
August 21, 2002 VLDB 2002 1

Gurmeet Singh Manku

Frequency CountsFrequency Counts
overover

Data StreamsData Streams

Stanford University, USA

The Problem ...The Problem ...

Ø Identify all elements whose current frequency
exceeds support threshold s = 0.1%.

Stream

A Related Problem ...A Related Problem ...

Stream

Ø Identify all subsets of items whose
current frequency exceeds s = 0.1%.

Frequent Itemsets / Association Rules

ApplicationsApplications

Flow Identification at IP Router [EV01]

Iceberg Queries [FSGM+98]

Iceberg Datacubes [BR99 HPDW01]

Association Rules & Frequent Itemsets
[AS94 SON95 Toi96

Hid99 HPY00 …]

Presentation Outline ...Presentation Outline ...

1. Lossy Counting 2. Sticky Sampling

3. Algorithm for Frequent Itemsets

Algorithm 1: Algorithm 1: LossyLossy CountingCounting

Step 1: Divide the stream into ‘windows’

Is window size a function of support s? Will fix later…

Window 1 Window 2 Window 3

LossyLossy Counting in Action ...Counting in Action ...

Empty

Frequency
Counts

At window boundary, decrement all counters by 1

+

First Window

LossyLossy Counting continued ...Counting continued ...
Frequency
Counts

At window boundary, decrement all counters by 1

Next Window

+

Error AnalysisError Analysis

If current size of stream = N
and window-size = 1/e

then #windows = eN

Rule of thumb:
Set e = 10% of support s

Example:
Given support frequency s = 1%,
set error frequency e = 0.1%

frequency error ≤≤

How much do we undercount?

How many counters do we need?
Worst case: 1/e log (e N) counters [See paper for proof]

Output:
Elements with counter values exceeding sN – eN

Approximation guarantees
Frequencies underestimated by at most eN
No false negatives
False positives have true frequency at least sN – eN

Enhancements ...Enhancements ...

Frequency Errors
For counter (X, c), true frequency in [c, c+eN]

Trick: Remember window-id’s
For counter (X, c, w), true frequency in [c, c+w-1]

Batch Processing
Decrements after k windows

If (w = 1), no error!

Algorithm 2: Sticky SamplingAlgorithm 2: Sticky Sampling

Stream

à Create counters by sampling
à Maintain exact counts thereafter

What rate should we sample?

34
15
30

28
31
41
23
35
19

Sticky Sampling contd...Sticky Sampling contd...
For finite stream of length N

Sampling rate = 2/Ne log 1/(sδ)

Same Rule of thumb:
Set e = 10% of support s

Example:
Given support threshold s = 1%,
set error threshold e = 0.1%
set failure probability δ = 0.01%

Output:
Elements with counter values exceeding sN – eN

Same error guarantees
as Lossy Counting
but probabilistic

Approximation guarantees (probabilistic)
Frequencies underestimated by at most eN
No false negatives
False positives have true frequency at least sN – eN

δ = probability of failure

Sampling rate?Sampling rate?

Finite stream of length N
Sampling rate: 2/Ne log 1/(sδ)

Independent of N!

Infinite stream with unknown N
Gradually adjust sampling rate (see paper for details)

In either case,
Expected number of counters = 2/ε log 1/sδ

N
o
 o

f
co

u
n
te

rs

Support s = 1%
Error e = 0.1%

N (stream length)

N
o
 o

f
co

u
n
te

rs

Sticky Sampling Expected: 2/ε log 1/sδ
Lossy Counting Worst Case: 1/ε log εN

Log10 of N (stream length)

From elements
to sets of elements …

Frequent Frequent ItemsetsItemsets Problem ...Problem ...

Stream

Ø Identify all subsets of items whose
current frequency exceeds s = 0.1%.

Frequent Itemsets => Association Rules

Three ModulesThree Modules

BUFFER

TRIE

SUBSET-GEN

Module 1: Module 1: TRIETRIE

Compact representation of frequent itemsets in lexicographic order.

50

40

30

31 29 32

45

42

50 40 30 31 29
45 32 42

Sets with frequency counts

Module 2: Module 2: BUFFERBUFFER

Compact representation as sequence of ints
Transactions sorted by item-id
Bitmap for transaction boundaries

Window 1 Window 2 Window 3 Window 4 Window 5 Window 6

In Main Memory

Module 3: Module 3: SUBSETSUBSET--GENGEN

BUFFER

3 3 3 4
2 2 1
2 1
3
1
1

Frequency counts
of subsets
in lexicographic order

Overall Algorithm ...Overall Algorithm ...

BUFFER

3 3 3 4
2 2 1
2 1
3
1
1 SUBSET-GEN

TRIE new TRIE

Problem: Number of subsets is exponential!

SUBSETSUBSET--GEN Pruning RulesGEN Pruning Rules

A-priori Pruning Rule

If set S is infrequent, every superset of S is infrequent.

See paper for details ...

Lossy Counting Pruning Rule

At each ‘window boundary’ decrement TRIE counters by 1.

Actually, ‘Batch Deletion’:
At each ‘main memory buffer’ boundary,
decrement all TRIE counters by b.

Bottlenecks ...Bottlenecks ...

BUFFER

3 3 3 4
2 2 1
2 1
3
1
1 SUBSET-GEN

TRIE new TRIE

Consumes main memory Consumes CPU time

Design Decisions for PerformanceDesign Decisions for Performance

TRIE Main memory bottleneck
Compact linear array
à (element, counter, level) in preorder traversal
à No pointers!

Tries are on disk
à All of main memory devoted to BUFFER

Pair of tries
à old and new (in chunks)

mmap() and madvise()

SUBSET-GEN CPU bottleneck
Very fast implementation
à See paper for details

Experiments ...Experiments ...

IBM synthetic dataset T10.I4.1000K
N = 1Million Avg Tran Size = 10 Input Size = 49MB

IBM synthetic dataset T15.I6.1000K
N = 1Million Avg Tran Size = 15 Input Size = 69MB

Frequent word pairs in 100K web documents
N = 100K Avg Tran Size = 134 Input Size = 54MB

Frequent word pairs in 806K Reuters newsreports
N = 806K Avg Tran Size = 61 Input Size = 210MB

What do we study?What do we study?

For each dataset
Support threshold s
Length of stream N
BUFFER size B

Time taken t

Set e = 10% of support s

Three independent variables
Fix one and vary two

Measure time taken

Varying support s and BUFFER BVarying support s and BUFFER B

IBM 1M transactions Reuters 806K docs

BUFFER size in MB BUFFER size in MB

T
im

e
in

 s
ec

o
n
d
s

T
im

e
in

 s
ec

o
n
d
s

Fixed: Stream length N
Varying: BUFFER size B

Support threshold s

S = 0.001
S = 0.002
S = 0.004
S = 0.008

S = 0.004
S = 0.008
S = 0.012
S = 0.016
S = 0.020

Varying length N and support sVarying length N and support s

IBM 1M transactions Reuters 806K docs

T
im

e
in

 s
ec

o
n
d
s

T
im

e
in

 s
ec

o
n
d
s

Length of stream in Thousands
Length of stream in Thousands

Fixed: BUFFER size B
Varying: Stream length N

Support threshold s

S = 0.001

S = 0.002

S = 0.004

S = 0.001

S = 0.002

S = 0.004

Varying BUFFER B and support sVarying BUFFER B and support s
T
im

e
in

 s
ec

o
n
d
s

T
im

e
in

 s
ec

o
n
d
s

IBM 1M transactions Reuters 806K docs

Support threshold s Support threshold s

Fixed: Stream length N
Varying: BUFFER size B

Support threshold s

B = 4 MB
B = 16 MB
B = 28 MB
B = 40 MB

B = 4 MB
B = 16 MB
B = 28 MB
B = 40 MB

Comparison with fast AComparison with fast A--prioripriori

45 MB4 s5 MB26 s48 MB14 s0.010

45 MB4 s5 MB34 s48 MB13 s0.008

45 MB6 s6 MB46 s48 MB13 s0.006

45 MB8 s7MB65 s48 MB14 s0.004

45 MB15 s10 MB94 s53 MB25 s0.002

45 MB27 s12 MB111 s82 MB99 s0.001

MemoryTimeMemoryTimeMemoryTimeSupport

Our Algorithm
with 44MB Buffer

Our Algorithm
with 4MB Buffer

APriori

Dataset: IBM T10.I4.1000K with 1M transactions, average size 10.
A-priori by Christian Borgelt http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html

Comparison with Iceberg QueriesComparison with Iceberg Queries

Query: Identify all word pairs in 100K web documents
which co-occur in at least 0.5% of the documents.

[FSGM+98] multiple pass algorithm:
7000 seconds with 30 MB memory

Our single-pass algorithm:
4500 seconds with 26 MB memory

Our algorithm would be much faster if allowed multiple passes!

Lessons Learnt ...Lessons Learnt ...

Optimizing for #passes is wrong!

Small support s ⇒ Too many frequent itemsets!
Time to redefine the problem itself?

Interesting combination of Theory and Systems.

Work in Progress ...Work in Progress ...

Frequency Counts over Sliding Windows

Multiple pass Algorithm for Frequent Itemsets

Iceberg Datacubes

SummarySummary

Lossy Counting: A Practical algorithm for online
frequency counting.

First ever single pass algorithm for Association Rules
with user specified error guarantees.

Basic algorithm applicable to several problems.

