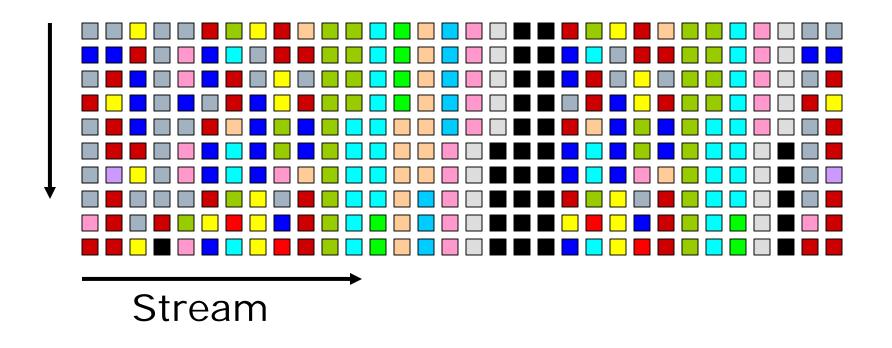
Frequency Counts over Data Streams

Gurmeet Singh Manku

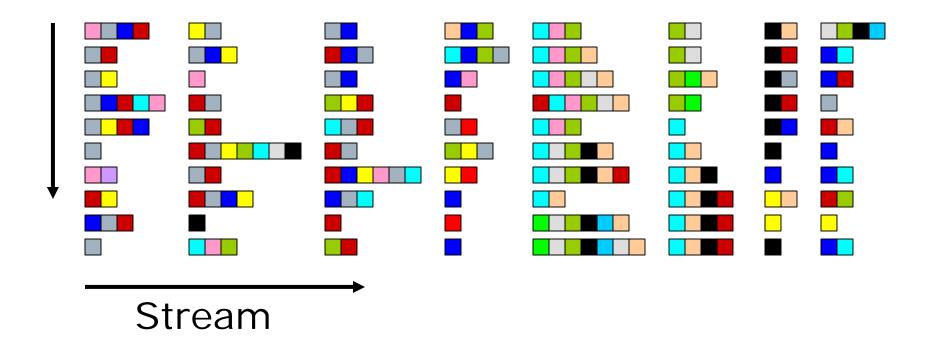
Stanford University, USA

The Problem ...



I dentify all elements whose current frequency exceeds support threshold s = 0.1%.

A Related Problem ...



I dentify all <u>subsets of items</u> whose current frequency exceeds s = 0.1%.

Frequent Itemsets / Association Rules

Applications

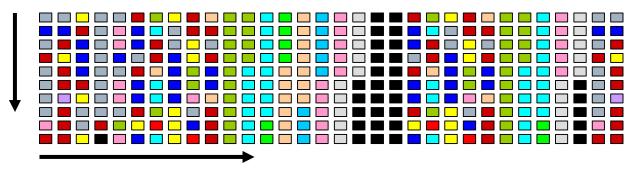
Flow Identification at IP Router [EV01]

Iceberg Queries [FSGM+98]

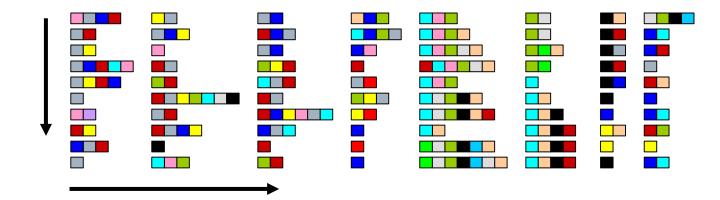
Iceberg Datacubes [BR99 HPDW01]

Association Rules & Frequent Itemsets [AS94 SON95 Toi96 Hid99 HPY00 ...]

Presentation Outline ...



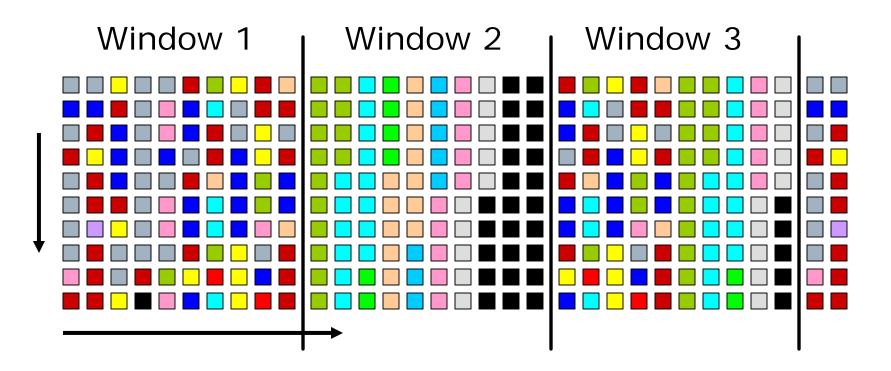
1. Lossy Counting 2. Sticky Sampling



3. Algorithm for Frequent Itemsets

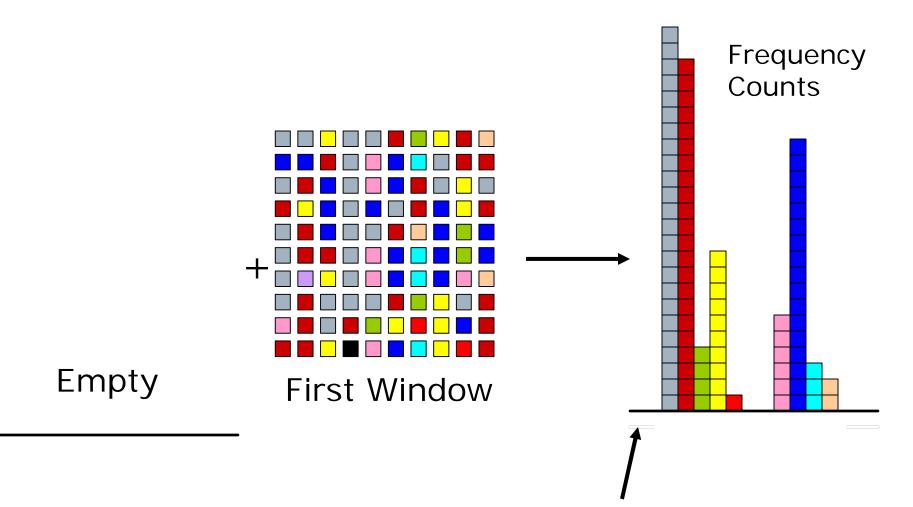
Algorithm 1: Lossy Counting

Step 1: Divide the stream into 'windows'



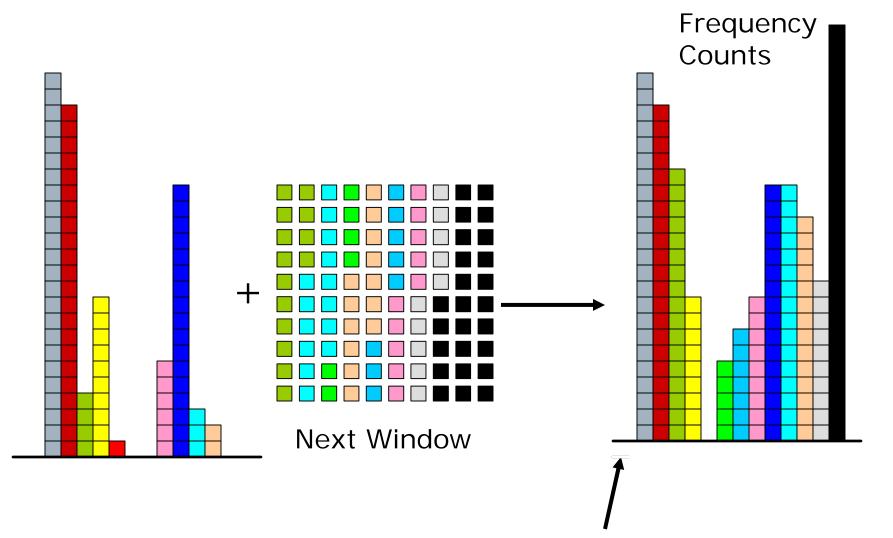
Is window size a function of support s? Will fix later...

Lossy Counting in Action ...



At window boundary, decrement all counters by 1

Lossy Counting continued ...



At window boundary, decrement all counters by 1

Error Analysis

How much do we undercount?

Ifcurrent size of stream= Nandwindow-size= 1/e

then **frequency error £** #windows = eN

Rule of thumb: Set e = 10% of support s Example: Given support frequency s = 1%, set error frequency e = 0.1%

Output:

Elements with counter values exceeding sN - eN

Approximation guarantees Frequencies underestimated by at most eN No false negatives False positives have true frequency at least sN – eN

How many counters do we need? Worst case: 1/e log (e N) counters [See paper for proof]

Enhancements ...

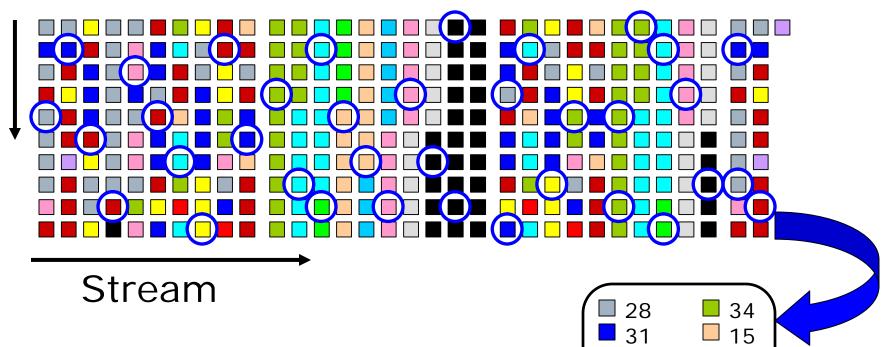
Frequency Errors For counter (X, c), true frequency in [c, c+eN] Trick: Remember window-id's

For counter (X, c, w), true frequency in [c, c+w-1]

If (w = 1), no error!

Batch Processing Decrements after k windows

Algorithm 2: Sticky Sampling



→ Create counters by sampling
→ Maintain exact counts thereafter

28 31 41	■ 34 ■ 15 ■ 30	
23 35 19		

What rate should we sample?

Sticky Sampling contd...

For finite stream of length N

Sampling rate = $2/Ne \log 1/(s\delta)$

 δ = probability of failure

Output:

Elements with counter values exceeding sN – eN

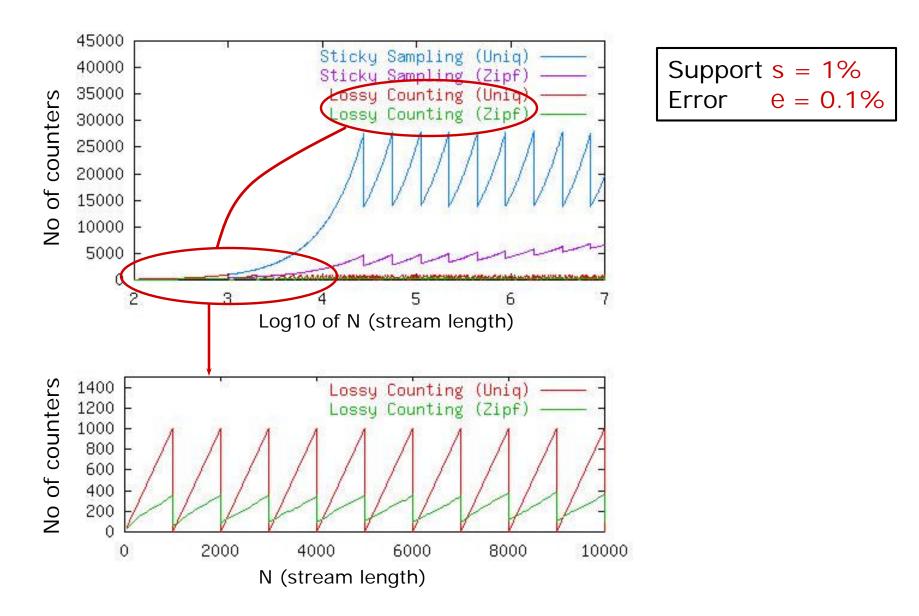
Approximation guarantees (probabilistic) Frequencies underestimated by at most eN No false negatives False positives have true frequency at least sN – eN

Same error guarantees as Lossy Counting but <u>probabilistic</u>

Sampling rate?

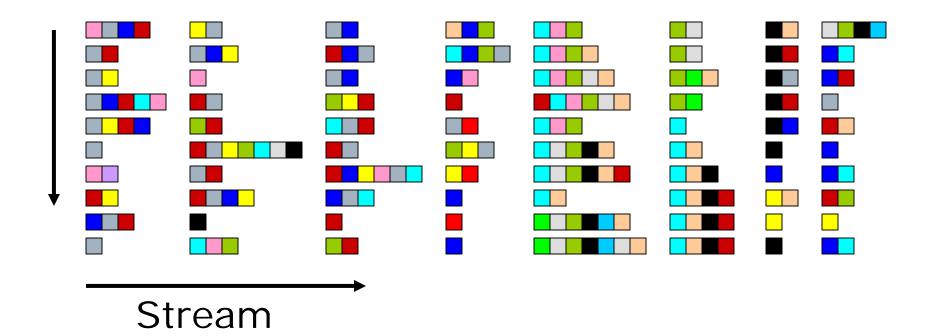
Finite stream of length N Sampling rate: 2/Ne log 1/(sδ)

Infinite stream with unknown N Gradually adjust sampling rate (see paper for details)



From elements to sets of elements ...

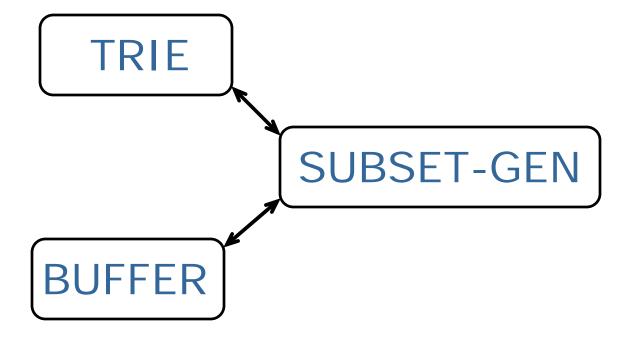
Frequent Itemsets Problem ...



I dentify all <u>subsets of items</u> whose current frequency exceeds s = 0.1%.

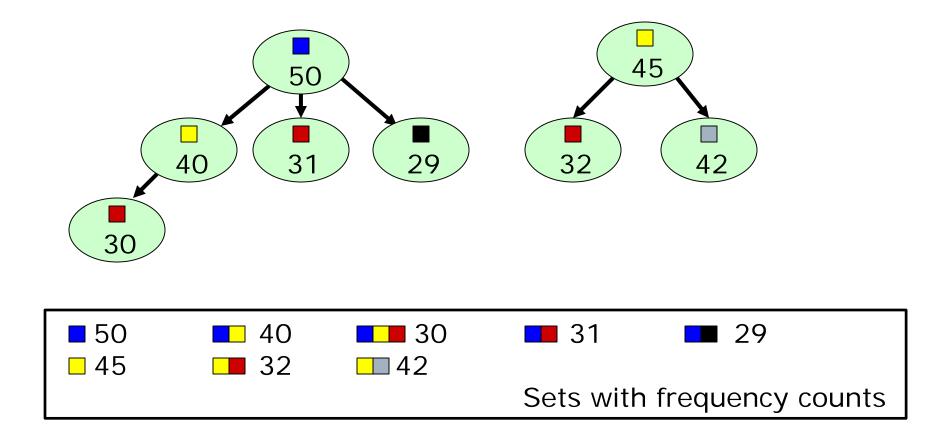
Frequent Itemsets => Association Rules

Three Modules

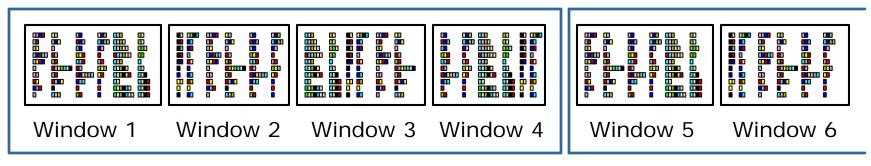


Module 1: TRIE

Compact representation of frequent itemsets in lexicographic order.



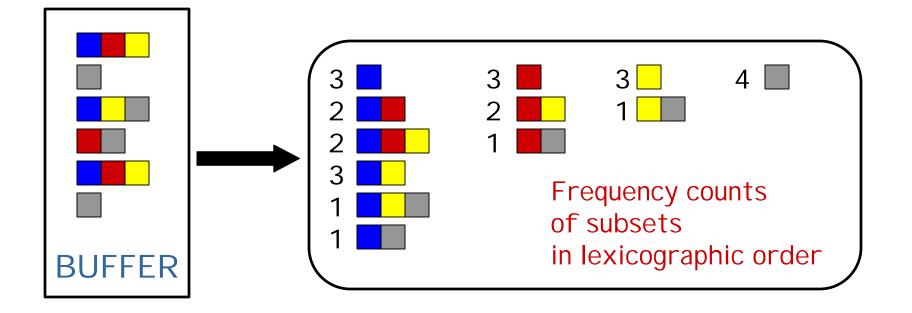
Module 2: BUFFER



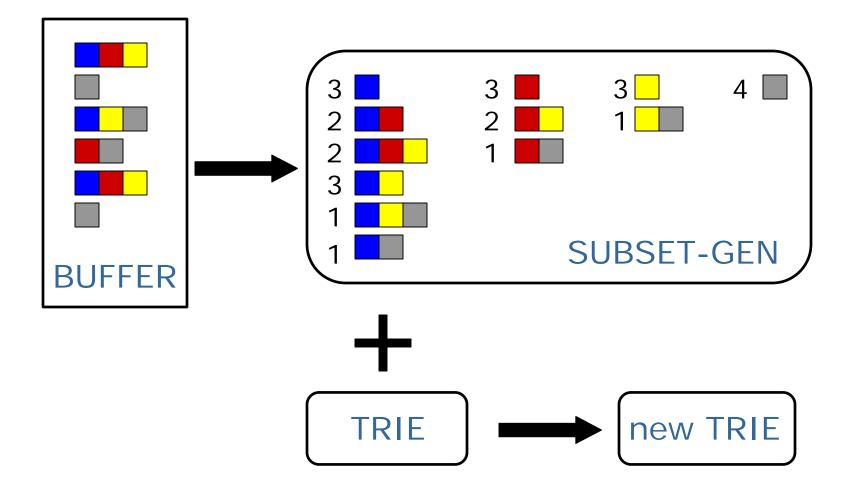
In Main Memory

Compact representation as sequence of ints Transactions sorted by item-id Bitmap for transaction boundaries

Module 3: SUBSET-GEN



Overall Algorithm ...



Problem: Number of subsets is exponential!

SUBSET-GEN Pruning Rules

A-priori Pruning Rule

If set S is infrequent, every superset of S is infrequent.

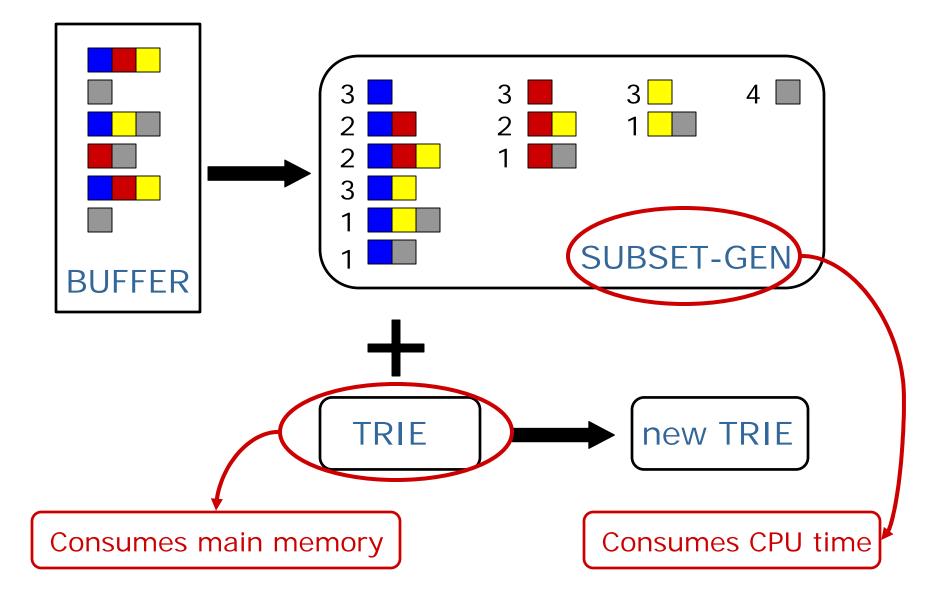
Lossy Counting Pruning Rule

At each 'window boundary' decrement TRIE counters by 1.

Actually, 'Batch Deletion': At each 'main memory buffer' boundary, decrement all TRLE counters by b.

See paper for details ...

Bottlenecks ...



Design Decisions for Performance

SUBSET-GEN

CPU bottleneck

Very fast implementation

 \rightarrow See paper for details

Experiments ...

IBM synthetic dataset T10.14.1000K

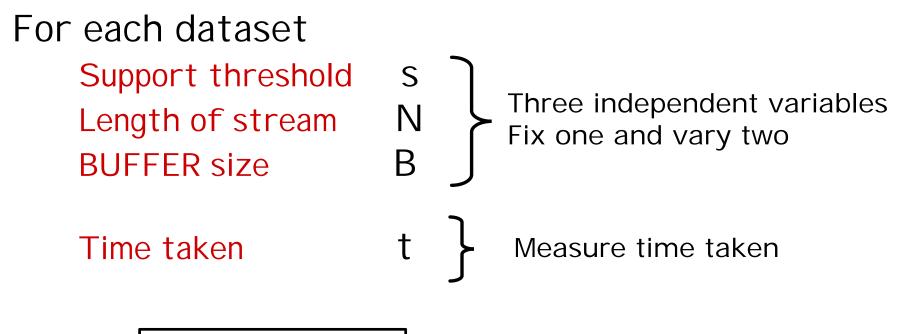
N = 1Million Avg Tran Size = 10 Input Size = 49MB

IBM synthetic dataset T15.I6.1000K N = 1Million Avg Tran Size = 15 Input Size = 69MB

Frequent word pairs in 100K web documentsN = 100KAvg Tran Size = 134Input Size = 54MB

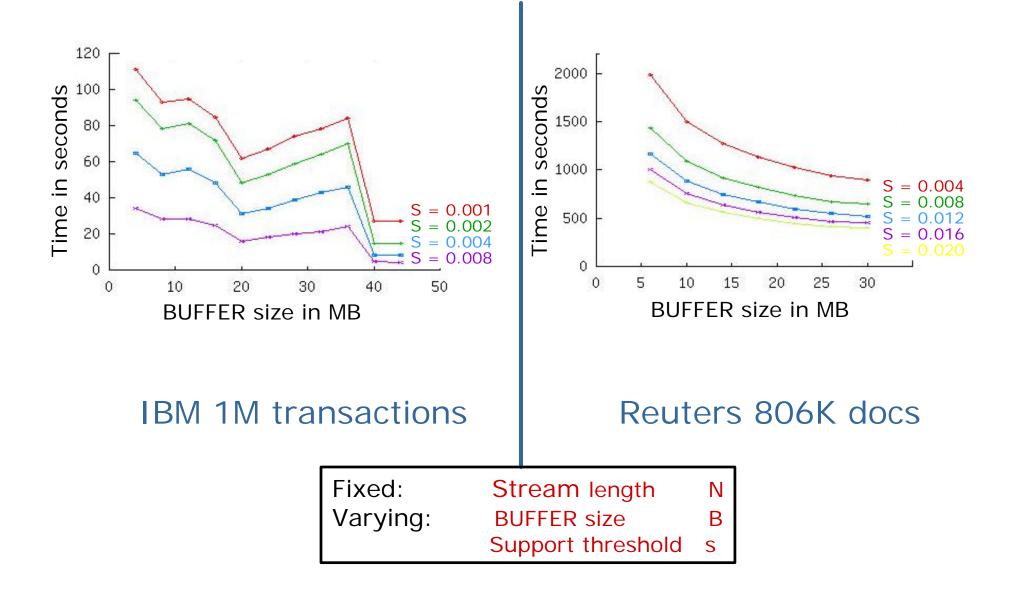
Frequent word pairs in 806K Reuters newsreportsN = 806KAvg Tran Size = 61Input Size = 210MB

What do we study?

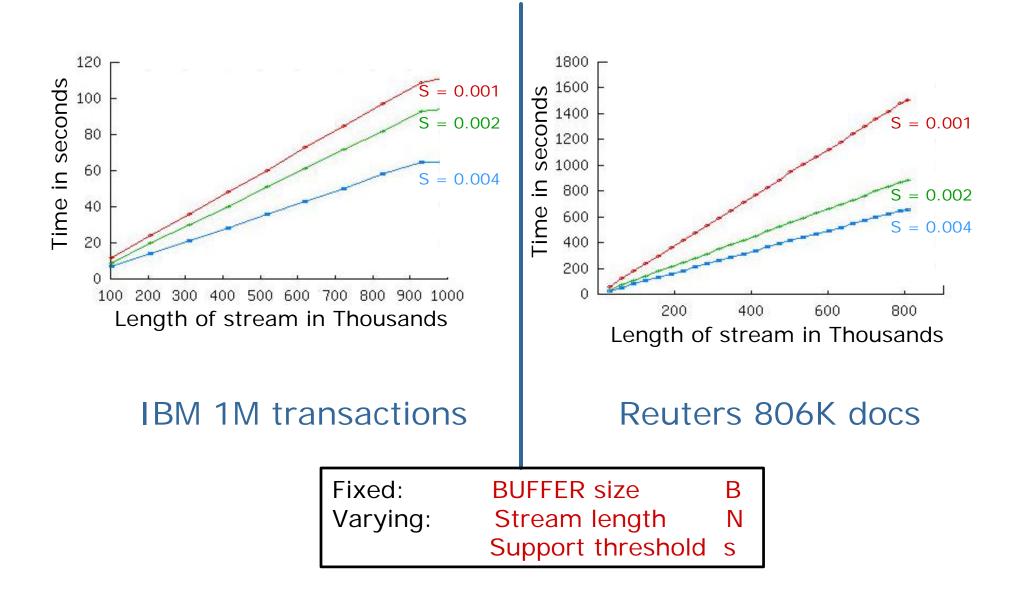


Set e = 10% of support s

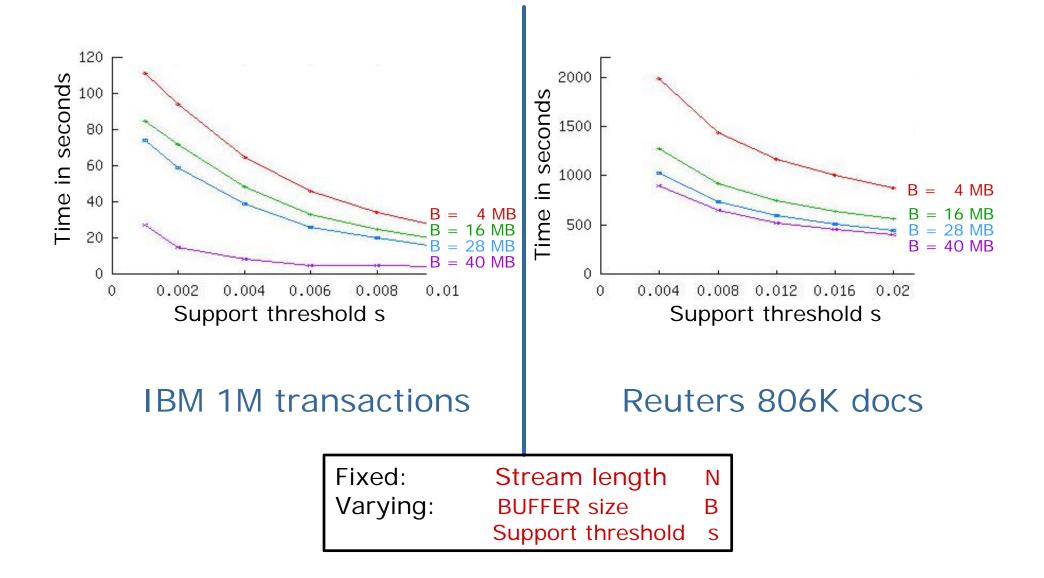
Varying support s and BUFFER B



Varying length N and support s



Varying BUFFER B and support s



Comparison with fast A-priori

	APriori		Our Algorithm with 4MB Buffer		Our Algorithm with 44MB Buffer	
Support	Time	Memory	Time	Memory	Time	Memory
0.001	99 s	82 MB	111 s	12 MB	27 s	45 MB
0.002	25 s	53 MB	94 s	10 MB	15 s	45 MB
0.004	14 s	48 MB	65 s	7MB	8 s	45 MB
0.006	13 s	48 MB	46 s	6 MB	6 s	45 MB
0.008	13 s	48 MB	34 s	5 MB	4 s	45 MB
0.010	14 s	48 MB	26 s	5 MB	4 s	45 MB

Dataset: IBM T10.14.1000K with 1M transactions, average size 10.

A-priori by Christian Borgelt http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html

Comparison with Iceberg Queries

Query: Identify all word pairs in 100K web documents which co-occur in at least 0.5% of the documents.

[FSGM+98] multiple pass algorithm: 7000 seconds with 30 MB memory

Our single-pass algorithm: 4500 seconds with 26 MB memory

Our algorithm would be much faster if allowed multiple passes!

Lessons Learnt ...

Optimizing for *#*passes is wrong!

Small support s **Þ** Too many frequent itemsets! Time to redefine the problem itself?

Interesting combination of Theory and Systems.

Work in Progress ...

Frequency Counts over Sliding Windows

Multiple pass Algorithm for Frequent Itemsets

Iceberg Datacubes

Summary

Lossy Counting: A Practical algorithm for online frequency counting.

First ever single pass algorithm for Association Rules with user specified error guarantees.

Basic algorithm applicable to several problems.