {b,c,m} } 
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Note that one can be more careful 
here with rule generation. For 
example, we know {b,m,j} cannot be 
frequent since {m,j} is not frequent 



 One pass for each k (itemset size) 
 Needs room in main memory to count  

each candidate k–tuple 
 For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most memory 
 

 Many possible extensions: 
 Lower the support s as itemset gets bigger 
 Association rules with intervals:  
 For example: Men over 65 have 2 cars 

 Association rules when items are in a taxonomy 
 Bread, Butter → FruitJam 
 BakedGoods, MilkProduct → PreservedGoods 
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 Observation:  
In pass 1 of a-priori, most memory is idle 
 We store only individual item counts 
 Can we use the idle memory to reduce  

memory required in pass 2? 
 Pass 1 of PCY: In addition to item counts, 

maintain a hash table with as many  
buckets as fit in memory  
 Keep a count for each bucket into which  

pairs of items are hashed 
 Just the count, not the pairs that hash to the bucket! 
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FOR (each basket) : 
 FOR (each item in the basket) : 
  add 1 to item’s count; 
 FOR (each pair of items) : 
  hash the pair to a bucket; 
  add 1 to the count for that bucket; 

 

 Pairs of items need to be generated from the 
input file; they are not present in the file 

 We are not just interested in the presence  
of a pair, but we need to see whether it is 
present at least s (support) times 
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New 
in 

PCY 



 If a bucket contains a frequent pair, then  
the bucket is surely frequent 
 But we cannot use the hash to eliminate any  

member of this bucket 
 Even without any frequent pair, a bucket  

can still be frequent 
 But, for a bucket with total count less than s,  

none of its pairs can be frequent 
 Pairs that hash to this bucket can be eliminated as 

candidates (even if the pair consists of 2 frequent items) 
 

 Pass 2:  
Only count pairs that hash to frequent buckets 
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 Replace the buckets by a bit-vector: 
 1 means the bucket count exceeded the support s  

(a frequent bucket ); 0 means it did not 
 

 4-byte integer counts are replaced by bits, so 
the bit-vector requires 1/32 of memory 

 

 Also, decide which items are frequent  
and list them for the second pass 
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 Count all pairs {i, j} that meet the  
conditions for being a candidate pair: 

1.  Both i and j are frequent items 
2.  The pair {i, j} hashes to a bucket whose bit in 

the bit vector is 1 (i.e., frequent bucket) 
 

 Both conditions are necessary for the  
pair to have a chance of being frequent 
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Hash 
table 

Item counts 

Bitmap 

Pass 1 Pass 2 

Frequent items 
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Hash table 
for pairs 
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 Buckets require a few bytes each: 
 Note: we don’t have to count past s 
 #buckets is O(main-memory size) 

 

 On second pass, a table of (item, item, count) 
triples is essential (we cannot use triangular 
matrix approach, why?) 
 Thus, hash table must eliminate approx. 2/3 of the 

candidate pairs for PCY to beat a-priori. 
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 Limit the number of candidates to be counted 
 Remember: Memory is the bottleneck 
 Still need to generate all the itemsets but we only 

want to count/keep track of the ones that are frequent 
 Key idea: After Pass 1 of PCY, rehash only those 

pairs that qualify for Pass 2 of PCY 
 i and j are frequent, and  
 {i, j} hashes to a frequent bucket from Pass 1 

 On middle pass, fewer pairs contribute to 
buckets, so fewer false positives 

 Requires 3 passes over the data 
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First 
hash table 

Item counts 

Bitmap 1 Bitmap 1 

Bitmap 2 

Freq. items Freq. items 

Counts of 
candidate 
   pairs 

Pass 1 Pass 2 Pass 3 
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Count items 
Hash pairs {i,j} 

Hash pairs {i,j} 
into Hash2 iff: 

i,j are frequent, 
{i,j} hashes to 

freq. bucket in B1 

Count pairs {i,j} iff: 
i,j are frequent, 
{i,j} hashes to 

freq. bucket in B1 
{i,j} hashes to 

freq. bucket in B2 

First  
hash table Second 

hash table Counts of 
candidate 

pairs 
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n 
m
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 Count only those pairs {i, j} that satisfy 
these candidate pair conditions: 

1.  Both i and j are frequent items 
2.  Using the first hash function, the pair  

hashes to a bucket whose bit in the  
first bit-vector is 1. 

3.  Using the second hash function, the pair  
hashes to a bucket whose bit in the  
second bit-vector is 1. 
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1.  The two hash functions have to be 
independent 

2.  We need to check both hashes on the 
third pass 
 If not, we would end up counting pairs of 

frequent items that hashed first to an 
infrequent bucket but happened to hash 
second to a frequent bucket 
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 Key idea: Use several independent hash 
tables on the first pass 

 Risk: Halving the number of buckets doubles 
the average count 
 We have to be sure most buckets will still not 

reach count s 
 

 If so, we can get a benefit like multistage,  
but in only 2 passes 
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First hash 
table 

 
Second 

hash table 

Item counts 

Bitmap 1 

Bitmap 2 

Freq. items 

Counts of 
candidate 
   pairs 

Pass 1 Pass 2 

First 
hash table 

Second 
hash table 

Counts of 
candidate 
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 Either multistage or multihash can use more 
than two hash functions 

 

 In multistage, there is a point of diminishing 
returns, since the bit-vectors eventually 
consume all of main memory 

 

 For multihash, the bit-vectors occupy exactly 
what one PCY bitmap does, but too many 
hash functions makes all counts > s 
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 A-Priori, PCY, etc., take k  passes to find 
frequent itemsets of size k 

 

 Can we use fewer passes? 
 

 Use 2 or fewer passes for all sizes,  
but may miss some frequent itemsets 
 Random sampling 
 SON (Savasere, Omiecinski, and Navathe) 
 Toivonen (see textbook) 
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 Take a random sample of the market baskets 
 

 Run a-priori or one of its improvements 
in main memory 
 So we don’t pay for disk I/O each  

time we increase the size of itemsets 
 Reduce support threshold  

proportionally  
to match the sample size 
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 Optionally, verify that the candidate pairs are 
truly frequent in the entire data set by a 
second pass (avoid false positives) 

 
 But you don’t catch sets frequent in the whole 

but not in the sample 
 Smaller threshold, e.g., s/125, helps catch more 

truly frequent itemsets 
 But requires more space 
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 Repeatedly read small subsets of the baskets 
into main memory and run an in-memory 
algorithm to find all frequent itemsets 
 Note: we are not sampling, but processing the 

entire file in memory-sized chunks 
 

 An itemset becomes a candidate if it is found 
to be frequent in any one or more subsets of 
the baskets. 
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 On a second pass, count all the candidate 
itemsets and determine which are frequent in 
the entire set 

 

 Key “monotonicity” idea: an itemset cannot 
be frequent in the entire set of baskets unless 
it is frequent in at least one subset. 
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 SON lends itself to distributed data mining  
 

 Baskets distributed among many nodes  
 Compute frequent itemsets at each node 
 Distribute candidates to all nodes 
 Accumulate the counts of all candidates 
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 Phase 1: Find candidate itemsets 
 Map? 
 Reduce? 

 
 Phase 2: Find true frequent itemsets 
 Map? 
 Reduce? 
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